1
|
Wang L, Ye X, Liu J. Effects of pharmaceutical and personal care products on pubertal development: Evidence from human and animal studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123533. [PMID: 38341062 DOI: 10.1016/j.envpol.2024.123533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/20/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Pharmaceutical and personal care products (PPCPs) include a wide range of drugs, personal care products and household chemicals that are produced and used in significant quantities. The safety of PPCPs has become a growing concern in recent decades due to their ubiquitous presence in the environment and potential risks to human health. PPCPs have been detected in various human biological samples, including those from children and adolescents, at concentrations ranging from several ng/L to several thousand μg/L. Epidemiological studies have shown associations between exposure to PPCPs and changes in the timing of puberty in children and adolescents. Animal studies have shown that exposure to PPCPs results in advanced or delayed pubertal onset. Mechanisms by which PPCPs regulate pubertal development include alteration of the hypothalamic kisspeptin and GnRH networks, disruption of steroid hormones, and modulation of metabolic function and epigenetics. Gaps in knowledge and further research needs include the assessment of environmental exposure to pharmaceuticals in children and adolescents, low-dose and long-term effects of exposure to PPCPs, and the modes of action of PPCPs on pubertal development. In summary, this comprehensive review examines the potential effects of exposure to PPCPs on pubertal development based on evidence from human and animal studies.
Collapse
Affiliation(s)
- Linping Wang
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoqing Ye
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Sadeghinezhad J, Yarmahmoudi F, Dehghan MM, Mohajeri SF, Roomiani E, Bojarzadeh H, Asl MA, Saeidi A, Silva MD. Stereological study of testes following experimentally-induced unilateral cryptorchidism in rats. Clin Exp Reprod Med 2023; 50:160-169. [PMID: 37643829 PMCID: PMC10477409 DOI: 10.5653/cerm.2023.06058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/20/2023] [Accepted: 06/17/2023] [Indexed: 08/31/2023] Open
Abstract
OBJECTIVE Cryptorchidism is one of the main causes of infertility and can result in testicular cancer. This study aimed to present quantitative data on the damage caused by cryptorchidism using stereological analysis. METHODS Thirty newborn rats were randomly divided into control and experimental groups. The experimental group underwent surgery to induce unilateral cryptorchidism in the left testis, whereas the control group underwent a sham surgical procedure 18 days after birth. The testes were removed at designated time points (40, 63, and 90 days after birth) for stereological evaluation and sperm analysis. Total testicular volume, interstitial tissue volume, seminiferous tubule volume and length, and seminiferous epithelium volume and surface area were measured. Other parameters, such as sperm count, sperm morphology, and sperm tail length, were also examined. RESULTS Statistically significant differences (p<0.05) were observed between the experimental and the control groups at different ages regarding the volumes of various parameters, including the surface area of the germinal layer, the length of the seminiferous tubules, sperm count, and sperm morphology. However, no significant differences were observed in the epithelial volume and the sperm tail length of the groups. CONCLUSION Given the substantial effect of cryptorchidism on different testicular parameters, as well as the irreversible damage it causes in the testes, it is important to take this abnormality seriously to prevent these consequences.
Collapse
Affiliation(s)
- Javad Sadeghinezhad
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Fatemeh Yarmahmoudi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohammad Mehdi Dehghan
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Saeed Farzad Mohajeri
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ehsan Roomiani
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hadis Bojarzadeh
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mahdi Aghabalazadeh Asl
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ava Saeidi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Margherita De Silva
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
3
|
Fadil HAE, Behairy A, Ebraheim LLM, Abd-Elhakim YM, Fathy HH. The palliative effect of mulberry leaf and olive leaf ethanolic extracts on hepatic CYP2E1 and caspase-3 immunoexpression and oxidative damage induced by paracetamol in male rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:41682-41699. [PMID: 36637651 PMCID: PMC10067661 DOI: 10.1007/s11356-023-25152-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
This study investigated the possible protective role of mulberry leaf (MLE) and olive leaf (OLE) ethanolic extracts against paracetamol (PTL)-induced liver injury in rats compared to silymarin as a reference drug. Initially, MLE and OLE were characterized using gas chromatography-mass spectrometry (GC/MS). Then, forty male Sprague Dawley rats were divided into five groups: the negative control group orally received distilled water for 35 days, the PTL-treated group (PTG) received 500 mg PTL/kg b. wt. for 7 days, the MLE-treated group (MLTG) received 400 mg MLE/kg b. wt., the OLE-treated group (OLTG) received 400 mg OLE/kg b. wt., and the silymarin-treated group (STG) received 100 mg silymarin/kg b. wt. The last three groups received the treatment for 28 days, then PTL for 7 days. The GC-MS characterization revealed that MLE comprised 19 constituents dominated by ethyl linoleate, phytol, hexadecanoic acid, ethyl ester, and squalene. Moreover, OLE comprised 30 components, and the major components were 11-eicosenoic acid, oleic acid, phytol, and à-tetralone. MLE and OLE significantly corrected the PTL-induced normocytic normochromic anemia, leukocytosis, hypercholesterolemia, and hypoproteinemia. Moreover, the MLE and OLE pretreatment considerably suppressed the PTL-induced increment in serum levels of hepatic enzymes, including alkaline phosphatase, alanine aminotransferase, and aspartate aminotransferase. Furthermore, the PTL-induced depletion in antioxidant enzymes, including glutathione peroxidase, superoxide dismutase, and catalase, and the rise in hepatic malondialdehyde content were significantly reversed by the MLE and OLE pretreatment. Besides, MLE and OLE pretreatment significantly protected the hepatic tissue against PTL-induced DNA damage, pathological perturbations, and increased caspase 3 and CYP2E1 immunoexpression. Of note, OLTG showed better enhancement of most indices rather than MLTG. Conclusively, these findings imply that OLE, with its antioxidant and antiapoptotic capabilities, is superior to MLE in protecting against PTL-induced liver injury.
Collapse
Affiliation(s)
- Hosny Abd El Fadil
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Amany Behairy
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Lamiaa L M Ebraheim
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| | - Heba Hussein Fathy
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
4
|
Harshaw C, Warner AG. Interleukin-1β-induced inflammation and acetaminophen during infancy: Distinct and interactive effects on social-emotional and repetitive behavior in C57BL/6J mice. Pharmacol Biochem Behav 2022; 220:173463. [PMID: 36100070 DOI: 10.1016/j.pbb.2022.173463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/28/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022]
Abstract
Acetaminophen (APAP) exposure early in life has been associated with increased risk of neurodevelopmental disorders in epidemiological studies. In rodent models, early-life APAP has similarly been shown to produce long-term changes in brain and behavior, including altered activity levels and social behavior. Most rodent studies to date have, nevertheless, attempted to model early-life APAP without considering that most APAP exposure occurs in a context of immune activation and/or fever. To mimic the repeated infections common during infancy, we employed the cytokine interleukin-1β (IL-1β) to induce immune activation three times during early postnatal development (i.e., day 5, 8, and 11). On these days, C57BL/6J pups were administered either IL-1β (0.2 μg/kg) or saline vehicle followed, after 45 min, by either APAP (103.9 mg/kg) or vehicle. Mice were subsequently administered a battery of tests of social-emotional and repetitive behavior. A number of distinct long-term effects of IL-1β and APAP treatments were found, including sex-specific shifts in repetitive behavior and emotional hyperthermia following early-life IL-1β and increased social caution in males following early-life APAP. We also observed significant interaction between IL-1β and APAP: as adults, 'two-hit' IL-1β + APAP females displayed greater anxiety-related thigmotaxis across a number of tests, including an open field. 'Two hit' males, in turn, showed elevated levels of avoidance of an unfamiliar social partner during a social interaction test. Our results highlight that IL-1β-induced inflammation and APAP have both distinct effects and significant interactions during early life, with enduring sex-specific effects on phenotypes relevant to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Christopher Harshaw
- Department of Psychology, University of New Orleans, New Orleans, LA, United States of America.
| | - Anna G Warner
- Department of Psychology, University of New Orleans, New Orleans, LA, United States of America
| |
Collapse
|
5
|
Boizet-Bonhoure B, Déjardin S, Rossitto M, Poulat F, Philibert P. Using Experimental Models to Decipher the Effects of Acetaminophen and NSAIDs on Reproductive Development and Health. FRONTIERS IN TOXICOLOGY 2022; 4:835360. [PMID: 35295217 PMCID: PMC8915900 DOI: 10.3389/ftox.2022.835360] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/07/2022] [Indexed: 01/04/2023] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs), such as aspirin (acetylsalicylic acid), diclofenac and ibuprofen (IBU), and analgesic drugs, such as acetaminophen (APAP, or paracetamol), are widely used to treat inflammation and pain. APAP and IBU are over-the-counter drugs and are among the most commonly taken drugs in the first trimester of pregnancy, even in combination. Furthermore, these drugs and their metabolites are released in the environment, and can be frequently detected in wastewater, surface water, and importantly in drinking water. Although their environmental concentrations are much lower than the therapeutics doses, this suggests an uncontrolled low-dose exposure of the general population, including pregnant women and young children, two particularly at risk populations. Epidemiological studies show that exposure to these molecules in the first and second trimester of gestation can favor genital malformations in new-born boys. To investigate the cellular, molecular and mechanistic effects of exposure to these molecules, ex vivo studies with human or rodent gonadal explants and in vivo experiments in rodents have been performed in the past years. This review recapitulates recent data obtained in rodent models after in utero or postnatal exposure to these drugs. The first part of this review discusses the mechanisms by which NSAIDs and analgesics may impair gonadal development and maturation, puberty development, sex hormone production, maturation and function of adult organs, and ultimately fertility in the exposed animals and their offspring. Like other endocrine disruptors, NSAIDs and APAP interfere with endocrine gland function and may have inter/transgenerational adverse effects. Particularly, they may target germ cells, resulting in reduced quality of male and female gametes, and decreased fertility of exposed individuals and their descendants. Then, this review discusses the effects of exposure to a single drug (APAP, aspirin, or IBU) or to combinations of drugs during early embryogenesis, and the consequences on postnatal gonadal development and adult reproductive health. Altogether, these data may increase medical and public awareness about these reproductive health concerns, particularly in women of childbearing age, pregnant women, and parents of young children.
Collapse
Affiliation(s)
- Brigitte Boizet-Bonhoure
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France
- *Correspondence: Brigitte Boizet-Bonhoure,
| | - Stéphanie Déjardin
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France
| | | | - Francis Poulat
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France
| | - Pascal Philibert
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France
- Laboratory of Biochemistry and Molecular Biology, Carèmeau Hospital, Nîmes University Hospital, Nîmes, France
| |
Collapse
|
6
|
Novi DRBS, Vidigal CB, Moura KF, da Silva DG, Serafim AFL, Klein RM, Moreira EG, Gerardin DCC, Ceravolo GS. Intrauterine and Lactational Exposure to Paracetamol: Cardiometabolic Evaluation in Adult Female and Male Offspring. J Cardiovasc Pharmacol 2021; 78:858-866. [PMID: 34596621 DOI: 10.1097/fjc.0000000000001145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 09/19/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Paracetamol (PAR) is the most common over-the-counter drug recommended by physicians for treatment of pain and fever during gestation. This drug is not teratogenic, being considered safe for fetus; however, PAR crosses the blood-placental barrier. Considering that, the present study aimed to evaluate the vascular and metabolic safety of PAR exposure during intrauterine and neonatal development in adult male and female-exposed offspring. Wistar female rats were gavaged, with PAR (350 mg/kg/d), from gestational day 6-21 or from gestational day 6 until postnatal day 21. Control dams received water by gavage at the same periods. The male and female offspring were evaluated at adulthood (80 days of life). The thoracic aorta reactivity to acetylcholine, sodium nitroprusside, and phenylephrine was evaluated in male and female adult offspring. It was observed that aortic relaxation was similar between the PAR and control offspring. In addition, the contraction to phenylephrine was similar between the groups. Further, the insulin sensitivity, adipose tissue deposition and blood pressure were not different between PAR and control adult offspring. These results suggest that the protocol of PAR exposure used in the present study did not program vascular and metabolic alterations that would contribute to the development of cardiometabolic diseases in adult life, being safe for the exposed offspring.
Collapse
Affiliation(s)
- Daniella R B S Novi
- Department of Physiological Sciences, Biological Sciences Center, State University of Londrina, Londrina, Brazil
| | - Camila B Vidigal
- Department of Physiological Sciences, Biological Sciences Center, State University of Londrina, Londrina, Brazil
| | - Kawane F Moura
- Department of Physiological Sciences, Biological Sciences Center, State University of Londrina, Londrina, Brazil
- Graduation Program in Physiological Sciences, Biological Sciences Center, State University of Londrina, Londrina, Brazil; and
| | - Deborah G da Silva
- Department of Physiological Sciences, Biological Sciences Center, State University of Londrina, Londrina, Brazil
- Graduation Program in Physiological Sciences, Biological Sciences Center, State University of Londrina, Londrina, Brazil; and
| | - Ana Flavia L Serafim
- Department of Physiological Sciences, Biological Sciences Center, State University of Londrina, Londrina, Brazil
| | - Rodrigo M Klein
- Department of Physiological Sciences, Biological Sciences Center, State University of Londrina, Londrina, Brazil
- Graduation Program in Health Sciences, Health Sciences Center, State University of Londrina, Londrina, Brazil
| | - Estefânia G Moreira
- Department of Physiological Sciences, Biological Sciences Center, State University of Londrina, Londrina, Brazil
- Graduation Program in Physiological Sciences, Biological Sciences Center, State University of Londrina, Londrina, Brazil; and
- Graduation Program in Health Sciences, Health Sciences Center, State University of Londrina, Londrina, Brazil
| | - Daniela C C Gerardin
- Department of Physiological Sciences, Biological Sciences Center, State University of Londrina, Londrina, Brazil
- Graduation Program in Physiological Sciences, Biological Sciences Center, State University of Londrina, Londrina, Brazil; and
| | - Graziela S Ceravolo
- Department of Physiological Sciences, Biological Sciences Center, State University of Londrina, Londrina, Brazil
- Graduation Program in Physiological Sciences, Biological Sciences Center, State University of Londrina, Londrina, Brazil; and
| |
Collapse
|
7
|
Gray LE, Lambright CS, Conley JM, Evans N, Furr JR, Hannas BR, Wilson VS, Sampson H, Foster PMD. Genomic and Hormonal Biomarkers of Phthalate-Induced Male Rat Reproductive Developmental Toxicity Part II: A Targeted RT-qPCR Array Approach That Defines a Unique Adverse Outcome Pathway. Toxicol Sci 2021; 182:195-214. [PMID: 33983380 DOI: 10.1093/toxsci/kfab053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Previously, we demonstrated that exposure to some diortho-phthalate esters during sexual differentiation disrupts male reproductive development by reducing fetal rat testis testosterone production (T Prod) and gene expression in a dose-related manner. The objectives of the current project were to expand the number of test compounds that might reduce fetal T Prod, including phthalates, phthalate alternatives, pesticides, and drugs, and to compare reductions in T Prod with altered testis mRNA expression. We found that PEs that disrupt T Prod also reduced expression of a unique "cluster" of mRNAs for about 35 genes related to sterol transport, testosterone and insulin-like hormone 3 hormone syntheses, and lipoprotein signaling and cholesterol synthesis. However, phthalates had little or no effect on mRNA expression of genes in peroxisome proliferator-activated receptor (PPAR) pathways in the fetal liver, whereas the 3 PPAR agonists induced the expression of mRNA for multiple fetal liver PPAR pathway genes without reducing testis T Prod. In summary, phthalates that disrupt T Prod act via a novel adverse outcome pathway including down regulation of mRNA for genes involved in fetal endocrine function and cholesterol synthesis and metabolism. This profile was not displayed by PEs that did not reduce T Prod, PPAR agonists or the other chemicals. Reductions in fetal testis gene expression and T Prod in utero can be used to establish relative potency factors that can be used quantitatively to predict the doses of individual PEs and mixtures of phthalates that produce adverse reproductive tract effects in male offspring.
Collapse
Affiliation(s)
- Leon Earl Gray
- Reproductive and Developmental Toxicology Branch, PHITD, CPHEA, ORD, US Environmental Protection Agency, North Carolina 27711, USA
| | - Christy S Lambright
- Reproductive and Developmental Toxicology Branch, PHITD, CPHEA, ORD, US Environmental Protection Agency, North Carolina 27711, USA
| | - Justin M Conley
- Reproductive and Developmental Toxicology Branch, PHITD, CPHEA, ORD, US Environmental Protection Agency, North Carolina 27711, USA
| | - Nicola Evans
- Reproductive and Developmental Toxicology Branch, PHITD, CPHEA, ORD, US Environmental Protection Agency, North Carolina 27711, USA
| | | | - Bethany R Hannas
- Corteva, Agriscience, Haskell R&D Center, Newark, Delaware 19711, USA
| | - Vickie S Wilson
- Reproductive and Developmental Toxicology Branch, PHITD, CPHEA, ORD, US Environmental Protection Agency, North Carolina 27711, USA
| | - Hunter Sampson
- Reproductive and Developmental Toxicology Branch, PHITD, CPHEA, ORD, US Environmental Protection Agency, North Carolina 27711, USA
| | | |
Collapse
|
8
|
de Mello Miyasaki AM, Rigobello C, Klein RM, Crespigio J, Flaiban KK, Bracarense AP, Mazzucatto BC, Barbosa DS, Moreira EG. Evaluation of hepatic and renal effects in rat dams and their offspring after exposure to paracetamol during gestation and lactation. Reprod Fertil Dev 2020; 32:1301-1310. [PMID: 33317685 DOI: 10.1071/rd20142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 10/21/2020] [Indexed: 01/16/2023] Open
Abstract
Paracetamol (PAR) is the analgesic and antipyretic of choice for pregnant and nursing women. PAR may reach the fetus and/or neonate through the placenta and/or milk and effect development. This study evaluated possible hepatic and renal effects in rat dams and their offspring exposed to PAR using a human-relevant route of administration and doses from Gestational Day 6 to Postnatal Day (PND) 21. Dams were gavaged daily with PAR (35 or 350mg kg-1) or water (CON). Dams and pups were killed on PND21 and 22 respectively, and blood was collected for biochemical analysis (aspartate aminotransferase (AST), alanine aminotransferase (ALT), urea and creatinine). The kidneys and liver were isolated and processed for histopathological assessment and evaluation of oxidative stress markers. Compared with the CON groups, pups exposed to 350mg kg-1 PAR had increased renal reduced glutathione (GSH), whereas dams exposed to both doses of PAR increased serum AST. PAR administration did not affect parameters of general toxicity or renal and hepatic oxidative stress. In conclusion, maternal exposure to human-relevant doses of PAR by gavage was not associated with hepatic or renal toxicity in the pups or dams, but PAR was not devoid of effects. Exposure to PAR increased renal GSH in pups, which could suggest an adaptive antioxidant response, and affected maternal serum AST activity.
Collapse
Affiliation(s)
- Andréa Morgato de Mello Miyasaki
- Department of Pediatrics and Pediatrics Surgery, Universidade Estadual de Londrina, 86051-980, Londrina, PR, Brazil; and Graduate Program in Health Sciences, Universidade Estadual de Londrina, 86051-980, Londrina, PR, Brazil
| | - Camila Rigobello
- Graduate Program in Health Sciences, Universidade Estadual de Londrina, 86051-980, Londrina, PR, Brazil
| | - Rodrigo Moreno Klein
- Graduate Program in Health Sciences, Universidade Estadual de Londrina, 86051-980, Londrina, PR, Brazil
| | - Jefferson Crespigio
- Department of Pathology, Universidade Estadual de Londrina, 86057-970, Londrina, PR, Brazil
| | - Karina Keller Flaiban
- Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, 86057-970, Londrina, PR, Brazil
| | - Ana Paula Bracarense
- Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, 86057-970, Londrina, PR, Brazil
| | | | - Décio Sabbatini Barbosa
- Graduate Program in Health Sciences, Universidade Estadual de Londrina, 86051-980, Londrina, PR, Brazil
| | - Estefânia Gastaldello Moreira
- Graduate Program in Health Sciences, Universidade Estadual de Londrina, 86051-980, Londrina, PR, Brazil; and Department of Physiological Sciences, Universidade Estadual de Londrina, 86057-970, Londrina, PR, Brazil; and Corresponding author.
| |
Collapse
|