1
|
Bobonis J, Yang ALJ, Voogdt CGP, Typas A. TAC-TIC, a high-throughput genetics method to identify triggers or blockers of bacterial toxin-antitoxin systems. Nat Protoc 2024; 19:2231-2249. [PMID: 38724726 DOI: 10.1038/s41596-024-00988-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/14/2024] [Indexed: 08/09/2024]
Abstract
Toxin-antitoxin systems (TAs) are abundant in bacterial chromosomes and can arrest growth under stress, but usually remain inactive. TAs have been increasingly implicated in halting the growth of infected bacteria from bacteriophages or foreign genetic elements1,2 to protect the population (abortive infection, Abi). The vast diversity and abundance of TAs and other Abi systems3 suggest they play an important immunity role, yet what allows them to sense attack remains largely enigmatic. Here, we describe a method called toxin activation-inhibition conjugation (TAC-TIC), which we used to identify gene products that trigger or block the toxicity of phage-defending tripartite retron-TAs4. TAC-TIC employs high-density arrayed mobilizable gene-overexpression libraries, which are transferred into cells carrying the full TA system or only its toxic component, on inducible vectors. The double-plasmid transconjugants are then pinned on inducer-containing agar plates and their colony fitness is quantified to identify gene products that trigger a TA to inhibit growth (TAC), or that block it from acting (TIC). TAC-TIC is optimized for the Singer ROTOR pinning robot, but can also be used with other robots or manual pinners, and allows screening tens of thousands of genes against any TA or Abi (with toxicity) within a week. Finally, we present a dual conjugation donor/cloning strain (Escherichia coli DATC), which accelerates the construction of TAC-TIC gene-donor libraries from phages, enabling the use of TAC-TIC for identifying TA triggers and antidefense mechanisms in phage genomes.
Collapse
Affiliation(s)
- Jacob Bobonis
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Alessio Ling Jie Yang
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Carlos Geert Pieter Voogdt
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Athanasios Typas
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany.
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany.
| |
Collapse
|
2
|
Li YG, Kishida K, Ogawa-Kishida N, Christie PJ. Ligand-displaying Escherichia coli cells and minicells for programmable delivery of toxic payloads via type IV secretion systems. mBio 2023; 14:e0214323. [PMID: 37772866 PMCID: PMC10653926 DOI: 10.1128/mbio.02143-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 09/30/2023] Open
Abstract
IMPORTANCE The rapid emergence of drug-resistant bacteria and current low rate of antibiotic discovery emphasize the urgent need for alternative antibacterial strategies. We engineered Escherichia coli to conjugatively transfer plasmids to specific E. coli and Pseudomonas aeruginosa recipient cells through the surface display of cognate nanobody/antigen (Nb/Ag) pairs. We further engineered mobilizable plasmids to carry CRISPR/Cas9 systems (pCrispr) for the selective killing of recipient cells harboring CRISPR/Cas9 target sequences. In the assembled programmed delivery system (PDS), Nb-displaying E. coli donors with different conjugation systems and mobilizable pCrispr plasmids suppressed the growth of Ag-displaying recipient cells to significantly greater extents than unpaired recipients. We also showed that anucleate minicells armed with conjugation machines and pCrispr plasmids were highly effective in killing E. coli recipients. Together, our findings suggest that bacteria or minicells armed with PDSs may prove highly effective as an adjunct or alternative to antibiotics for antimicrobial intervention.
Collapse
Affiliation(s)
- Yang Grace Li
- Department of Microbiology and Molecular Genetics, McGovern School of Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | - Kouhei Kishida
- Department of Microbiology and Molecular Genetics, McGovern School of Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | - Natsumi Ogawa-Kishida
- Department of Microbiology and Molecular Genetics, McGovern School of Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | - Peter J. Christie
- Department of Microbiology and Molecular Genetics, McGovern School of Medicine, University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|
3
|
Li YG, Kishida K, Ogawa-Kishida N, Christie PJ. Ligand-Displaying E. coli Cells and Minicells for Programmable Delivery of Toxic Payloads via Type IV Secretion Systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.11.553016. [PMID: 37609324 PMCID: PMC10441419 DOI: 10.1101/2023.08.11.553016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Bacterial type IV secretion systems (T4SSs) are highly versatile macromolecular translocators and offer great potential for deployment as delivery systems for therapeutic intervention. One major T4SS subfamily, the conjugation machines, are well-adapted for delivery of DNA cargoes of interest to other bacteria or eukaryotic cells, but generally exhibit modest transfer frequencies and lack specificity for target cells. Here, we tested the efficacy of a surface-displayed nanobody/antigen (Nb/Ag) pairing system to enhance the conjugative transfer of IncN (pKM101), IncF (F/pOX38), or IncP (RP4) plasmids, or of mobilizable plasmids including those encoding CRISPR/Cas9 systems (pCrispr), to targeted recipient cells. Escherichia coli donors displaying Nb's transferred plasmids to E. coli and Pseudomonas aeruginosa recipients displaying the cognate Ag's at significantly higher frequencies than to recipients lacking Ag's. Nb/Ag pairing functionally substituted for the surface adhesin activities of F-encoded TraN and pKM101-encoded Pep, although not conjugative pili or VirB5-like adhesins. Nb/Ag pairing further elevated the killing effects accompanying delivery of pCrispr plasmids to E. coli and P. aeruginosa transconjugants bearing CRISPR/Cas9 target sequences. Finally, we determined that anucleate E. coli minicells, which are clinically safer delivery vectors than intact cells, transferred self-transmissible and mobilizable plasmids to E. coli and P. aeruginosa cells. Minicell-mediated mobilization of pCrispr plasmids to E. coli recipients elicited significant killing of transconjugants, although Nb/Ag pairing did not enhance conjugation frequencies or killing. Together, our findings establish the potential for deployment of bacteria or minicells as Programmed Delivery Systems (PDSs) for suppression of targeted bacterial species in infection settings. IMPORTANCE The rapid emergence of drug-resistant bacteria and current low rate of antibiotic discovery emphasize an urgent need for alternative antibacterial strategies. We engineered Escherichia coli to conjugatively transfer plasmids to specific E. coli and Pseudomonas aeruginosa recipient cells through surface display of cognate nanobody/antigen (Nb/Ag) pairs. We further engineered mobilizable plasmids to carry CRISPR/Cas9 systems (pCrispr) for selective killing of recipient cells harboring CRISPR/Cas9 target sequences. In the assembled Programmed Delivery System (PDS), Nb-displaying E. coli donors with different conjugation systems and mobilizable pCrispr plasmids suppressed growth of Ag-displaying recipient cells to significantly greater extents than unpaired recipients. We also showed that anucleate minicells armed with conjugation machines and pCrispr plasmids were highly effective in killing of E. coli recipients. Together, our findings suggest that bacteria or minicells armed with PDSs may prove highly effective as an adjunct or alternative to antibiotics for antimicrobial intervention.
Collapse
Affiliation(s)
- Yang Grace Li
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, McGovern School of Medicine, Fannin St, Houston, Texas 77030
| | - Kouhei Kishida
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, McGovern School of Medicine, Fannin St, Houston, Texas 77030
- Current address: Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aobaku, Sendai, 980-8577, Japan
| | - Natsumi Ogawa-Kishida
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, McGovern School of Medicine, Fannin St, Houston, Texas 77030
- Current address: Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aobaku, Sendai, 980-8577, Japan
| | - Peter J. Christie
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, McGovern School of Medicine, Fannin St, Houston, Texas 77030
| |
Collapse
|
4
|
Rudenko O, Baseggio L, McGuigan F, Barnes AC. Transforming the untransformable with knockout minicircles: High-efficiency transformation and vector-free allelic exchange knockout in the fish pathogen Photobacterium damselae. Microbiologyopen 2023; 12:e1374. [PMID: 37642481 PMCID: PMC10441182 DOI: 10.1002/mbo3.1374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/31/2023] Open
Abstract
Gene inactivation studies are critical in pathogenic bacteria, where insights into species biology can guide the development of vaccines and treatments. Allelic exchange via homologous recombination is a generic method of targeted gene editing in bacteria. However, generally applicable protocols are lacking, and suboptimal approaches are often used for nonstandard but epidemiologically important species. Photobacterium damselae subsp. piscicida (Pdp) is a primary pathogen of fish in aquaculture and has been considered hard to transform since the mid-1990s. Consequently, conjugative transfer of RK2/RP4 suicide vectors from Escherichia coli S17-1/SM10 donor strains, a system prone to off-target mutagenesis, was used to deliver the allelic exchange DNA in previous studies. Here we have achieved efficient electrotransformation in Pdp using a salt-free highly concentrated sucrose solution, which performs as a hypertonic wash buffer, cryoprotectant, and electroporation buffer. High-efficiency transformation has enabled vector-free mutagenesis for which we have employed circular minimalistic constructs (knockout minicircles) containing only allelic exchange essentials that were generated by Gibson assembly. Preparation of competent cells using sucrose and electroporation/integration of minicircles had virtually no detectable off-target promutagenic effect. In contrast, a downstream sacB selection apparently induced several large deletions via mobilization of transposable elements. Electroporation of minicircles into sucrose-treated cells is a versatile broadly applicable approach that may facilitate allelic exchange in a wide range of microbial species. The method permitted inactivation of a primary virulence factor unique to Pdp, apoptogenic toxin AIP56, demonstrating the efficacy of minicircles for difficult KO targets located on the high copy number of small plasmids.
Collapse
Affiliation(s)
- Oleksandra Rudenko
- School of Biological Sciences and Centre for Marine ScienceThe University of QueenslandBrisbaneQueenslandAustralia
| | - Laura Baseggio
- School of Biological Sciences and Centre for Marine ScienceThe University of QueenslandBrisbaneQueenslandAustralia
| | - Fynn McGuigan
- School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneQueenslandAustralia
| | - Andrew C. Barnes
- School of Biological Sciences and Centre for Marine ScienceThe University of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
5
|
Tristano J, Danforth DR, Wargo MJ, Mintz KP. Regulation of adhesin synthesis in Aggregatibacter actinomycetemcomitans. Mol Oral Microbiol 2023; 38:237-250. [PMID: 36871155 PMCID: PMC10175207 DOI: 10.1111/omi.12410] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/10/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
Aggregatibacter actinomycetemcomitans is a gram-negative bacterium associated with periodontal disease and a variety of disseminated extra-oral infections. Tissue colonization is mediated by fimbriae and non-fimbriae adhesins resulting in the formation of a sessile bacterial community or biofilm, which confers enhanced resistance to antibiotics and mechanical removal. The environmental changes experienced by A. actinomycetemcomitans during infection are detected and processed by undefined signaling pathways that alter gene expression. In this study, we have characterized the promoter region of the extracellular matrix protein adhesin A (EmaA), which is an important surface adhesin in biofilm biogenesis and disease initiation using a series of deletion constructs consisting of the emaA intergenic region and a promotor-less lacZ sequence. Two regions of the promoter sequence were found to regulate gene transcription and in silico analysis indicated the presence of multiple transcriptional regulatory binding sequences. Analysis of four regulatory elements, CpxR, ArcA, OxyR, and DeoR, was undertaken in this study. Inactivation of arcA, the regulator moiety of the ArcAB two-component signaling pathway involved in redox homeostasis, resulted in a decrease in EmaA synthesis and biofilm formation. Analysis of the promoter sequences of other adhesins identified binding sequences for the same regulatory proteins, which suggests that these proteins are involved in the coordinate regulation of adhesins required for colonization and pathogenesis.
Collapse
Affiliation(s)
- Jake Tristano
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT
| | - David R. Danforth
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT
| | - Matthew J. Wargo
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT
| | - Keith P. Mintz
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT
| |
Collapse
|
6
|
Tang-Siegel GG, Danforth DR, Tristano J, Ruiz T, Mintz KP. The serotype a-EmaA adhesin of Aggregatibacter actinomycetemcomitans does not require O-PS synthesis for collagen binding activity. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35551696 DOI: 10.1099/mic.0.001191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Aggregatibacter actinomycetemcomitans, a causative agent of periodontitis and non-oral diseases, synthesizes a trimeric extracellular matrix protein adhesin A (EmaA) that mediates collagen binding and biofilm formation. EmaA is found as two molecular forms, which correlate with the serotype of the bacterium. The canonical protein (b-EmaA), associated with serotypes b and c, has a monomeric molecular mass of 202 kDa. The collagen binding activity of b-EmaA is dependent on the presence of O-polysaccharide (O-PS), whereas biofilm activity is independent of O-PS synthesis. The EmaA associated with serotype a strains (a-EmaA) has a monomeric molecular mass of 173 kDa and differs in the amino acid sequence of the functional domain of the protein. In this study, a-emaA was confirmed to encode a protein that forms antenna-like appendages on the surface of the bacterium, which were found to be important for both collagen binding and biofilm formation. In an O-PS-deficient talose biosynthetic (tld) mutant strain, the electrophoretic mobility of the a-EmaA monomers was altered and the amount of membrane-associated EmaA was decreased when compared to the parent strain. The mass of biofilm formed remained unchanged. Interestingly, the collagen binding activity of the mutant strain was similar to the activity associated with the parent strain, which differs from that observed with the canonical b-EmaA isoform. These data suggest that the properties of the a-EmaA isoform are like those of b-EmaA, with the exception that collagen binding activity is independent of the presence or absence of the O-PS.
Collapse
Affiliation(s)
- Gaoyan G Tang-Siegel
- Department of Molecular Physiology & Biophysics, University of Vermont, Burlington, VT, USA
| | - David R Danforth
- Department of Microbiology & Molecular Genetics, University of Vermont, Burlington, VT, USA
| | - Jake Tristano
- Department of Microbiology & Molecular Genetics, University of Vermont, Burlington, VT, USA
| | - Teresa Ruiz
- Department of Molecular Physiology & Biophysics, University of Vermont, Burlington, VT, USA
| | - Keith P Mintz
- Department of Microbiology & Molecular Genetics, University of Vermont, Burlington, VT, USA
| |
Collapse
|
7
|
BtuB-Dependent Infection of the T5-like Yersinia Phage ϕR2-01. Viruses 2021; 13:v13112171. [PMID: 34834977 PMCID: PMC8624392 DOI: 10.3390/v13112171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022] Open
Abstract
Yersinia enterocolitica is a food-borne Gram-negative pathogen responsible for several gastrointestinal disorders. Host-specific lytic bacteriophages have been increasingly used recently as an alternative or complementary treatment to combat bacterial infections, especially when antibiotics fail. Here, we describe the proteogenomic characterization and host receptor identification of the siphovirus vB_YenS_ϕR2-01 (in short, ϕR2-01) that infects strains of several Yersinia enterocolitica serotypes. The ϕR2-01 genome contains 154 predicted genes, 117 of which encode products that are homologous to those of Escherichia bacteriophage T5. The ϕR2-01 and T5 genomes are largely syntenic, with the major differences residing in areas encoding hypothetical ϕR2-01 proteins. Label-free mass-spectrometry-based proteomics confirmed the expression of 90 of the ϕR2-01 genes, with 88 of these being either phage particle structural or phage-particle-associated proteins. In vitro transposon-based host mutagenesis and ϕR2-01 adsorption experiments identified the outer membrane vitamin B12 receptor BtuB as the host receptor. This study provides a proteogenomic characterization of a T5-type bacteriophage and identifies specific Y. enterocolitica strains sensitive to infection with possible future applications of ϕR2-01 as a food biocontrol or phage therapy agent.
Collapse
|
8
|
Pu Q, Fan XT, Sun AQ, Pan T, Li H, Bo Lassen S, An XL, Su JQ. Co-effect of cadmium and iron oxide nanoparticles on plasmid-mediated conjugative transfer of antibiotic resistance genes. ENVIRONMENT INTERNATIONAL 2021; 152:106453. [PMID: 33798824 DOI: 10.1016/j.envint.2021.106453] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 06/12/2023]
Abstract
Conjunctive transfer of antibiotic resistance genes (ARGs) among bacteria driven by plasmids facilitated the evolution and spread of antibiotic resistance. Heavy metal exposure accelerated the plasmid-mediated conjunctive transfer of ARGs. Nanomaterials are well-known adsorbents for heavy metals removal, with the capability of combatting resistant bacteria/facilitating conjunctive transfer of ARGs. However, co-effect of heavy metals and nanomaterials on plasmid-mediated conjunctive transfer of ARGs was still unknown. In this study, we investigated the effect of the simultaneous exposure of Cd2+ and nano Fe2O3 on conjugative transfer of plasmid RP4 from Pseudomonas putida KT2442 to water microbial community. The permeability of bacterial cell membranes, antioxidant enzyme activities and conjugation gene expression were also investigated. The results suggested that the combination of Cd2+ and high concentration nano Fe2O3 (10 mg/L and 100 mg/L) significantly increased conjugative transfer frequencies of RP4 plasmid (p < 0.05). The most transconjugants were detected in the treatment of co-exposure to Cd2+ and nano Fe2O3, the majority of which were identified to be human pathogens. The mechanisms of the exacerbated conjugative transfer of ARGs were involved in the enhancement of cell membrane permeability, antioxidant enzyme activities, and mRNA expression levels of the conjugation genes by the co-effect of Cd2+ and nano Fe2O3. This study confirmed that the simultaneous exposure to Cd2+and nano Fe2O3 exerted a synergetic co-effect on plasmid-mediated conjunctive transfer of ARGs, emphasizing that the co-effect of nanomaterials and heavy metals should be prudently evaluated when combating antibiotic resistance.
Collapse
Affiliation(s)
- Qiang Pu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xiao-Ting Fan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - An-Qi Sun
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Ting Pan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Hu Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Simon Bo Lassen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; Sino-Danish Center of Education and Research, Beijing, China
| | - Xin-Li An
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China.
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| |
Collapse
|
9
|
Danforth DR, Melloni M, Tristano J, Mintz KP. Contribution of adhesion proteins to Aggregatibacter actinomycetemcomitans biofilm formation. Mol Oral Microbiol 2021; 36:243-253. [PMID: 34085776 DOI: 10.1111/omi.12346] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 01/08/2023]
Abstract
Aggregatibacter actinomycetemcomitans is a Gram-negative bacterium associated with periodontal disease and multiple disseminated extra-oral infections. Colonization of these distinct physiological niches is contingent on the expression of specific surface proteins during the initiation of developing biofilms. In this investigation, we studied fimbriae and three well-characterized nonfimbrial surface proteins (EmaA, Aae, and ApiA/Omp100) for their contribution to biofilm formation. Mutations of these proteins in multiple strains covering four different serotypes demonstrated variance in biofilm development that was strain dependent but independent of serotype. In a fimbriated background, only inactivation of emaA impacted biofilm mass. In contrast, inactivation of emaA and/or aae affected biofilm formation in nonfimbriated A. actinomycetemcomitans strains, whereas inactivation of apiA/omp100 had little effect on biofilm formation. When these genes were expressed individually in Escherichia coli, all transformed strains demonstrated an increase in biofilm mass compared to the parent strain. The strain expressing emaA generated the greatest mass of biofilm, whereas the strains expressing either aae or apiA/omp100 were greatly reduced and similar in mass. These data suggest a redundancy in function of these nonfimbrial adhesins, which is dependent on the genetic background of the strain investigated.
Collapse
Affiliation(s)
- David R Danforth
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
| | - Marcella Melloni
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
| | - Jake Tristano
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
| | - Keith P Mintz
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
10
|
Silbert J, Lorenzo VD, Aparicio T. Refactoring the Conjugation Machinery of Promiscuous Plasmid RP4 into a Device for Conversion of Gram-Negative Isolates to Hfr Strains. ACS Synth Biol 2021; 10:690-697. [PMID: 33750103 PMCID: PMC8483437 DOI: 10.1021/acssynbio.0c00611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Indexed: 12/21/2022]
Abstract
Chromosomal exchange and subsequent recombination of the cognate DNA between bacteria was one of the most useful genetic tools (e.g., Hfr strains) for genetic analyses of E. coli before the genomic era. In this paper, yeast assembly has been used to recruit the conjugation machinery of environmentally promiscuous RP4 plasmid into a minimized, synthetic construct that enables transfer of chromosomal segments between donor/recipient strains of P. putida KT2440 and potentially many other Gram-negative bacteria. The synthetic device features [i] a R6K suicidal plasmid backbone, [ii] a mini-Tn5 transposon vector, and [iii] the minimal set of genes necessary for active conjugation (RP4 Tra1 and Tra2 clusters) loaded as cargo in the mini-Tn5 mobile element. Upon insertion of the transposon in different genomic locations, the ability of P. putida-TRANS (transference of RP4-activated nucleotide segments) donor strains to mobilize genomic stretches of DNA into neighboring bacteria was tested. To this end, a P. putida double mutant ΔpyrF (uracil auxotroph) Δedd (unable to grow on glucose) was used as recipient in mating experiments, and the restoration of the pyrF+/edd+ phenotypes allowed for estimation of chromosomal transfer efficiency. Cells with the inserted transposon behaved in a manner similar to Hfr-like strains and were able to transfer up to 23% of their genome at frequencies close to 10-6 exconjugants per recipient cell. The hereby described TRANS device not only expands the molecular toolbox for P. putida, but it also enables a suite of genomic manipulations which were thus far only possible with domesticated laboratory strains and species.
Collapse
Affiliation(s)
- Jillian Silbert
- Systems
and Synthetic Biology Program, Centro Nacional
de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Madrid, 28049, Spain
| | - Victor de Lorenzo
- Systems
and Synthetic Biology Program, Centro Nacional
de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Madrid, 28049, Spain
| | - Tomás Aparicio
- Systems
and Synthetic Biology Program, Centro Nacional
de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Madrid, 28049, Spain
| |
Collapse
|
11
|
Vibrio cholerae Type VI Activity Alters Motility Behavior in Mucin. J Bacteriol 2020; 202:JB.00261-20. [PMID: 32868403 DOI: 10.1128/jb.00261-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/11/2020] [Indexed: 01/16/2023] Open
Abstract
Motility is required for many bacterial pathogens to reach and colonize target sites. Vibrio cholerae traverses a thick mucus barrier coating the small intestine to reach the underlying epithelium. We screened a transposon library in motility medium containing mucin to identify factors that influence mucus transit. Lesions in structural genes of the type VI secretion system (T6SS) were among those recovered. Two-dimensional (2D) and 3D single-cell tracking was used to compare the motility behaviors of wild-type cells and a mutant that collectively lacked three essential T6SS structural genes (T6SS-). In the absence of mucin, wild-type and T6SS- cells exhibited similar speeds and run-reverse-flick (RRF) swimming patterns, in which forward-moving cells briefly backtrack before stochastically reorienting (flicking) in a new direction upon resuming forward movement. We show that mucin induced T6SS expression and activity in wild-type bacteria but significantly decreased their swimming speed and flicking, yielding curvilinear or near-surface circular traces for many cells. Conversely, mucin slowed T6SS- cells to a lesser extent, and many continued to flick and produce RRF-like traces. ΔcheY3 cells, which exclusively swim in the forward direction and thus cannot flick, also produced curvilinear traces with or without mucin present and, on occasion, near-surface circular traces in the presence of mucin. The dependence of flicking on swimming speed suggested that mucin-induced T6SS activity further decreased V. cholerae motility and thereby reduced flicking probability during reverse-to-forward transitions. We propose that this encourages cells to continue on their current trajectory rather than reorienting, which may benefit those tracking toward the epithelial surface.IMPORTANCE V. cholerae deploys an arsenal of virulence factors as it attempts to traverse a protective mucus layer and reach the epithelial surface of the distal small intestine. The T6SS used to cull bacterial competition during infection is induced by mucus. We show that this activity may serve an additional purpose by further decreasing motility in the presence of mucin, thereby reducing the probability of speed-dependent, near-perpendicular directional changes. We posit that this encourages cells to maintain course rather than change direction, which may aid those attempting to reach and colonize the epithelial surface.
Collapse
|
12
|
Complete Genome Sequences of the Escherichia coli Donor Strains ST18 and MFD pir. Microbiol Resour Announc 2020; 9:9/45/e01014-20. [PMID: 33154010 PMCID: PMC7645665 DOI: 10.1128/mra.01014-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Escherichia coli ST18 and MFDpir are donors commonly used to transfer oriTRP4-containing plasmids to diverse bacteria via conjugation. ST18 and MFDpir were constructed via multiple genetic manipulations involving several E. coli strains. Here, we used Illumina and Nanopore sequencing to determine the complete genomes of these widely used strains. Escherichia coli ST18 and MFDpir are donors commonly used to transfer oriTRP4-containing plasmids to diverse bacteria via conjugation. ST18 and MFDpir were constructed via multiple genetic manipulations involving several E. coli strains. Here, we used Illumina and Nanopore sequencing to determine the complete genomes of these widely used strains.
Collapse
|
13
|
Saak CC, Dinh CB, Dutton RJ. Experimental approaches to tracking mobile genetic elements in microbial communities. FEMS Microbiol Rev 2020; 44:606-630. [PMID: 32672812 PMCID: PMC7476777 DOI: 10.1093/femsre/fuaa025] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/29/2020] [Indexed: 12/19/2022] Open
Abstract
Horizontal gene transfer is an important mechanism of microbial evolution and is often driven by the movement of mobile genetic elements between cells. Due to the fact that microbes live within communities, various mechanisms of horizontal gene transfer and types of mobile elements can co-occur. However, the ways in which horizontal gene transfer impacts and is impacted by communities containing diverse mobile elements has been challenging to address. Thus, the field would benefit from incorporating community-level information and novel approaches alongside existing methods. Emerging technologies for tracking mobile elements and assigning them to host organisms provide promise for understanding the web of potential DNA transfers in diverse microbial communities more comprehensively. Compared to existing experimental approaches, chromosome conformation capture and methylome analyses have the potential to simultaneously study various types of mobile elements and their associated hosts. We also briefly discuss how fermented food microbiomes, given their experimental tractability and moderate species complexity, make ideal models to which to apply the techniques discussed herein and how they can be used to address outstanding questions in the field of horizontal gene transfer in microbial communities.
Collapse
Affiliation(s)
- Christina C Saak
- Division of Biological Sciences, Section of Molecular Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Cong B Dinh
- Division of Biological Sciences, Section of Molecular Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Rachel J Dutton
- Division of Biological Sciences, Section of Molecular Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
14
|
A Novel Mobilizing Tool Based on the Conjugative Transfer System of the IncM Plasmid pCTX-M3. Appl Environ Microbiol 2020; 86:AEM.01205-20. [PMID: 32591385 PMCID: PMC7440800 DOI: 10.1128/aem.01205-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/23/2020] [Indexed: 11/20/2022] Open
Abstract
Conjugative plasmids are the main players in horizontal gene transfer in Gram-negative bacteria. DNA transfer tools constructed on the basis of such plasmids enable gene manipulation even in strains of clinical or environmental origin, which are often difficult to work with. The conjugation system of the IncM plasmid pCTX-M3 isolated from a clinical strain of Citrobacter freundii has been shown to enable efficient mobilization of oriT pCTX-M3-bearing plasmids into a broad range of hosts comprising Alpha-, Beta-, and Gammaproteobacteria We constructed a helper plasmid, pMOBS, mediating such mobilization with an efficiency up to 1,000-fold higher than that achieved with native pCTX-M3. We also constructed Escherichia coli donor strains with chromosome-integrated conjugative transfer genes: S14 and S15, devoid of one putative regulator (orf35) of the pCTX-M3 tra genes, and S25 and S26, devoid of two putative regulators (orf35 and orf36) of the pCTX-M3 tra genes. Strains S14 and S15 and strains S25 and S26 are, respectively, up to 100 and 1,000 times more efficient in mobilization than pCTX-M3. Moreover, they also enable plasmid mobilization into the Gram-positive bacteria Bacillus subtilis and Lactococcus lactis Additionally, the constructed E. coli strains carried no antibiotic resistance genes that are present in pCTX-M3 to facilitate manipulations with antibiotic-resistant recipient strains, such as those of clinical origin. To demonstrate possible application of the constructed tool, an antibacterial conjugation-based system was designed. Strain S26 was used for introduction of a mobilizable plasmid coding for a toxin, resulting in the elimination of over 90% of recipient E. coli cells.IMPORTANCE The conjugation of donor and recipient bacterial cells resulting in conjugative transfer of mobilizable plasmids is the preferred method enabling the introduction of DNA into strains for which other transfer methods are difficult to establish (e.g., clinical strains). We have constructed E. coli strains carrying the conjugation system of the IncM plasmid pCTX-M3 integrated into the chromosome. To increase the mobilization efficiency up to 1,000-fold, two putative regulators of this system, orf35 and orf36, were disabled. The constructed strains broaden the repertoire of tools for the introduction of DNA into the Gram-negative Alpha-, Beta-, and Gammaproteobacteria, as well as into Gram-positive bacteria such as Bacillus subtilis and Lactococcus lactis The antibacterial procedure based on conjugation with the use of the orf35- and orf36-deficient strain lowered the recipient cell number by over 90% owing to the mobilizable plasmid-encoded toxin.
Collapse
|
15
|
Bishé B, Taton A, Golden JW. Modification of RSF1010-Based Broad-Host-Range Plasmids for Improved Conjugation and Cyanobacterial Bioprospecting. iScience 2019; 20:216-228. [PMID: 31585408 PMCID: PMC6817606 DOI: 10.1016/j.isci.2019.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/23/2019] [Accepted: 09/01/2019] [Indexed: 01/22/2023] Open
Abstract
To facilitate the genetic engineering of diverse cyanobacterial strains, we have modified broad-host-range RSF1010-based plasmids to improve transmissibility, increase copy number, and facilitate cloning. RSF1010-based plasmids replicate in diverse bacterial strains but produce low amounts of useable DNA for cloning. We previously engineered a mobAY25F mutation in RSF1010-based plasmids that improved cloning but decreased conjugation efficiency. Here, we engineered RSF1010-based plasmids to restore conjugation efficiency, which was demonstrated in three diverse laboratory strains of cyanobacteria. We then used an improved RSF1010-based plasmid in mating experiments with cultured samples of wild cyanobacteria. This plasmid, which confers antibiotic resistance and carries a yfp reporter gene, allowed selection of exconjugant cyanobacteria and facilitated the isolation of genetically tractable strains from mixed wild cultures. Improved RSF1010 vectors can be used for bioprospecting genetically tractable strains and are compatible with the CYANO-VECTOR cloning system, a versatile toolbox for constructing plasmids for cyanobacterial genetic engineering. An RSF1010 mobAY25F mutation facilitates plasmid cloning but reduces conjugation Addition of an RK2-bom site improves conjugation efficiency of mobAY25F vectors A helper plasmid carrying the mobA gene improves conjugation efficiency of mobAY25F Improved RSF1010-based vectors can be used for bioprospecting of cyanobacteria
Collapse
Affiliation(s)
- Bryan Bishé
- Division of Biological Sciences, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Arnaud Taton
- Division of Biological Sciences, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - James W Golden
- Division of Biological Sciences, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA.
| |
Collapse
|
16
|
Dimitriu T, Marchant L, Buckling A, Raymond B. Bacteria from natural populations transfer plasmids mostly towards their kin. Proc Biol Sci 2019; 286:20191110. [PMID: 31238848 PMCID: PMC6599995 DOI: 10.1098/rspb.2019.1110] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Plasmids play a key role in microbial ecology and evolution, yet the determinants of plasmid transfer rates are poorly understood. Particularly, interactions between donor hosts and potential recipients are understudied. Here, we investigate the importance of genetic similarity between naturally co-occurring Escherichia coli isolates in plasmid transfer. We uncover extensive variability, spanning over five orders of magnitude, in the ability of isolates to donate and receive two different plasmids, R1 and RP4. Overall, transfer is strongly biased towards clone-mates, but not correlated to genetic distance when donors and recipients are not clone-mates. Transfer is limited by the presence of a functional restriction-modification system in recipients, suggesting sharing of strain-specific defence systems contributes to bias towards kin. Such restriction of transfer to kin sets the stage for longer-term coevolutionary interactions leading to mutualism between plasmids and bacterial hosts in natural communities.
Collapse
Affiliation(s)
- Tatiana Dimitriu
- Department of Biosciences, University of Exeter , Penryn Campus, Cornwall TR10 9FE , UK
| | - Lauren Marchant
- Department of Biosciences, University of Exeter , Penryn Campus, Cornwall TR10 9FE , UK
| | - Angus Buckling
- Department of Biosciences, University of Exeter , Penryn Campus, Cornwall TR10 9FE , UK
| | - Ben Raymond
- Department of Biosciences, University of Exeter , Penryn Campus, Cornwall TR10 9FE , UK
| |
Collapse
|
17
|
Danforth DR, Tang-Siegel G, Ruiz T, Mintz KP. A Nonfimbrial Adhesin of Aggregatibacter actinomycetemcomitans Mediates Biofilm Biogenesis. Infect Immun 2019; 87:e00704-18. [PMID: 30297525 PMCID: PMC6300624 DOI: 10.1128/iai.00704-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 10/03/2018] [Indexed: 11/20/2022] Open
Abstract
Periodontitis is an inflammatory disease caused by polymicrobial biofilms. The periodontal pathogen Aggregatibacter actinomycetemcomitans displays two proteinaceous surface structures, the fimbriae and the nonfimbrial extracellular matrix binding protein A (EmaA), as observed by electron microscopy. Fimbriae participate in biofilm biogenesis and the EmaA adhesins mediate collagen binding. However, in the absence of fimbriae, A. actinomycetemcomitans still retains the potential to form robust biofilms, suggesting that other surface macromolecules participate in biofilm development. Here, isogenic mutant strains lacking EmaA structures, but still expressing fimbriae, were observed to have reduced biofilm potential. In strains lacking both EmaA and fimbriae, biofilm mass was reduced by 80%. EmaA enhanced biofilm formation in different strains, independent of the fimbriation state or serotype. Confocal microscopy revealed differences in cell density within microcolonies between the EmaA positive and mutant strains. EmaA-mediated biofilm formation was found to be independent of the glycosylation state and the precise three-dimensional conformation of the protein, and thus this function is uncorrelated with collagen binding activity. The data suggest that EmaA is a multifunctional adhesin that utilizes different mechanisms to enhance bacterial binding to collagen and to enhance biofilm formation, both of which are important for A. actinomycetemcomitans colonization and subsequent infection.
Collapse
Affiliation(s)
- David R Danforth
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
| | - Gaoyan Tang-Siegel
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont, USA
| | - Teresa Ruiz
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont, USA
| | - Keith P Mintz
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
18
|
Brophy JAN, Triassi AJ, Adams BL, Renberg RL, Stratis-Cullum DN, Grossman AD, Voigt CA. Engineered integrative and conjugative elements for efficient and inducible DNA transfer to undomesticated bacteria. Nat Microbiol 2018; 3:1043-1053. [PMID: 30127494 DOI: 10.1038/s41564-018-0216-5] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 07/03/2018] [Indexed: 12/15/2022]
Abstract
Engineering microorganisms to promote human or plant health will require manipulation of robust bacteria that are capable of surviving in harsh, competitive environments. Genetic engineering of undomesticated bacteria can be limited by an inability to transfer DNA into the cell. Here we developed an approach based on the integrative and conjugative element from Bacillus subtilis (ICEBs1) to overcome this problem. A donor strain (XPORT) was built to transfer miniaturized integrative and conjugative elements (mini-ICEBs1) to undomesticated bacteria. The strain was engineered to enable inducible control over conjugation, to integrate delivered DNA into the chromosome of the recipient, to restrict spread of heterologous DNA through separation of the type IV secretion system from the transferred DNA, and to enable simple isolation of engineered bacteria through a D-alanine auxotrophy. Efficient DNA transfer (10-1 to 10-7 conjugation events per donor) is demonstrated using 35 Gram-positive strains isolated from humans (skin and gut) and soil. Mini-ICEBs1 was used to rapidly characterize the performance of an isopropyl-β-D-thiogalactoside (IPTG)-inducible reporter across dozens of strains and to transfer nitrogen fixation to four Bacillus species. Finally, XPORT was introduced to soil to demonstrate DNA transfer under non-ideal conditions.
Collapse
Affiliation(s)
- Jennifer A N Brophy
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alexander J Triassi
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | | | - Alan D Grossman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christopher A Voigt
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
19
|
Bozcal E, Dagdeviren M, Uzel A, Skurnik M. LuxCDE-luxAB-based promoter reporter system to monitor the Yersinia enterocolitica O:3 gene expression in vivo. PLoS One 2017; 12:e0172877. [PMID: 28235077 PMCID: PMC5325538 DOI: 10.1371/journal.pone.0172877] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 02/11/2017] [Indexed: 12/19/2022] Open
Abstract
It is crucial to understand the in vitro and in vivo regulation of the virulence factor genes of bacterial pathogens. In this study, we describe the construction of a versatile reporter system for Yersinia enterocolitica serotype O:3 (YeO3) based on the luxCDABE operon. In strain YeO3-luxCDE we integrated the luciferase substrate biosynthetic genes, luxCDE, into the genome of the bacterium so that the substrate is constitutively produced. The luxAB genes that encode the luciferase enzyme were cloned into a suicide vector to allow cloning of any promoter-containing fragment upstream the genes. When the obtained suicide-construct is mobilized into YeO3-luxCDE bacteria, it integrates into the recipient genome via homologous recombination between the cloned promoter fragment and the genomic promoter sequence and thereby generates a single-copy and stable promoter reporter. Lipopolysaccharide (LPS) O-antigen (O-ag) and outer core hexasaccharide (OC) of YeO3 are virulence factors necessary to colonization of the intestine and establishment of infection. To monitor the activities of the OC and O-ag gene cluster promoters we constructed the reporter strains YeO3-Poc::luxAB and YeO3-Pop1::luxAB, respectively. In vitro, at 37°C both promoter activities were highest during logarithmic growth and decreased when the bacteria entered stationary growth phase. At 22°C the OC gene cluster promoter activity increased during the late logarithmic phase. Both promoters were more active in late stationary phase. To monitor the promoter activities in vivo, mice were infected intragastrically and the reporter activities monitored by the IVIS technology. The mouse experiments revealed that both LPS promoters were well expressed in vivo and could be detected by IVIS, mainly from the intestinal region of orally infected mice.
Collapse
Affiliation(s)
- Elif Bozcal
- Istanbul University, Faculty of Science, Department of Biology, Basic and Industrial Microbiology Section, Istanbul, Turkey
- Ege University, Faculty of Science, Department of Biology, Basic and Industrial Microbiology Section, Izmir, Turkey
- Department of Bacteriology and Immunology, Medicum, and Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland
| | - Melih Dagdeviren
- Ege University, Faculty of Science, Department of Biology, General Biology Section, Izmir, Turkey
- Ege University, Center for Drug Research and Development and Pharmacokinetic Applications, Izmir, Turkey
| | - Atac Uzel
- Ege University, Faculty of Science, Department of Biology, Basic and Industrial Microbiology Section, Izmir, Turkey
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, and Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland
- Division of Clinical Microbiology, Helsinki University Hospital, HUSLAB, Helsinki, Finland
| |
Collapse
|
20
|
Leskinen K, Pajunen MI, Varjosalo M, Fernández-Carrasco H, Bengoechea JA, Skurnik M. Several Hfq-dependent alterations in physiology of Yersinia enterocolitica O:3 are mediated by derepression of the transcriptional regulator RovM. Mol Microbiol 2017; 103:1065-1091. [PMID: 28010054 DOI: 10.1111/mmi.13610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2016] [Indexed: 12/27/2022]
Abstract
In bacteria, the RNA chaperone Hfq enables pairing of small regulatory RNAs with their target mRNAs and therefore is a key player of post-transcriptional regulation network. As a global regulator, Hfq is engaged in the adaptation to external environment, regulation of metabolism and bacterial virulence. In this study we used RNA-sequencing and quantitative proteomics (LC-MS/MS) to elucidate the role of this chaperone in the physiology and virulence of Yersinia enterocolitica serotype O:3. This global approach revealed the profound impact of Hfq on gene and protein expression. Furthermore, the role of Hfq in the cell morphology, metabolism, cell wall integrity, resistance to external stresses and pathogenicity was evaluated. Importantly, our results revealed that several alterations typical for the hfq-negative phenotype were due to derepression of the transcriptional factor RovM. The overexpression of RovM caused by the loss of Hfq chaperone resulted in extended growth defect, alterations in the lipid A structure, motility and biofilm formation defects, as well as changes in mannitol utilization. Furthermore, in Y. enterocolitica RovM only in the presence of Hfq affected the abundance of RpoS. Finally, the impact of hfq and rovM mutations on the virulence was assessed in the mouse infection model.
Collapse
Affiliation(s)
- Katarzyna Leskinen
- Department of Bacteriology and Immunology, Medicum, Research Programs Unit, Immunobiology, University of Helsinki, Finland
| | - Maria I Pajunen
- Department of Bacteriology and Immunology, Medicum, Research Programs Unit, Immunobiology, University of Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki.,Biocentrum Helsinki, Finland: Finnish Institute of Molecular Medicine, Finland
| | | | - José A Bengoechea
- Centre for Experimental Medicine, Queens University Belfast, Belfast, UK
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, Research Programs Unit, Immunobiology, University of Helsinki, Finland.,Division of Clinical Microbiology, Helsinki University Hospital, HUSLAB, Helsinki, Finland
| |
Collapse
|
21
|
Martínez-García E, Aparicio T, de Lorenzo V, Nikel PI. Engineering Gram-Negative Microbial Cell Factories Using Transposon Vectors. Methods Mol Biol 2017; 1498:273-293. [PMID: 27709582 DOI: 10.1007/978-1-4939-6472-7_18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The construction of microbial cell factories à la carte largely depends on specialized molecular biology and synthetic biology tools needed to reprogram bacteria for modifying their existing functions or for bestowing them with new-to-Nature tasks. In this chapter, we document the use of a series of broad-host-range mini-Tn5 vectors for the delivery of gene(s) into the chromosome of Gram-negative bacteria and for the generation of saturated, random mutagenesis libraries for studies of gene function. The application of these tailored mini-transposon vectors, which could also be used for chromosomal engineering of a wide variety of Gram-negative microorganisms, is demonstrated in the platform environmental bacterium Pseudomonas putida KT2440.
Collapse
Affiliation(s)
- Esteban Martínez-García
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Calle Darwin, 3 Campus de Cantoblanco, 28049, Madrid, Spain
| | - Tomás Aparicio
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Calle Darwin, 3 Campus de Cantoblanco, 28049, Madrid, Spain
| | - Víctor de Lorenzo
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Calle Darwin, 3 Campus de Cantoblanco, 28049, Madrid, Spain
| | - Pablo I Nikel
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Calle Darwin, 3 Campus de Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
22
|
Döhlemann J, Brennecke M, Becker A. Cloning-free genome engineering in Sinorhizobium meliloti advances applications of Cre/loxP site-specific recombination. J Biotechnol 2016; 233:160-70. [PMID: 27393468 DOI: 10.1016/j.jbiotec.2016.06.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/26/2016] [Accepted: 06/30/2016] [Indexed: 10/21/2022]
Abstract
The soil-dwelling α-proteobacterium Sinorhizobium meliloti serves as model for studies of symbiotic nitrogen fixation, a highly important process in sustainable agriculture. Here, we report advancements of the genetic toolbox accelerating genome editing in S. meliloti. The hsdMSR operon encodes a type-I restriction-modification (R-M) system. Transformation of S. meliloti is counteracted by the restriction endonuclease HsdR degrading DNA which lacks the appropriate methylation pattern. We provide a stable S. meliloti hsdR deletion mutant showing enhanced transformation with Escherichia coli-derived plasmid DNA and demonstrate that using an E. coli plasmid donor, expressing S. meliloti methyl transferase genes, is an alternative strategy of increasing the transformation efficiency of S. meliloti. Furthermore, we devise a novel cloning-free genome editing (CFGE) method for S. meliloti, Agrobacterium tumefaciens and Xanthomonas campestris, and demonstrate the applicability of this method for intricate applications of the Cre/lox recombination system in S. meliloti. An enhanced Cre/lox system, allowing for serial deletions of large genomic regions, was established. An assay of lox spacer mutants identified a set of lox sites mediating specific recombination. The availability of several non-promiscuous Cre recognition sites enables simultaneous specific Cre/lox recombination events. CFGE combined with Cre/lox recombination is put forward as powerful approach for targeted genome editing, involving serial steps of manipulation to expedite the genetic accessibility of S. meliloti as chassis.
Collapse
Affiliation(s)
- Johannes Döhlemann
- LOEWE Center for Synthetic Microbiology and Faculty of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Meike Brennecke
- LOEWE Center for Synthetic Microbiology and Faculty of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Anke Becker
- LOEWE Center for Synthetic Microbiology and Faculty of Biology, Philipps-Universität Marburg, Marburg, Germany.
| |
Collapse
|
23
|
Kenyon JJ, Duda KA, De Felice A, Cunneen MM, Molinaro A, Laitinen J, Skurnik M, Holst O, Reeves PR, De Castro C. Serotype O:8 isolates in the Yersinia pseudotuberculosis complex have different O-antigen gene clusters and produce various forms of rough LPS. Innate Immun 2016; 22:205-17. [PMID: 26873504 DOI: 10.1177/1753425916631403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/13/2016] [Indexed: 11/15/2022] Open
Abstract
In Yersinia pseudotuberculosis complex, the O-antigen of LPS is used for the serological characterization of strains, and 21 serotypes have been identified to date. The O-antigen biosynthesis gene cluster and corresponding O-antigen structure have been described for 18, leaving O:8, O:13 and O:14 unresolved. In this study, two O:8 isolates were examined. The O-antigen gene cluster sequence of strain 151 was near identical to serotype O:4a, though a frame-shift mutation was found in ddhD, while No. 6 was different to 151 and carried the O:1b gene cluster. Structural analysis revealed that No. 6 produced a deeply truncated LPS, suggesting a mutation within the waaF gene. Both ddhD and waaF were cloned and expressed in 151 and No. 6 strains, respectively, and it appeared that expression of ddhD gene in strain 151 restored the O-antigen on LPS, while waaF in No. 6 resulted in an LPS truncated less severely but still without the O-antigen, suggesting that other mutations occurred in this strain. Thus, both O:8 isolates were found to be spontaneous O-antigen-negative mutants derived from other validated serotypes, and we propose to remove this serotype from the O-serotyping scheme, as the O:8 serological specificity is not based on the O-antigen.
Collapse
Affiliation(s)
- Johanna J Kenyon
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | - Katarzyna A Duda
- Division of Structural Biochemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - Antonia De Felice
- Department of Chemical Sciences, University of Napoli, Napoli, Italy
| | - Monica M Cunneen
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Napoli, Napoli, Italy
| | - Juha Laitinen
- Department of Bacteriology and Immunology, Medicum, and Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, and Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland Helsinki University Central Hospital Laboratory Diagnostics, Helsinki, Finland
| | - Otto Holst
- Division of Structural Biochemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - Peter R Reeves
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | - Cristina De Castro
- Department of Agriculture Sciences, University of Napoli, Portici, Italy
| |
Collapse
|
24
|
Smith KP, Ruiz T, Mintz KP. Inner-membrane protein MorC is involved in fimbriae production and biofilm formation in Aggregatibacter actinomycetemcomitans. MICROBIOLOGY-SGM 2016; 162:513-525. [PMID: 26796329 DOI: 10.1099/mic.0.000246] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fimbrial subunit synthesis, secretion and assembly on the surface of the periodontal pathogen Aggregatibacter actinomycetemcomitans are essential for biofilm formation. A recent quantitative proteomics study employing an afimbriated strain and a developed mutant isogenic for the inner-membrane protein morphogenesis protein C (MorC) revealed that the abundance of the proteins of the fimbrial secretion apparatus in the membrane is dependent on MorC. To investigate further the relationship between MorC and fimbriation, we identified and complemented the defect in fimbriae production in the afimbriated laboratory strain. The transformed strain expressing a plasmid containing genes encoding the WT fimbrial subunit and the prepilin peptidase displayed all of the hallmarks of a fimbriated bacterium including the distinct star-like colony morphology, robust biofilm formation, biofilm architecture composed of discrete microcolonies and the presence of fimbriae. When the identical plasmid was transformed into a morC mutant strain, the bacterium did not display any of the phenotypes of fimbriated strains. Extension of these studies to a naturally fimbriated clinical strain showed that the resulting morC mutant maintained the characteristic colony morphology of fimbriated strains. There was, however, a reduction in the secretion of fimbrial subunits, and fewer fimbriae were observed on the surface of the mutant strain. Furthermore, the morC mutant of the fimbriated strain displayed a significantly altered biofilm microcolony architecture, while maintaining a similar biofilm mass to the parent strain. These results suggest that MorC influences fimbrial secretion and microcolony formation in A. actinomycetemcomitans.
Collapse
Affiliation(s)
- Kenneth P Smith
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, USA
| | - Teresa Ruiz
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, USA
| | - Keith P Mintz
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, USA
| |
Collapse
|
25
|
Koskela KA, Mattinen L, Kalin-Mänttäri L, Vergnaud G, Gorgé O, Nikkari S, Skurnik M. Generation of a CRISPR database forYersinia pseudotuberculosiscomplex and role of CRISPR-based immunity in conjugation. Environ Microbiol 2015; 17:4306-21. [DOI: 10.1111/1462-2920.12816] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/11/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Katja A. Koskela
- Research and Development Department; Centre for Military Medicine; Helsinki Finland
| | - Laura Mattinen
- Department of Bacteriology and Immunology; Haartman Institute and Research Programs Unit; Immunobiology; University of Helsinki; PO Box 21, 00014 Helsinki Finland
| | - Laura Kalin-Mänttäri
- Research and Development Department; Centre for Military Medicine; Helsinki Finland
- Department of Bacteriology and Immunology; Haartman Institute and Research Programs Unit; Immunobiology; University of Helsinki; PO Box 21, 00014 Helsinki Finland
| | - Gilles Vergnaud
- Univ Paris-Sud; Institut de Génétique et Microbiologie; UMR8621; Orsay France
- CNRS; Orsay France
- ENSTA ParisTech; Palaiseau France
| | - Olivier Gorgé
- Univ Paris-Sud; Institut de Génétique et Microbiologie; UMR8621; Orsay France
- CNRS; Orsay France
- DGA/MNRBC; Vert le Petit France
| | - Simo Nikkari
- Research and Development Department; Centre for Military Medicine; Helsinki Finland
| | - Mikael Skurnik
- Department of Bacteriology and Immunology; Haartman Institute and Research Programs Unit; Immunobiology; University of Helsinki; PO Box 21, 00014 Helsinki Finland
- Helsinki University Central Hospital Laboratory Diagnostics; Helsinki Finland
| |
Collapse
|
26
|
Taton A, Unglaub F, Wright NE, Zeng WY, Paz-Yepes J, Brahamsha B, Palenik B, Peterson TC, Haerizadeh F, Golden SS, Golden JW. Broad-host-range vector system for synthetic biology and biotechnology in cyanobacteria. Nucleic Acids Res 2014; 42:e136. [PMID: 25074377 PMCID: PMC4176158 DOI: 10.1093/nar/gku673] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Inspired by the developments of synthetic biology and the need for improved genetic tools to exploit cyanobacteria for the production of renewable bioproducts, we developed a versatile platform for the construction of broad-host-range vector systems. This platform includes the following features: (i) an efficient assembly strategy in which modules released from 3 to 4 donor plasmids or produced by polymerase chain reaction are assembled by isothermal assembly guided by short GC-rich overlap sequences. (ii) A growing library of molecular devices categorized in three major groups: (a) replication and chromosomal integration; (b) antibiotic resistance; (c) functional modules. These modules can be assembled in different combinations to construct a variety of autonomously replicating plasmids and suicide plasmids for gene knockout and knockin. (iii) A web service, the CYANO-VECTOR assembly portal, which was built to organize the various modules, facilitate the in silico construction of plasmids, and encourage the use of this system. This work also resulted in the construction of an improved broad-host-range replicon derived from RSF1010, which replicates in several phylogenetically distinct strains including a new experimental model strain Synechocystis sp. WHSyn, and the characterization of nine antibiotic cassettes, four reporter genes, four promoters, and a ribozyme-based insulator in several diverse cyanobacterial strains.
Collapse
Affiliation(s)
- Arnaud Taton
- Division of Biological Sciences, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Federico Unglaub
- Division of Biological Sciences, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Nicole E Wright
- Division of Biological Sciences, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Wei Yue Zeng
- Division of Biological Sciences, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Javier Paz-Yepes
- Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA Institut de Biologie de I'Ecole Normale Supérieure, CNRS, UMR 8197, 46 rue d'Ulm, 75230 Paris, France
| | - Bianca Brahamsha
- Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Brian Palenik
- Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Todd C Peterson
- Synthetic Biology Division, Life Technologies Corporation, 5791 Van Allen Way, Carlsbad, CA 92008, USA
| | - Farzad Haerizadeh
- Synthetic Biology Division, Life Technologies Corporation, 5791 Van Allen Way, Carlsbad, CA 92008, USA
| | - Susan S Golden
- Division of Biological Sciences, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - James W Golden
- Division of Biological Sciences, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| |
Collapse
|
27
|
A new and improved host-independent plasmid system for RK2-based conjugal transfer. PLoS One 2014; 9:e90372. [PMID: 24595202 PMCID: PMC3940858 DOI: 10.1371/journal.pone.0090372] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 02/01/2014] [Indexed: 11/30/2022] Open
Abstract
Bacterial conjugation is a process that is mediated either by a direct cell-to-cell junction or by formation of a bridge between the cells. It is often used to transfer DNA constructs designed in Escherichia coli to recipient bacteria, yeast, plants and mammalian cells. Plasmids bearing the RK2/RP4 origin of transfer (oriT) are mostly mobilized using the E. coli S17-1/SM10 donor strains, in which transfer helper functions are provided from a chromosomally integrated RP4::Mu. We have observed that large plasmids were occasionally modified after conjugal transfer when using E. coli S17-1 as a donor. All modified plasmids had increased in size, which most probably was a result of co-transfer of DNA from the chromosomally located oriT. It has earlier also been demonstrated that the bacteriophage Mu is silently transferred to recipient cells by these donor strains, and both occurrences are very likely to lead to mutations within the recipient DNA. Here we report the construction of a new biological system addressing both the above mentioned problems in which the transfer helper functions are provided by a plasmid lacking a functional oriT. This system is compatible with all other replicons commonly used in conjugation experiments and further enables the use of diverse bacterial strains as donors. Plasmids containing large inserts were successfully conjugated and the plasmid modifications observed when E. coli S17-1 was used as donor were eliminated by the use of the new host-independent vector system.
Collapse
|
28
|
Abstract
The complexity of even small gene networks makes them hardly amenable to rational design. Testing random combinations of genetic elements in a directed evolution procedure is thus of interest for many applications including metabolic engineering. Here we describe how the recombination machinery of class 1 integrons can be used to deliver and shuffle genetic elements at a chromosomal locus in E. coli.
Collapse
|
29
|
Lesic B, Zouine M, Ducos-Galand M, Huon C, Rosso ML, Prévost MC, Mazel D, Carniel E. A natural system of chromosome transfer in Yersinia pseudotuberculosis. PLoS Genet 2012; 8:e1002529. [PMID: 22412380 PMCID: PMC3297565 DOI: 10.1371/journal.pgen.1002529] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 12/23/2011] [Indexed: 01/21/2023] Open
Abstract
The High Pathogenicity Island of Yersinia pseudotuberculosis IP32637 was previously shown to be horizontally transferable as part of a large chromosomal segment. We demonstrate here that at low temperature other chromosomal loci, as well as a non-mobilizable plasmid (pUC4K), are also transferable. This transfer, designated GDT4 (Generalized DNA Transfer at 4°C), required the presence of an IP32637 endogenous plasmid (pGDT4) that carries several mobile genetic elements and a conjugation machinery. We established that cure of this plasmid or inactivation of its sex pilus fully abrogates this process. Analysis of the mobilized pUC4K recovered from transconjugants revealed the insertion of one of the pGDT4-borne ISs, designated ISYps1, at different sites on the transferred plasmid molecules. This IS belongs to the IS6 family, which moves by replicative transposition, and thus could drive the formation of cointegrates between pGDT4 and the host chromosome and could mediate the transfer of chromosomal regions in an Hfr-like manner. In support of this model, we show that a suicide plasmid carrying ISYps1 is able to integrate itself, flanked by ISYps1 copies, at multiple locations into the Escherichia coli chromosome. Furthermore, we demonstrate the formation of RecA-independent cointegrates between the ISYps1-harboring plasmid and an ISYps1-free replicon, leading to the passive transfer of the non-conjugative plasmid. We thus demonstrate here a natural mechanism of horizontal gene exchange, which is less constrained and more powerful than the classical Hfr mechanism, as it only requires the presence of an IS6-type element on a conjugative replicon to drive the horizontal transfer of any large block of plasmid or chromosomal DNA. This natural mechanism of chromosome transfer, which occurs under conditions mimicking those found in the environment, may thus play a significant role in bacterial evolution, pathogenesis, and adaptation to new ecological niches.
Collapse
Affiliation(s)
- Biliana Lesic
- Yersinia Research Unit, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Pinta E, Li Z, Batzilla J, Pajunen M, Kasanen T, Rabsztyn K, Rakin A, Skurnik M. Identification of three oligo-/polysaccharide-specific ligases in Yersinia enterocolitica. Mol Microbiol 2011; 83:125-36. [DOI: 10.1111/j.1365-2958.2011.07918.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
31
|
The type III system-secreted effector EspZ localizes to host mitochondria and interacts with the translocase of inner mitochondrial membrane 17b. Infect Immun 2011; 79:4784-90. [PMID: 21947777 DOI: 10.1128/iai.05761-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC, respectively) are attaching and effacing (A/E) bacterial pathogens that cause severe diarrheal disease worldwide. To cause disease, A/E pathogens require a type III secretion system, which facilitates transport of bacterial effector proteins directly into infected host cells. One of these effector proteins translocated by the type III secretion system, EspZ, is essential for A/E pathogen infection and functions to prevent rapid death of EPEC-infected cells. We further investigated the mechanism of EspZ-mediated protection of infected host cells and found that a severe decrease in host mitochondrial membrane potential (Δψ(m)) occurs concurrently with host cell lysis during infection with EPEC lacking EspZ (ΔespZ). It was also demonstrated that EspZ localizes to host cell mitochondria and interacts with the translocase of inner mitochondrial membrane 17b (TIM17b). In addition, host cell cytotoxicity was exacerbated in the absence of TIM17b during wild-type (WT) EPEC infection. The findings of this study together provide the first evidence that EspZ localizes to host mitochondria and that TIM17b contributes to protection against rapid cell death during EPEC infection.
Collapse
|
32
|
Shames SR, Bhavsar AP, Croxen MA, Law RJ, Mak SHC, Deng W, Li Y, Bidshari R, de Hoog CL, Foster LJ, Finlay BB. The pathogenic Escherichia coli type III secreted protease NleC degrades the host acetyltransferase p300. Cell Microbiol 2011; 13:1542-57. [DOI: 10.1111/j.1462-5822.2011.01640.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
33
|
Silent mischief: bacteriophage Mu insertions contaminate products of Escherichia coli random mutagenesis performed using suicidal transposon delivery plasmids mobilized by broad-host-range RP4 conjugative machinery. J Bacteriol 2010; 192:6418-27. [PMID: 20935093 DOI: 10.1128/jb.00621-10] [Citation(s) in RCA: 198] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Random transposon mutagenesis is the strategy of choice for associating a phenotype with its unknown genetic determinants. It is generally performed by mobilization of a conditionally replicating vector delivering transposons to recipient cells using broad-host-range RP4 conjugative machinery carried by the donor strain. In the present study, we demonstrate that bacteriophage Mu, which was deliberately introduced during the original construction of the widely used donor strains SM10 λpir and S17-1 λpir, is silently transferred to Escherichia coli recipient cells at high frequency, both by hfr and by release of Mu particles by the donor strain. Our findings suggest that bacteriophage Mu could have contaminated many random-mutagenesis experiments performed on Mu-sensitive species with these popular donor strains, leading to potential misinterpretation of the transposon mutant phenotype and therefore perturbing analysis of mutant screens. To circumvent this problem, we precisely mapped Mu insertions in SM10 λpir and S17-1 λpir and constructed a new Mu-free donor strain, MFDpir, harboring stable hfr-deficient RP4 conjugative functions and sustaining replication of Π-dependent suicide vectors. This strain can therefore be used with most of the available transposon-delivering plasmids and should enable more efficient and easy-to-analyze mutant hunts in E. coli and other Mu-sensitive RP4 host bacteria.
Collapse
|
34
|
Analysis of the mobilization functions of the vancomycin resistance transposon Tn1549, a member of a new family of conjugative elements. J Bacteriol 2009; 192:702-13. [PMID: 19966009 DOI: 10.1128/jb.00680-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Conjugative transfer from Clostridium symbiosum to enterococci of Tn1549, which confers VanB-type vancomycin resistance, has been reported. This indicates the presence of a transfer origin (oriT) in the element. Transcription analysis of Tn1549 indicated that orf29, orf28, orfz, and orf27 were cotranscribed. A pACYC184 derivative containing 250 bp intergenic to orf29-orf30 of Tn1549 was mobilized in Escherichia coli recA::RP4::Delta nic provided that orf28 and orf29 were delivered simultaneously. These open reading frame (ORF) genes were able to promote mobilization in trans, but a cis-acting preference was observed. On the basis of a mobilization assay, a minimal 28-bp oriT was delimited, although the frequency of transfer was significantly reduced compared to that of a 130-bp oriT fragment. The minimal oriT contained an inverted repeat and a core, which was homologous to the cleavage sequence found in certain Gram-positive rolling-circle replicating (RCR) plasmids. While Orf29 was a mobilization accessory component similar to MobC proteins, Orf28 was identified as a relaxase belonging to a new phyletic cluster of the MOB(p) superfamily. The nick site was identified within oriT by an oligonucleotide cleavage assay. Closely related oriTs linked to mobilization genes were detected in data banks; they were found in various integrative and conjugative elements (ICEs) originating mainly from anaerobes. These results support the notion that Tn1549 is a member of a MOB(p) clade. Interestingly, the Tn1549-derived constructs were mobilized by RP4 in E. coli, suggesting that a relaxosome resulting from DNA cleavage by Orf28 interacted with the coupling protein TraG. This demonstrates the capacity of Tn1549 to be mobilized by a heterologous transfer system.
Collapse
|