1
|
Silva M, Capps S, London JK. Community-Engaged Research and the Use of Open Access ToxVal/ToxRef In Vivo Databases and New Approach Methodologies (NAM) to Address Human Health Risks From Environmental Contaminants. Birth Defects Res 2024; 116:e2395. [PMID: 39264239 PMCID: PMC11407745 DOI: 10.1002/bdr2.2395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/19/2024] [Accepted: 08/11/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND The paper analyzes opportunities for integrating Open access resources (Abstract Sifter, US EPA and NTP Toxicity Value and Toxicity Reference [ToxVal/ToxRefDB]) and New Approach Methodologies (NAM) integration into Community Engaged Research (CEnR). METHODS CompTox Chemicals Dashboard and Integrated Chemical Environment with in vivo ToxVal/ToxRef and NAMs (in vitro) databases are presented in three case studies to show how these resources could be used in Pilot Projects involving Community Engaged Research (CEnR) from the University of California, Davis, Environmental Health Sciences Center. RESULTS Case #1 developed a novel assay methodology for testing pesticide toxicity. Case #2 involved detection of water contaminants from wildfire ash and Case #3 involved contaminants on Tribal Lands. Abstract Sifter/ToxVal/ToxRefDB regulatory data and NAMs could be used to screen/prioritize risks from exposure to metals, PAHs and PFAS from wildfire ash leached into water and to investigate activities of environmental toxins (e.g., pesticides) on Tribal lands. Open access NAMs and computational tools can apply to detection of sensitive biological activities in potential or known adverse outcome pathways to predict points of departure (POD) for comparison with regulatory values for hazard identification. Open access Systematic Empirical Evaluation of Models or biomonitoring exposures are available for human subpopulations and can be used to determine bioactivity (POD) to exposure ratio to facilitate mitigation. CONCLUSIONS These resources help prioritize chemical toxicity and facilitate regulatory decisions and health protective policies that can aid stakeholders in deciding on needed research. Insights into exposure risks can aid environmental justice and health equity advocates.
Collapse
Affiliation(s)
- Marilyn Silva
- Co-Chair Community Stakeholders' Advisory Committee, University of California (UC Davis), Environmental Health Sciences Center (EHSC), Davis, California, USA
| | - Shosha Capps
- Co-Director Community Engagement Core, UC Davis EHSC, Davis, California, USA
| | - Jonathan K London
- Department of Human Ecology and Faculty Director Community Engagement Core, UC Davis EHSC, Sacramento, California, USA
| |
Collapse
|
2
|
Puscheck EE, Ruden X, Singh A, Abdulhasan M, Ruden DM, Awonuga AO, Rappolee DA. Using high throughput screens to predict miscarriages with placental stem cells and long-term stress effects with embryonic stem cells. Birth Defects Res 2022; 114:1014-1036. [PMID: 35979652 PMCID: PMC10108263 DOI: 10.1002/bdr2.2079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/10/2022]
Abstract
A problem in developmental toxicology is the massive loss of life from fertilization through gastrulation, and the surprising lack of knowledge of causes of miscarriage. Half to two-thirds of embryos are lost, and environmental and genetic causes are nearly equal. Simply put, it can be inferred that this is a difficult period for normal embryos, but that environmental stresses may cause homeostatic responses that move from adaptive to maladaptive with increasing exposures. At the lower 50% estimate, miscarriage causes greater loss-of-life than all cancers combined or of all cardio- and cerebral-vascular accidents combined. Surprisingly, we do not know if miscarriage rates are increasing or decreasing. Overshadowed by the magnitude of miscarriages, are insufficient data on teratogenic or epigenetic imbalances in surviving embryos and their stem cells. Superimposed on the difficult normal trajectory for peri-gastrulation embryos are added malnutrition, hormonal, and environmental stresses. An overarching hypothesis is that high throughput screens (HTS) using cultured viable reporter embryonic and placental stem cells (e.g., embryonic stem cells [ESC] and trophoblast stem cells [TSC] that report status using fluorescent reporters in living cells) from the pre-gastrulation embryo will most rapidly test a range of hormonal, environmental, nutritional, drug, and diet supplement stresses that decrease stem cell proliferation and imbalance stemness/differentiation. A second hypothesis is that TSC respond with greater sensitivity in magnitude to stress that would cause miscarriage, but ESC are stress-resistant to irreversible stemness loss and are best used to predict long-term health defects. DevTox testing needs more ESC and TSC HTS to model environmental stresses leading to miscarriage or teratogenesis and more research on epidemiology of stress and miscarriage. This endeavor also requires a shift in emphasis on pre- and early gastrulation events during the difficult period of maximum loss by miscarriage.
Collapse
Affiliation(s)
- Elizabeth E Puscheck
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, Michigan, USA
- Reproductive Stress 3M Inc, Grosse Pointe Farms, Michigan, USA
- Invia Fertility Clinics, Hoffman Estates, Illinois, USA
| | - Ximena Ruden
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Aditi Singh
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Mohammed Abdulhasan
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, Michigan, USA
- Reproductive Stress 3M Inc, Grosse Pointe Farms, Michigan, USA
| | - Douglas M Ruden
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, Michigan, USA
- Invia Fertility Clinics, Hoffman Estates, Illinois, USA
- Institute for Environmental Health Science, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Awoniyi O Awonuga
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Daniel A Rappolee
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, Michigan, USA
- Reproductive Stress 3M Inc, Grosse Pointe Farms, Michigan, USA
- Invia Fertility Clinics, Hoffman Estates, Illinois, USA
- Institute for Environmental Health Science, Wayne State University School of Medicine, Detroit, Michigan, USA
- Program for Reproductive Sciences and Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Biology, University of Windsor, Windsor, Ontario, Canada
| |
Collapse
|
3
|
The DevTox Germ Layer Reporter Platform: An Assay Adaptation of the Human Pluripotent Stem Cell Test. TOXICS 2022; 10:toxics10070392. [PMID: 35878297 PMCID: PMC9321663 DOI: 10.3390/toxics10070392] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/14/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022]
Abstract
Environmental chemical exposures are a contributing factor to birth defects affecting infant morbidity and mortality. The USA EPA is committed to developing new approach methods (NAMs) to detect chemical risks to susceptible populations, including pregnant women. NAM-based coverage for cellular mechanisms associated with early human development could enhance identification of potential developmental toxicants (DevTox) for new and existing data-poor chemicals. The human pluripotent stem cell test (hPST) is an in vitro test method for rapidly identifying potential human developmental toxicants that employs directed differentiation of embryonic stem cells to measure reductions in SOX17 biomarker expression and nuclear localization. The objective of this study was to expand on the hPST principles to develop a model platform (DevTox GLR) that utilizes the transgenic RUES2-GLR cell line expressing fluorescent reporter fusion protein biomarkers for SOX17 (endoderm marker), BRA (mesoderm marker), and SOX2 (ectoderm and pluripotency marker). Initial assay adaption to definitive endoderm (DevTox GLR-Endo) was performed to emulate the hPST SOX17 endpoint and enable comparative evaluation of concordant chemical effects. Assay duration was reduced to two days and screening throughput scaled to 384-well format for enhanced speed and efficiency. Assay performance for 66 chemicals derived from reference and training set data resulted in a balanced accuracy of 72% (79% sensitivity and 65% specificity). The DevTox GLR-Endo assay demonstrates successful adaptation of the hPST concept with increased throughput, shorter assay duration, and minimal endpoint processing. The DevTox GLR model platform expands the in vitro NAM toolbox to rapidly identify potential developmental hazards and mechanistically characterize toxicant effects on pathways and processes associated with early human development.
Collapse
|
4
|
Piersma AH, Baker NC, Daston GP, Flick B, Fujiwara M, Knudsen TB, Spielmann H, Suzuki N, Tsaioun K, Kojima H. Pluripotent stem cell assays: Modalities and applications for predictive developmental toxicity. Curr Res Toxicol 2022; 3:100074. [PMID: 35633891 PMCID: PMC9130094 DOI: 10.1016/j.crtox.2022.100074] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/21/2022] [Accepted: 05/09/2022] [Indexed: 12/02/2022] Open
Abstract
This manuscript provides a review focused on embryonic stem cell-based models and their place within the landscape of alternative developmental toxicity assays. Against the background of the principles of developmental toxicology, the wide diversity of alternative methods using pluripotent stem cells developed in this area over the past half century is reviewed. In order to provide an overview of available models, a systematic scoping review was conducted following a published protocol with inclusion criteria, which were applied to select the assays. Critical aspects including biological domain, readout endpoint, availability of standardized protocols, chemical domain, reproducibility and predictive power of each assay are described in detail, in order to review the applicability and limitations of the platform in general and progress moving forward to implementation. The horizon of innovative routes of promoting regulatory implementation of alternative methods is scanned, and recommendations for further work are given.
Collapse
Affiliation(s)
- Aldert H. Piersma
- Center for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | - George P. Daston
- Global Product Stewardship, The Procter & Gamble Company, Cincinnati, OH, USA
| | - Burkhard Flick
- Experimental Toxicology and Ecology, BASF SE, Ludwigshafen am Rhein, Germany
| | - Michio Fujiwara
- Drug Safety Research Labs, Astellas Pharma Inc., Tsukuba-shi, Japan
| | - Thomas B. Knudsen
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, USA
| | - Horst Spielmann
- Institute for Pharmacy, Faculty of Biology, Chemistry, and Pharmacy, Freie Universität, Berlin, Germany
| | - Noriyuki Suzuki
- Cell Science Group Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Osaka, Japan
| | - Katya Tsaioun
- Evidence-Based Toxicology Collaboration at Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Hajime Kojima
- National Institute of Health Sciences, Kawasaki, Japan
| |
Collapse
|
5
|
Silva M, Kwok RKH. Use of Computational Toxicology Tools to Predict In Vivo Endpoints Associated with Mode of Action and the Endocannabinoid System: A Case Study with Chlorpyrifos, Chlorpyrifos-oxon and Δ9Tetrahydrocannabinol. Curr Res Toxicol 2022; 3:100064. [PMID: 35243363 PMCID: PMC8860916 DOI: 10.1016/j.crtox.2022.100064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/16/2022] [Accepted: 02/03/2022] [Indexed: 01/04/2023] Open
|
6
|
Mennen RH, Oldenburger MM, Piersma AH. Endoderm and mesoderm derivatives in embryonic stem cell differentiation and their use in developmental toxicity testing. Reprod Toxicol 2021; 107:44-59. [PMID: 34861400 DOI: 10.1016/j.reprotox.2021.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 02/06/2023]
Abstract
Embryonic stem cell differentiation models have increasingly been applied in non-animal test systems for developmental toxicity. After the initial focus on cardiac differentiation, attention has also included an array of neuro-ectodermal differentiation routes. Alternative differentiation routes in the mesodermal and endodermal germ lines have received less attention. This review provides an inventory of achievements in the latter areas of embryonic stem cell differentiation, with a view to possibilities for their use in non-animal test systems in developmental toxicology. This includes murine and human stem cell differentiation models, and also gains information from the field of stem cell use in regenerative medicine. Endodermal stem cell derivatives produced in vitro include hepatocytes, pancreatic cells, lung epithelium, and intestinal epithelium, and mesodermal derivatives include cardiac muscle, osteogenic, vascular and hemopoietic cells. This inventory provides an overview of studies on the different cell types together with biomarkers and culture conditions that stimulate these differentiation routes from embryonic stem cells. These models may be used to expand the spectrum of embryonic stem cell based new approach methodologies in non-animal developmental toxicity testing.
Collapse
Affiliation(s)
- R H Mennen
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands.
| | | | - A H Piersma
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
7
|
Abdulhasan M, Ruden X, You Y, Harris SM, Ruden DM, Awonuga AO, Alvero A, Puscheck EE, Rappolee DA. Using Live Imaging and FUCCI Embryonic Stem Cells to Rank DevTox Risks: Adverse Growth Effects of PFOA Compared With DEP Are 26 Times Faster, 1,000 Times More Sensitive, and 13 Times Greater in Magnitude. FRONTIERS IN TOXICOLOGY 2021; 3:709747. [PMID: 35295126 PMCID: PMC8915856 DOI: 10.3389/ftox.2021.709747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/20/2021] [Indexed: 01/05/2023] Open
Abstract
Fluorescent ubiquitination-based cell cycle indicator (FUCCI) embryonic stem cells (ESCs), which fluoresce green during the S-G2-M phases, generate an S-shaped curve for the accumulation of cells during normal stemness (NS) culture with leukemia-inhibitory factor (LIF). Since it was hypothesized that a culture of ESCs was heterogeneous in the cell cycle, it was expected that increased S-G2-M-phases of the cell cycle would make an S-shaped curve parallel to the accumulation curve. Unexpectedly, it was observed that the fraction of FUCCI ESCs in green decreases over time to a nadir at ∼24 h after previous feeding and then rapidly enters S-G2-M-phases after medium change. G1 delay by infrequent medium change is a mild stress, as it does not affect growth significantly when frequency is increased to 12 h. Perfluoro-octanoic acid (PFOA) and diethyl phthalate (DEP) were used as examples of members of the per- and polyfluoroalkyl substances (PFAS) and phthalate families of chemicals, respectively. Two adverse outcomes were used to compare dose- and time-dependent effects of PFOA and DEP. The first was cell accumulation assay by time-lapse confluence measurements, largely at Tfinal/T74 h. The second was by quantifying dominant toxicant stress shown by the suppression of mild stress that creates a green fed/unfed peak. In terms of speed, PFOA is 26 times faster than DEP for producing a time-dependent LOAEL dose at 100 uM (that is, 2 h for PFOA and 52 h for DEP). PFOA has 1000-fold more sensitive LOAEL doses than DEP for suppressing ESC accumulation (confluence) at day 3 and day 2. There were two means to compare the magnitude of the growth suppression of PFOA and DEP. For the suppression of the accumulation of cells measured by confluence at Tfinal/T74h, there was a 13-fold suppression at the highest dose of PFOA > the highest dose of DEP. For the suppression of entry into the cell cycle after the G1 phase by stress on day 1 and 2, there is 10-fold more suppression by PFOA than DEP. The data presented here suggest that FUCCI ESCs can assay the suppression of accumulated growth or predict the suppression of future growth by the suppression of fed/unfed green fluorescence peaks and that PFOA's adverse effects are faster and larger and can occur at more sensitive lower doses than DEP.
Collapse
Affiliation(s)
- Mohammed Abdulhasan
- Department of Ob/Gyn, CS Mott Center for Human Growth and Development, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, MI, United States
- Reproductive Stress 3M Inc, Grosse Pointe Farms, Detroit, MI, United States
| | - Ximena Ruden
- Department of Ob/Gyn, CS Mott Center for Human Growth and Development, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, MI, United States
| | - Yuan You
- Department of Ob/Gyn, CS Mott Center for Human Growth and Development, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, MI, United States
- Program for Reproductive Sciences and Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Sean M. Harris
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Douglas M. Ruden
- Department of Ob/Gyn, CS Mott Center for Human Growth and Development, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Awoniyi O. Awonuga
- Department of Ob/Gyn, CS Mott Center for Human Growth and Development, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, MI, United States
| | - Ayesha Alvero
- Department of Ob/Gyn, CS Mott Center for Human Growth and Development, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, MI, United States
- Program for Reproductive Sciences and Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Elizabeth E. Puscheck
- Department of Ob/Gyn, CS Mott Center for Human Growth and Development, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, MI, United States
- Reproductive Stress 3M Inc, Grosse Pointe Farms, Detroit, MI, United States
- Invia Fertility Clinics, IL, Chicago, United States
| | - Daniel A. Rappolee
- Department of Ob/Gyn, CS Mott Center for Human Growth and Development, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, MI, United States
- Reproductive Stress 3M Inc, Grosse Pointe Farms, Detroit, MI, United States
- Program for Reproductive Sciences and Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
- Institutes for Environmental Health Science, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Biology, University of Windsor, Windsor, ON, Canada
| |
Collapse
|
8
|
Håkansson H. Role of retinoids in biology and toxicology. Reprod Toxicol 2021; 107:40-42. [PMID: 34774707 DOI: 10.1016/j.reprotox.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Helen Håkansson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
9
|
Parihar M, Bendelac-Kapon L, Gur M, Abbou T, Belorkar A, Achanta S, Kinberg K, Vadigepalli R, Fainsod A. Retinoic Acid Fluctuation Activates an Uneven, Direction-Dependent Network-Wide Robustness Response in Early Embryogenesis. Front Cell Dev Biol 2021; 9:747969. [PMID: 34746144 PMCID: PMC8564372 DOI: 10.3389/fcell.2021.747969] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/23/2021] [Indexed: 01/15/2023] Open
Abstract
Robustness is a feature of regulatory pathways to ensure signal consistency in light of environmental changes or genetic polymorphisms. The retinoic acid (RA) pathway, is a central developmental and tissue homeostasis regulatory signal, strongly dependent on nutritional sources of retinoids and affected by environmental chemicals. This pathway is characterized by multiple proteins or enzymes capable of performing each step and their integration into a self-regulating network. We studied RA network robustness by transient physiological RA signaling disturbances followed by kinetic transcriptomic analysis of the recovery during embryogenesis. The RA metabolic network was identified as the main regulated module to achieve signaling robustness using an unbiased pattern analysis. We describe the network-wide responses to RA signal manipulation and found the feedback autoregulation to be sensitive to the direction of the RA perturbation: RA knockdown exhibited an upper response limit, whereas RA addition had a minimal feedback-activation threshold. Surprisingly, our robustness response analysis suggests that the RA metabolic network regulation exhibits a multi-objective optimization, known as Pareto optimization, characterized by trade-offs between competing functionalities. We observe that efficient robustness to increasing RA is accompanied by worsening robustness to reduced RA levels and vice versa. This direction-dependent trade-off in the network-wide feedback response, results in an uneven robustness capacity of the RA network during early embryogenesis, likely a significant contributor to the manifestation of developmental defects.
Collapse
Affiliation(s)
- Madhur Parihar
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Liat Bendelac-Kapon
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Jerusalem, Israel
| | - Michal Gur
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Jerusalem, Israel
| | - Tali Abbou
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Jerusalem, Israel
| | - Abha Belorkar
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Sirisha Achanta
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Keren Kinberg
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Jerusalem, Israel
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Abraham Fainsod
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Jerusalem, Israel
| |
Collapse
|
10
|
Di Paolo C, Hoffmann S, Witters H, Carrillo JC. Minimum reporting standards based on a comprehensive review of the zebrafish embryo teratogenicity assay. Regul Toxicol Pharmacol 2021; 127:105054. [PMID: 34653553 DOI: 10.1016/j.yrtph.2021.105054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/08/2021] [Accepted: 10/04/2021] [Indexed: 11/20/2022]
Abstract
Reproductive toxicity chemical safety assessment involves extensive use of vertebrate animals for regulatory testing purposes. Although alternative methods such as the zebrafish embryo teratogenicity assay (identified in the present manuscript by the acronym ZETA) are promising for replacing tests with mammals, challenges to regulatory application involve lack of standardization and incomplete validation. To identify key protocol aspects and ultimately support improving this situation, a comprehensive review of the literature on the level of harmonization/standardization and validation status of the ZETA has been conducted. The gaps and needed advances of the available ZETA protocols were evaluated and discussed with respect to its applicability as an alternative approach for teratogenicity assessment. Based on the review outcomes, a set of minimum reporting standards for the experimental protocol is proposed. Together with other initiatives towards implementation of alternative approaches at the screening and regulatory levels, the application of minimum reporting requirements is anticipated to support future method standardization and validation, as well as identifying potential improvement aspects. Present findings are expected to ultimately support advancing the ongoing validation initiatives towards the regulatory acceptance of the ZETA.
Collapse
Affiliation(s)
- Carolina Di Paolo
- Shell Health, Shell International, B.V. Carel van Bylandtlaan 16, 2596, HR, The Hague, the Netherlands.
| | | | - Hilda Witters
- Flemish Institute for Technological Research (VITO), Unit Health, Boeretang 200, B-2400, Mol, Belgium
| | - Juan-Carlos Carrillo
- Shell Health, Shell International, B.V. Carel van Bylandtlaan 16, 2596, HR, The Hague, the Netherlands
| |
Collapse
|
11
|
Herlin M, Sánchez-Pérez I, Esteban J, Korkalainen M, Barber X, Finnilä MAJ, Hamscher G, Joseph B, Viluksela M, Håkansson H. Bone toxicity induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and the retinoid system: A causality analysis anchored in osteoblast gene expression and mouse data. Reprod Toxicol 2021; 105:25-43. [PMID: 34363983 DOI: 10.1016/j.reprotox.2021.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/16/2021] [Accepted: 07/30/2021] [Indexed: 12/18/2022]
Abstract
Dioxin exposures impact on bone quality and osteoblast differentiation, as well as retinoic acid metabolism and signaling. In this study we analyzed associations between increased circulating retinol concentrations and altered bone mineral density in a mouse model following oral exposure to 2,3,7,8-tetrachlordibenzo-p-dioxin (TCDD). Additionally, effects of TCDD on differentiation marker genes and genes involved with retinoic acid metabolism were analysed in an osteoblast cell model followed by benchmark dose-response analyses of the gene expression data. Study results show that the increased trabecular and decreased cortical bone mineral density in the mouse model following TCDD exposure are associated with increased circulating retinol concentrations. Also, TCDD disrupted the expression of genes involved in osteoblast differentiation and retinoic acid synthesis, degradation, and nuclear translocation in directions compatible with increasing cellular retinoic acid levels. Further evaluation of the obtained results in relation to previously published data by the use of mode-of-action and weight-of-evidence inspired analytical approaches strengthened the evidence that TCDD-induced bone and retinoid system changes are causally related and compatible with an endocrine disruption mode of action.
Collapse
Affiliation(s)
- Maria Herlin
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Ismael Sánchez-Pérez
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Elche, Alicante, Spain.
| | - Javier Esteban
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Elche, Alicante, Spain.
| | - Merja Korkalainen
- Environmental Health Unit, Finnish Institute for Health and Welfare (THL), Kuopio, Finland.
| | - Xavier Barber
- Centro de Investigación Operativa, Universidad Miguel Hernández, Elche, Alicante, Spain.
| | - Mikko A J Finnilä
- Research Unit of Medical Imaging, Physics, and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.
| | - Gerd Hamscher
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, 10 Giessen, Germany.
| | - Bertrand Joseph
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Matti Viluksela
- Environmental Health Unit, Finnish Institute for Health and Welfare (THL), Kuopio, Finland; School of Pharmacy (Toxicology) and Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Helen Håkansson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
12
|
Silva MH. Chlorpyrifos and Δ 9 Tetrahydrocannabinol exposure and effects on parameters associated with the endocannabinoid system and risk factors for obesity. Curr Res Toxicol 2021; 2:296-308. [PMID: 34467221 PMCID: PMC8384771 DOI: 10.1016/j.crtox.2021.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 12/15/2022] Open
Abstract
Marilyn Silva. Retired from a career in toxicology and risk assessment. Increased childhood and adult obesity are associated with chlorpyrifos (CPF), an organophosphate pesticide. Cannabis (Δ9Tetrahydrocannabinol: Δ9THC) use has increased globally with legalization. CPF applications on cannabis crops lacks federally regulated tolerances and may pose health risks through exposure during development and in adulthood. Both CPF and Δ9THC affect the endocannabinoid system (eCBS), a regulator of appetite, energy balance, and gut microbiota, which, if disrupted, increases risk for obesity and related diseases. CPF inhibits eCB metabolism and Δ9THC is a partial agonist/antagonist at the cannabinoid receptor (CB1R). Effects of each on obesogenic parameters were examined via literature search. Male rodents with CPF exposure showed increased body weights, dysbiosis, inflammation and oxidative stress, potentially associated with increased eCBs acting through the gut-microbiota-adipose-brain regulatory loop. Δ9THC generally decreased body weights via partial agonism at the CB1R, lowering levels of eCBs. Dysbiosis and/or oxidative stress associated inflammation occurred with CPF, but these parameters were not tested with Δ9THC. Database deficiencies included limited endpoints to compare between chemicals/age-groups, inter-study variables (dose ranges, dosing vehicle, rodent strain, treatment duration, etc.). CPF and Δ9THC were not tested together, but human co-chemical effects would depend on exposure ratio, subject age, exposure duration, and health status, among others. An overriding concern is that both chemicals are well-documented developmental neurotoxins in addition to their low dose effects on energy balance. A co-exposure risk assessment is warranted with increased use and lack of federal CPF regulation on cannabis.
Collapse
Affiliation(s)
- Marilyn H. Silva
- Retired from a career in toxicology and risk assessment 2437, Evenstar Lane, Davis, CA 95616, United States
| |
Collapse
|
13
|
Eldridge CB, Allen FJ, Crisp A, Grandy RA, Vallier L, Sale JE. A p53-Dependent Checkpoint Induced upon DNA Damage Alters Cell Fate during hiPSC Differentiation. Stem Cell Reports 2020; 15:827-835. [PMID: 32888504 PMCID: PMC7561492 DOI: 10.1016/j.stemcr.2020.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 12/14/2022] Open
Abstract
The ability of human induced pluripotent stem cells (hiPSCs) to differentiate in vitro to each of the three germ layer lineages has made them an important model of early human development and a tool for tissue engineering. However, the factors that disturb the intricate transcriptional choreography of differentiation remain incompletely understood. Here, we uncover a critical time window during which DNA damage significantly reduces the efficiency and fidelity with which hiPSCs differentiate to definitive endoderm. DNA damage prevents the normal reduction of p53 levels as cells pass through the epithelial-to-mesenchymal transition, diverting the transcriptional program toward mesoderm without induction of an apoptotic response. In contrast, TP53-deficient cells differentiate to endoderm with high efficiency after DNA damage, suggesting that p53 enforces a "differentiation checkpoint" in early endoderm differentiation that alters cell fate in response to DNA damage.
Collapse
Affiliation(s)
- Cara B Eldridge
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Finian J Allen
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Alastair Crisp
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Rodrigo A Grandy
- Wellcome-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Ludovic Vallier
- Wellcome-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge CB2 0SZ, UK; Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Julian E Sale
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
14
|
Use of computational toxicology (CompTox) tools to predict in vivo toxicity for risk assessment. Regul Toxicol Pharmacol 2020; 116:104724. [PMID: 32640296 DOI: 10.1016/j.yrtph.2020.104724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/20/2020] [Accepted: 06/30/2020] [Indexed: 12/19/2022]
Abstract
Computational Toxicology tools were used to predict toxicity for three pesticides: propyzamide (PZ), carbaryl (CB) and chlorpyrifos (CPF). The tools used included: a) ToxCast/Tox21 assays (AC50 s μM: concentration 50% maximum activity); b) in vitro-to-in vivo extrapolation (IVIVE) using ToxCast/Tox21 AC50s to predict administered equivalent doses (AED: mg/kg/d) to compare to known in vivo Lowest-Observed-Effect-Level (LOEL)/Benchmark Dose (BMD); c) high throughput toxicokinetics population based (HTTK-Pop) using AC50s for endpoints associated with the mode of action (MOA) to predict age-adjusted AED for comparison with in vivo LOEL/BMDs. ToxCast/Tox21 active-hit-calls for each chemical were predictive of targets associated with each MOA, however, assays directly relevant to the MOAs for each chemical were limited. IVIVE AEDs were predictive of in vivo LOEL/BMD10s for all three pesticides. HTTK-Pop was predictive of in vivo LOEL/BMD10s for PZ and CPF but not for CB after human age adjustments 11-15 (PZ) and 6-10 (CB) or 6-10 and 11-20 (CPF) corresponding to treated rat ages (in vivo endpoints). The predictions of computational tools are useful for risk assessment to identify targets in chemical MOAs and to support in vivo endpoints. Data can also aid is decisions about the need for further studies.
Collapse
|
15
|
Belair DG, Lu G, Waller LE, Gustin JA, Collins ND, Kolaja KL. Thalidomide Inhibits Human iPSC Mesendoderm Differentiation by Modulating CRBN-dependent Degradation of SALL4. Sci Rep 2020; 10:2864. [PMID: 32071327 PMCID: PMC7046148 DOI: 10.1038/s41598-020-59542-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/29/2020] [Indexed: 12/20/2022] Open
Abstract
Exposure to thalidomide during a critical window of development results in limb defects in humans and non-human primates while mice and rats are refractory to these effects. Thalidomide-induced teratogenicity is dependent on its binding to cereblon (CRBN), the substrate receptor of the Cul4A-DDB1-CRBN-RBX1 E3 ubiquitin ligase complex. Thalidomide binding to CRBN elicits subsequent ubiquitination and proteasomal degradation of CRBN neosubstrates including SALL4, a transcription factor of which polymorphisms phenocopy thalidomide-induced limb defects in humans. Herein, thalidomide-induced degradation of SALL4 was examined in human induced pluripotent stem cells (hiPSCs) that were differentiated either to lateral plate mesoderm (LPM)-like cells, the developmental ontology of the limb bud, or definitive endoderm. Thalidomide and its immunomodulatory drug (IMiD) analogs, lenalidomide, and pomalidomide, dose-dependently inhibited hiPSC mesendoderm differentiation. Thalidomide- and IMiD-induced SALL4 degradation can be abrogated by CRBN V388I mutation or SALL4 G416A mutation in hiPSCs. Genetically modified hiPSCs expressing CRBN E377V/V388I mutant or SALL4 G416A mutant were insensitive to the inhibitory effects of thalidomide, lenalidomide, and pomalidomide on LPM differentiation while retaining sensitivity to another known limb teratogen, all-trans retinoic acid (atRA). Finally, disruption of LPM differentiation by atRA or thalidomide perturbed subsequent chondrogenic differentiation in vitro. The data here show that thalidomide, lenalidomide, and pomalidomide affect stem cell mesendoderm differentiation through CRBN-mediated degradation of SALL4 and highlight the utility of the LPM differentiation model for studying the teratogenicity of new CRBN modulating agents.
Collapse
Affiliation(s)
- David G Belair
- Nonclinical Development, Celgene Corporation, Summit, NJ, USA
| | - Gang Lu
- Protein Homeostasis, Celgene Corporation, San Diego, CA, USA
| | | | | | | | - Kyle L Kolaja
- Nonclinical Development, Celgene Corporation, Summit, NJ, USA.
| |
Collapse
|