1
|
Banchi E, Corre E, Del Negro P, Celussi M, Malfatti F. Genome-resolved metagenomics of Venice Lagoon surface sediment bacteria reveals high biosynthetic potential and metabolic plasticity as successful strategies in an impacted environment. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:126-142. [PMID: 38433960 PMCID: PMC10902248 DOI: 10.1007/s42995-023-00192-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/05/2023] [Indexed: 03/05/2024]
Abstract
Bacteria living in sediments play essential roles in marine ecosystems and deeper insights into the ecology and biogeochemistry of these largely unexplored organisms can be obtained from 'omics' approaches. Here, we characterized metagenome-assembled-genomes (MAGs) from the surface sediment microbes of the Venice Lagoon (northern Adriatic Sea) in distinct sub-basins exposed to various natural and anthropogenic pressures. MAGs were explored for biodiversity, major marine metabolic processes, anthropogenic activity-related functions, adaptations at the microscale, and biosynthetic gene clusters. Starting from 126 MAGs, a non-redundant dataset of 58 was compiled, the majority of which (35) belonged to (Alpha- and Gamma-) Proteobacteria. Within the broad microbial metabolic repertoire (including C, N, and S metabolisms) the potential to live without oxygen emerged as one of the most important features. Mixotrophy was also found as a successful lifestyle. Cluster analysis showed that different MAGs encoded the same metabolic patterns (e.g., C fixation, sulfate oxidation) thus suggesting metabolic redundancy. Antibiotic and toxic compounds resistance genes were coupled, a condition that could promote the spreading of these genetic traits. MAGs showed a high biosynthetic potential related to antimicrobial and biotechnological classes and to organism defense and interactions as well as adaptive strategies for micronutrient uptake and cellular detoxification. Our results highlighted that bacteria living in an impacted environment, such as the surface sediments of the Venice Lagoon, may benefit from metabolic plasticity as well as from the synthesis of a wide array of secondary metabolites, promoting ecosystem resilience and stability toward environmental pressures. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00192-z.
Collapse
Affiliation(s)
- Elisa Banchi
- National Institute of Oceanography and Applied Geophysics OGS, Trieste, Italy
| | - Erwan Corre
- FR2424, Station Biologique de Roscoff, Plateforme ABiMS (Analysis and Bioinformatics for Marine Science), Sorbonne Université CNRS, 29680 Roscoff, France
| | - Paola Del Negro
- National Institute of Oceanography and Applied Geophysics OGS, Trieste, Italy
| | - Mauro Celussi
- National Institute of Oceanography and Applied Geophysics OGS, Trieste, Italy
| | - Francesca Malfatti
- National Institute of Oceanography and Applied Geophysics OGS, Trieste, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
2
|
Chen S, Zhou B, Chen H, Yuan R. Iron mediated autotrophic denitrification for low C/N ratio wastewater: A review. ENVIRONMENTAL RESEARCH 2023; 216:114687. [PMID: 36356669 DOI: 10.1016/j.envres.2022.114687] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/06/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
In recent years, iron mediated autotrophic denitrification has been a concern because it overcomes the absence of organic carbon and has been successfully used in denitrification for low C/N ratio wastewater. However, there is currently a lack of a more systematic summary of iron-based materials that can be used for denitrification, and no detailed overview about the mechanism of iron mediated autotrophic denitrification has been reported. In this study, the iron materials with different valence states that can be used for denitrification were summarized, and emphasized, as well as the mechanism in different interaction systems were emphasize. In addition, the contribution of various microorganisms in nitrate reduction were analyzed and the effects of operating conditions and water quality were evaluated. Finally, the challenges and shortcomings of the denitrification process were discussed aiming to find better practical engineering applications of iron-based denitrification.
Collapse
Affiliation(s)
- Shaoting Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Beihai Zhou
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Huilun Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Rongfang Yuan
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
3
|
Scicchitano D, Lo Martire M, Palladino G, Nanetti E, Fabbrini M, Dell’Anno A, Rampelli S, Corinaldesi C, Candela M. Microbiome network in the pelagic and benthic offshore systems of the northern Adriatic Sea (Mediterranean Sea). Sci Rep 2022; 12:16670. [PMID: 36198901 PMCID: PMC9535000 DOI: 10.1038/s41598-022-21182-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractBecause of their recognized global importance, there is now the urgent need to map diversity and distribution patterns of marine microbial communities. Even if available studies provided some advances in the understanding the biogeographical patterns of marine microbiomes at the global scale, their degree of plasticity at the local scale it is still underexplored, and functional implications still need to be dissected. In this scenario here we provide a synoptical study on the microbiomes of the water column and surface sediments from 19 sites in a 130 km2 area located 13.5 km afar from the coast in the North-Western Adriatic Sea (Italy), providing the finest-scale mapping of marine microbiomes in the Mediterranean Sea. Pelagic and benthic microbiomes in the study area showed sector specific-patterns and distinct assemblage structures, corresponding to specific variations in the microbiome network structure. While maintaining a balanced structure in terms of potential ecosystem services (e.g., hydrocarbon degradation and nutrient cycling), sector-specific patterns of over-abundant modules—and taxa—were defined, with the South sector (the closest to the coast) characterized by microbial groups of terrestrial origins, both in the pelagic and the benthic realms. By the granular assessment of the marine microbiome changes at the local scale, we have been able to describe, to our knowledge at the first time, the integration of terrestrial microorganisms in the marine microbiome networks, as a possible natural process characterizing eutrophic coastal area. This raises the question about the biological threshold for terrestrial microorganisms to be admitted in the marine microbiome networks, without altering the ecological balance.
Collapse
|
4
|
Orel N, Fadeev E, Klun K, Ličer M, Tinta T, Turk V. Bacterial Indicators Are Ubiquitous Members of Pelagic Microbiome in Anthropogenically Impacted Coastal Ecosystem. Front Microbiol 2022; 12:765091. [PMID: 35111137 PMCID: PMC8801744 DOI: 10.3389/fmicb.2021.765091] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/25/2021] [Indexed: 01/18/2023] Open
Abstract
Coastal zones are exposed to various anthropogenic impacts, such as different types of wastewater pollution, e.g., treated wastewater discharges, leakage from sewage systems, and agricultural and urban runoff. These various inputs can introduce allochthonous organic matter and microbes, including pathogens, into the coastal marine environment. The presence of fecal bacterial indicators in the coastal environment is usually monitored using traditional culture-based methods that, however, fail to detect their uncultured representatives. We have conducted a year-around in situ survey of the pelagic microbiome of the dynamic coastal ecosystem, subjected to different anthropogenic pressures to depict the seasonal and spatial dynamics of traditional and alternative fecal bacterial indicators. To provide an insight into the environmental conditions under which bacterial indicators thrive, a suite of environmental factors and bacterial community dynamics were analyzed concurrently. Analyses of 16S rRNA amplicon sequences revealed that the coastal microbiome was primarily structured by seasonal changes regardless of the distance from the wastewater pollution sources. On the other hand, fecal bacterial indicators were not affected by seasons and accounted for up to 34% of the sequence proportion for a given sample. Even more so, traditional fecal indicator bacteria (Enterobacteriaceae) and alternative wastewater-associated bacteria (Lachnospiraceae, Ruminococcaceae, Arcobacteraceae, Pseudomonadaceae and Vibrionaceae) were part of the core coastal microbiome, i.e., present at all sampling stations. Microbial source tracking and Lagrangian particle tracking, which we employed to assess the potential pollution source, revealed the importance of riverine water as a vector for transmission of allochthonous microbes into the marine system. Further phylogenetic analysis showed that the Arcobacteraceae in our data set was affiliated with the pathogenic Arcobacter cryaerophilus, suggesting that a potential exposure risk for bacterial pathogens in anthropogenically impacted coastal zones remains. We emphasize that molecular analyses combined with statistical and oceanographic models may provide new insights for environmental health assessment and reveal the potential source and presence of microbial indicators, which are otherwise overlooked by a cultivation approach.
Collapse
Affiliation(s)
- Neža Orel
- Marine Biology Station Piran, National Institute of Biology, Piran, Slovenia
- *Correspondence: Neža Orel,
| | - Eduard Fadeev
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Katja Klun
- Marine Biology Station Piran, National Institute of Biology, Piran, Slovenia
| | - Matjaž Ličer
- Marine Biology Station Piran, National Institute of Biology, Piran, Slovenia
- Office for Meteorology, Hydrology and Oceanography, Slovenian Environment Agency, Ljubljana, Slovenia
| | - Tinkara Tinta
- Marine Biology Station Piran, National Institute of Biology, Piran, Slovenia
- Tinkara Tinta,
| | - Valentina Turk
- Marine Biology Station Piran, National Institute of Biology, Piran, Slovenia
| |
Collapse
|
5
|
Matjašič T, Simčič T, Medvešček N, Bajt O, Dreo T, Mori N. Critical evaluation of biodegradation studies on synthetic plastics through a systematic literature review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:141959. [PMID: 33207527 DOI: 10.1016/j.scitotenv.2020.141959] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 05/26/2023]
Abstract
Increasing amounts of plastic waste in the environment and their fragmentation into smaller particles known as microplastics (particles, <5mm) have raised global concerns due to their persistency in the environment and their potential to act as vectors for harmful substances or pathogenic microorganisms. One possible solution to this problem is biodegradation of plastics by microorganisms. However, the scientific information on plastic-degrading microorganisms is scattered across different scientific publications. We conducted a systematic literature review (SLR) with predefined criteria using the online databases of Scopus and Web of Science to find papers on bacterial biodegradation of synthetic petroleum-based polymers. The aims of this SLR were to provide an updated list of all of the currently known bacteria claimed to biodegrade synthetic plastics, to determine and define the best methods to assess biodegradation, to critically evaluate the existing studies, and to propose directions for future research on polymer biodegradation in support of more rapid development of biodegradation technologies. Most of the bacteria identified here from the 145 reviewed papers belong to the phyla Proteobacteria, Firmicutes and Actinobacteria, and most were isolated from contaminated sites, such as landfill sites. Just under a half of the studies (44%) investigated the biodegradability of polyethylenes and derivates, particularly low-density polyethylenes. The methods used to monitor the biodegradation were mainly scanning electron microscopy and Fourier-transform infrared spectroscopy. We propose that: (1) future research should focus on biodegradation of microplastics arising from the most common pollutants (e.g. polyethylenes); (2) bacteria should be isolated from environments that are permanently contaminated with plastics; and (3) a combination of different observational methods should be used to confirm bacterial biodegradation of these plastics. Finally, when reporting, researchers need to follow standard protocols and include all essential information needed for repetition of the experiments by other research groups.
Collapse
Affiliation(s)
- Tjaša Matjašič
- National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia.
| | - Tatjana Simčič
- National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Neja Medvešček
- National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Oliver Bajt
- National Institute of Biology, Marine Biology Station Piran, Fornače 41, 6330 Piran, Slovenia
| | - Tanja Dreo
- National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Nataša Mori
- National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| |
Collapse
|
6
|
Quan X, Zhang H, Liu H, Chen L, Li N. Remediation of nitrogen polluted water using Fe-C microelectrolysis and biofiltration under mixotrophic conditions. CHEMOSPHERE 2020; 257:127272. [PMID: 32534299 DOI: 10.1016/j.chemosphere.2020.127272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 06/11/2023]
Abstract
A hybrid biofilter was established on Fe-C supported carriers aimed to enhance nitrogen removal from polluted water of low Carbon/Nitrogen (C/N) ratio. Effects of organic loadings, hydraulic retention time (HRT), additional electron donor (Fe2+) supplementation and operation mode on the performance of the biofilter were investigated. Results showed that up-flow operation mode was better than down-flow mode in terms of nitrate and total nitrogen (TN) removal at low COD/N. The average removal of NO3--N, NH4+ -N and TN attained 83.1%, 84.7% and 81.2%, respectively, under the conditions of influent COD/NO3--N = 1.5-3.6, HRT = 10 h and up-flow operation. When the biofilter was operated under autotrophic conditions without organic compounds in influent as electron donors, the biofilter achieved a NO3--N removal of 46% and TN removal of 56% depending on the innate electron donors provided by the Fe-C carriers. Supplementation of Fe2+ in influent further promoted autotrophic denitrifying process, and the removal of NO3--N and TN increased to 96.3% and 84.7%, respectively, at the mol ratio of Fe2+/NO3- = 10 and HRT = 10 h. The microbial community was analyzed for the biofilm samples enriched under heterotrophic and autotrophic conditions. The Fe-C biofilter boosted the growth of a large population of mixotrophic denitrifying bacteria including Gallionella, heterotrophic denitrifying bacteria Denitratisoma, and autotrophic denitrifying bacteria Thiobacillus and Thioalkalispira. On the whole, the biofilter coupled with Fe-C micro-electrolysis provides a novel strategy to treat polluted water of low C/N under both heterotrophic and autotrophic conditions.
Collapse
Affiliation(s)
- Xiangchun Quan
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Haifeng Zhang
- School of Chemical Engineering, Northeast Electric Power University, Jinlin, 132012, Jinlin Province, China
| | - Hezun Liu
- School of Chemical Engineering, Northeast Electric Power University, Jinlin, 132012, Jinlin Province, China
| | - Liang Chen
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Naiyu Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
7
|
Insights on aquatic microbiome of the Indian Sundarbans mangrove areas. PLoS One 2020; 15:e0221543. [PMID: 32097429 PMCID: PMC7041844 DOI: 10.1371/journal.pone.0221543] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 02/04/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Anthropogenic perturbations have strong impact on water quality and ecological health of mangrove areas of Indian Sundarbans. Diversity in microbial community composition is important causes for maintaining the health of the mangrove ecosystem. However, microbial communities of estuarine water in Indian Sundarbans mangrove areas and environmental determinants that contribute to those communities were seldom studied. METHODS Nevertheless, this study attempted first to report bacterial and archaeal communities simultaneously in the water from Matla River and Thakuran River of Maipith coastal areas more accurately using 16S rRNA gene-based amplicon approaches. Attempt also been made to assess the capability of the environmental parameters for explaining the variation in microbial community composition. RESULTS Our investigation indicates the dominancy of halophilic marine bacteria from families Flavobacteriaceae and OM1 clade in the water with lower nutrient load collected from costal regions of a small Island of Sundarban Mangroves (ISM). At higher eutrophic conditions, changes in bacterial communities in Open Marine Water (OMW) were detected, where some of the marine hydrocarbons degrading bacteria under families Oceanospirillaceae and Spongiibacteraceae were dominated. While most abundant bacterial family Rhodobacteracea almost equally (18% of the total community) dominated in both sites. Minor variation in the composition of archaeal community was also observed between OMW and ISM. Redundancy analysis indicates a combination of total nitrogen and dissolved inorganic nutrients for OMW and for ISM, salinity and total nitrogen was responsible for explaining the changes in their respective microbial community composition. CONCLUSIONS Our study contributes the first conclusive overview on how do multiple environmental/anthropogenic stressors (salinity, pollution, eutrophication, land-use) affect the Sundarban estuary water and consequently the microbial communities in concert. However, systematic approaches with more samples for evaluating the effect of environmental pollutions on mangrove microbial communities are recommended.
Collapse
|
8
|
Ben Salem F, Ben Said O, Cravo-Laureau C, Mahmoudi E, Bru N, Monperrus M, Duran R. Bacterial community assemblages in sediments under high anthropogenic pressure at Ichkeul Lake/Bizerte Lagoon hydrological system, Tunisia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:644-656. [PMID: 31185353 DOI: 10.1016/j.envpol.2019.05.146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
Bacterial communities inhabiting sediments in coastal areas endure the effect of strong anthropogenic pressure characterized by the presence of multiple contaminants. Understanding the effect of pollutants on the organization of bacterial communities is of paramount importance in order to unravel bacterial assemblages colonizing specific ecological niches. Here, chemical and molecular approaches were combined to investigate the bacterial communities inhabiting the sediments of the Ichkeul Lake/Bizerte Lagoon, a hydrological system under anthropogenic pressure. Although the microbial community of the Ichkeul Lake sediment was different to that of the Bizerte Lagoon, common bacterial genera were identified suggesting a lake-lagoon continuum probably due to the hydrology of the system exchanging waters according to the season. These genera represent bacterial "generalists" maintaining probably general biogeochemical functions. Linear discriminant analysis effect size (LEfSe) showed significant differential abundance distribution of bacterial genera according to the habitat, the pollution type and level. Further, correlation analyses identified specific bacterial genera which abundance was linked with pesticides concentrations in the lake, while in the lagoon the abundance of specific bacterial genera was found linked with the concentrations of PAHs (Polycyclic aromatic hydrocarbons) and organic forms of Sn. As well, bacterial genera which abundance was not correlated with the concentrations of pollutants were identified in both lake and lagoon. These findings represent valuable information, pointing out specific bacterial genera associated with pollutants, which represent assets for developing bacterial tools for the implementation, the management, and monitoring of bioremediation processes to mitigate the effect of pollutants in aquatic ecosystems.
Collapse
Affiliation(s)
- Fida Ben Salem
- Laboratoire de Biosurveillance de l'Environment, Faculté des Sciences de Bizerte, Tunisia; MELODY Group, Université de Pau et des Pays de l'Adour, E2S-UPPA, IPREM UMR CNRS 5254, BP 1155, Pau Cedex, 64013, France; Fédération de recherche MIRA, Université de Pau et des Pays de l'Adour, E2S-UPPA, France
| | - Olfa Ben Said
- Laboratoire de Biosurveillance de l'Environment, Faculté des Sciences de Bizerte, Tunisia; MELODY Group, Université de Pau et des Pays de l'Adour, E2S-UPPA, IPREM UMR CNRS 5254, BP 1155, Pau Cedex, 64013, France; Fédération de recherche MIRA, Université de Pau et des Pays de l'Adour, E2S-UPPA, France
| | - Cristiana Cravo-Laureau
- MELODY Group, Université de Pau et des Pays de l'Adour, E2S-UPPA, IPREM UMR CNRS 5254, BP 1155, Pau Cedex, 64013, France; Fédération de recherche MIRA, Université de Pau et des Pays de l'Adour, E2S-UPPA, France
| | - Ezzeddine Mahmoudi
- Laboratoire de Biosurveillance de l'Environment, Faculté des Sciences de Bizerte, Tunisia
| | - Noëlle Bru
- Laboratoire de Mathématiques et de leurs Applications, PAU UMR CNRS 5142, Université de Pau et des Pays de l'Adour, E2S-UPPA, France; Fédération de recherche MIRA, Université de Pau et des Pays de l'Adour, E2S-UPPA, France
| | - Mathilde Monperrus
- MELODY Group, Université de Pau et des Pays de l'Adour, E2S-UPPA, IPREM UMR CNRS 5254, BP 1155, Pau Cedex, 64013, France; Fédération de recherche MIRA, Université de Pau et des Pays de l'Adour, E2S-UPPA, France
| | - Robert Duran
- MELODY Group, Université de Pau et des Pays de l'Adour, E2S-UPPA, IPREM UMR CNRS 5254, BP 1155, Pau Cedex, 64013, France; Fédération de recherche MIRA, Université de Pau et des Pays de l'Adour, E2S-UPPA, France.
| |
Collapse
|
9
|
Pala C, Molari M, Nizzoli D, Bartoli M, Viaroli P, Manini E. Environmental Drivers Controlling Bacterial and Archaeal Abundance in the Sediments of a Mediterranean Lagoon Ecosystem. Curr Microbiol 2018; 75:1147-1155. [PMID: 29766233 PMCID: PMC6096605 DOI: 10.1007/s00284-018-1503-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 04/27/2018] [Indexed: 02/02/2023]
Abstract
The environmental factors controlling the abundance of Bacteria and Archaea in lagoon ecosystems are poorly understood. Here, an integrated physico-chemical, biogeochemical, and microbiological survey was applied in the Sacca di Goro lagoon (Po River Delta, Italy) to investigate the variation of bacterial and archaeal abundance, as assessed by Fluorescence In Situ Hybridization, along winter and summer environmental gradients. We hypothesised that bacterial and archaeal cells respond differentially to physico-chemical parameters of the sediment, which can be manifested in variations of total cells number. Our results suggest that Archaea are an important component of microbial communities (up to 20%) and they are also quite constant along the sediment depth investigated, while Bacteria tend to decrease in the subsurface sediments. The abiotic (i.e. temperature, ammonium, pH) and trophic parameters (i.e. chlorophyll a) explain differentially the variations of bacterial and archaeal distribution, and raise interesting questions about the ecological significance of the microbial composition in this area.
Collapse
Affiliation(s)
- Claudia Pala
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy.
- Institute for Marine Science - ISMAR, National Research Council of Italy - CNR, Ancona, Italy.
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359, Bremen, Germany.
| | - Massimiliano Molari
- Institute for Marine Science - ISMAR, National Research Council of Italy - CNR, Ancona, Italy
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359, Bremen, Germany
| | - Daniele Nizzoli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Marco Bartoli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Pierluigi Viaroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Elena Manini
- Institute for Marine Science - ISMAR, National Research Council of Italy - CNR, Ancona, Italy
| |
Collapse
|
10
|
Quero GM, Perini L, Pesole G, Manzari C, Lionetti C, Bastianini M, Marini M, Luna GM. Seasonal rather than spatial variability drives planktonic and benthic bacterial diversity in a microtidal lagoon and the adjacent open sea. Mol Ecol 2017; 26:5961-5973. [PMID: 28926207 DOI: 10.1111/mec.14363] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 08/08/2017] [Accepted: 09/05/2017] [Indexed: 12/20/2022]
Abstract
Coastal lagoons are highly productive ecosystems, which are experiencing a variety of human disturbances at increasing frequency. Bacteria are key ecological players within lagoons, yet little is known about the magnitude, patterns and drivers of diversity in these transitional environments. We carried out a seasonal study in the Venice Lagoon (Italy) and the adjacent sea, to simultaneously explore diversity patterns in different domains (pelagic, benthic) and their spatio-temporal variability, and test the role of environmental gradients in structuring assemblages. Community composition differed between lagoon and open sea, and between domains. The dominant phyla varied temporally, with varying trends for the two domains, suggesting different environmental constraints on the assemblages. The percentage of freshwater taxa within the lagoon increased during higher river run-off, pointing at the lagoon as a dynamic mosaic of microbial taxa that generate the metacommunity across the whole hydrological continuum. Seasonality was more important than spatial variability in shaping assemblages. Network analyses indicated more interactions between several genera and environmental variables in the open sea than the lagoon. Our study provides evidences for a temporally dynamic nature of bacterial assemblages in lagoons and suggests that an interplay of seasonally influenced environmental drivers shape assemblages in these vulnerable ecosystems.
Collapse
Affiliation(s)
| | - Laura Perini
- Institute of Marine Sciences (CNR-ISMAR), National Research Council, Venezia, Italy
| | - Graziano Pesole
- Institute of Biomembranes and Bioenergetics, National Research Council, Bari, Italy.,Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari "A. Moro", Bari, Italy.,Consorzio Interuniversitario Biotecnologie (CIB) and Istituto Nazionale Biostrutture e Biosistemi (INBB), Bari, Italy
| | - Caterina Manzari
- Institute of Biomembranes and Bioenergetics, National Research Council, Bari, Italy
| | - Claudia Lionetti
- Institute of Biomembranes and Bioenergetics, National Research Council, Bari, Italy
| | - Mauro Bastianini
- Institute of Marine Sciences (CNR-ISMAR), National Research Council, Venezia, Italy
| | - Mauro Marini
- Institute of Marine Sciences (CNR-ISMAR), National Research Council, Ancona, Italy
| | - Gian Marco Luna
- Institute of Marine Sciences (CNR-ISMAR), National Research Council, Ancona, Italy
| |
Collapse
|
11
|
Tao Y, Dai T, Huang B, Wen D. The impact of wastewater treatment effluent on microbial biomasses and diversities in coastal sediment microcosms of Hangzhou Bay. MARINE POLLUTION BULLETIN 2017; 114:355-363. [PMID: 27707472 DOI: 10.1016/j.marpolbul.2016.09.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 09/18/2016] [Accepted: 09/21/2016] [Indexed: 06/06/2023]
Abstract
Disposal of wastewater treatment plant (WWTP) effluent into sea, a typical anthropogenic disturbance, may influence many environmental factors and change the coastal microbial community structure. In this study, by setting up coastal sediment microcosms perturbed by WWTP effluent, the changes of microbial community structure under different degree of disturbances were investigated. Quantitative PCR (qPCR) and terminal restriction fragment length polymorphism (T-RFLP) were used to analyzed the biomass and biodiversity. High throughput sequencing analysis was used to identify the classification of the microorganisms. Our study suggested that low ratio of WWTP effluent may stimulate dominant species, which increase the biomass but decrease the biodiversity; while high ratio of WWTP effluent may depress all species, which decrease the biomass but increase the biodiversity. In other words, the impact was dose-dependent. The changes of microbial community structure may provide a metric for water environmental assessment and pollution control.
Collapse
Affiliation(s)
- Yile Tao
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing 100871, China
| | - Tianjiao Dai
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing 100871, China
| | - Bei Huang
- Zhejiang Provincial Zhoushan Marine Ecological Environmental Monitoring Station, Zhoushan 316021, China
| | - Donghui Wen
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing 100871, China.
| |
Collapse
|
12
|
Fan L, Barry K, Hu G, Meng S, Song C, Qiu L, Zheng Y, Wu W, Qu J, Chen J, Xu P. Characterizing bacterial communities in tilapia pond surface sediment and their responses to pond differences and temporal variations. World J Microbiol Biotechnol 2016; 33:1. [DOI: 10.1007/s11274-016-2144-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 09/16/2016] [Indexed: 12/20/2022]
|
13
|
Fernandez AB, Rasuk MC, Visscher PT, Contreras M, Novoa F, Poire DG, Patterson MM, Ventosa A, Farias ME. Microbial Diversity in Sediment Ecosystems (Evaporites Domes, Microbial Mats, and Crusts) of Hypersaline Laguna Tebenquiche, Salar de Atacama, Chile. Front Microbiol 2016; 7:1284. [PMID: 27597845 PMCID: PMC4992683 DOI: 10.3389/fmicb.2016.01284] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/04/2016] [Indexed: 02/01/2023] Open
Abstract
We combined nucleic acid-based molecular methods, biogeochemical measurements, and physicochemical characteristics to investigate microbial sedimentary ecosystems of Laguna Tebenquiche, Atacama Desert, Chile. Molecular diversity, and biogeochemistry of hypersaline microbial mats, rhizome-associated concretions, and an endoevaporite were compared with: The V4 hypervariable region of the 16S rRNA gene was amplified by pyrosequencing to analyze the total microbial diversity (i.e., bacteria and archaea) in bulk samples, and in addition, in detail on a millimeter scale in one microbial mat and in one evaporite. Archaea were more abundant than bacteria. Euryarchaeota was one of the most abundant phyla in all samples, and particularly dominant (97% of total diversity) in the most lithified ecosystem, the evaporite. Most of the euryarchaeal OTUs could be assigned to the class Halobacteria or anaerobic and methanogenic archaea. Planctomycetes potentially also play a key role in mats and rhizome-associated concretions, notably the aerobic organoheterotroph members of the class Phycisphaerae. In addition to cyanobacteria, members of Chromatiales and possibly the candidate family Chlorotrichaceae contributed to photosynthetic carbon fixation. Other abundant uncultured taxa such as the candidate division MSBL1, the uncultured MBGB, and the phylum Acetothermia potentially play an important metabolic role in these ecosystems. Lithifying microbial mats contained calcium carbonate precipitates, whereas endoevoporites consisted of gypsum, and halite. Biogeochemical measurements revealed that based on depth profiles of O2 and sulfide, metabolic activities were much higher in the non-lithifying mat (peaking in the least lithified systems) than in lithifying mats with the lowest activity in endoevaporites. This trend in decreasing microbial activity reflects the increase in salinity, which may play an important role in the biodiversity.
Collapse
Affiliation(s)
- Ana B Fernandez
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas, Planta Piloto de Procesos Industriales Microbiológicos, Centro Científico Tecnológico, CONICET Tucumán, Argentina
| | - Maria C Rasuk
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas, Planta Piloto de Procesos Industriales Microbiológicos, Centro Científico Tecnológico, CONICET Tucumán, Argentina
| | - Pieter T Visscher
- Department of Marine Sciences, University of ConnecticutGroton, CT, USA; Australian Centre for Astrobiology, University of New South WalesSydney, NSW, Australia
| | | | | | - Daniel G Poire
- Centro de Investigaciones Geológicas, Universidad Nacional de La Plata-Conicet La Plata, Argentina
| | - Molly M Patterson
- Department of Marine Sciences, University of Connecticut Groton, CT, USA
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla Sevilla, Spain
| | - Maria E Farias
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas, Planta Piloto de Procesos Industriales Microbiológicos, Centro Científico Tecnológico, CONICET Tucumán, Argentina
| |
Collapse
|
14
|
Pavloudi C, Oulas A, Vasileiadou K, Sarropoulou E, Kotoulas G, Arvanitidis C. Salinity is the major factor influencing the sediment bacterial communities in a Mediterranean lagoonal complex (Amvrakikos Gulf, Ionian Sea). Mar Genomics 2016; 28:71-81. [PMID: 26831186 DOI: 10.1016/j.margen.2016.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/25/2016] [Accepted: 01/25/2016] [Indexed: 11/27/2022]
Abstract
Lagoons are naturally enriched habitats, with unstable environmental conditions caused by their confinement, shallow depth and state of saprobity. The frequent fluctuations of the abiotic variables cause severe changes in the abundance and distribution of biota. This relationship has been studied extensively for the macrofaunal communities, but not sufficiently so for the bacterial ones. The aim of the present study was to explore the biodiversity patterns of bacterial assemblages and to examine whether these patterns are associated with biogeographic and environmental factors. For this purpose, sediment samples were collected from five lagoons located in the Amvrakikos Gulf (Ionian Sea, Western Greece). DNA was extracted from the sediment and was further processed through 16S rRNA pyrosequencing. The results of this exploratory study imply that salinity is the environmental factor best correlated with the bacterial community pattern, which has also been suggested in similar studies but for macrofaunal community patterns. In addition, the bacterial community of the brackish lagoons is differentiated from that of the brackish-marine lagoons. The findings of this study indicate that the studied lagoons have distinct bacterial communities.
Collapse
Affiliation(s)
- Christina Pavloudi
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Thalassocosmos, P.O. Box 2214, 71003 Heraklion, Crete, Greece; Biology Department, University of Crete, Voutes University Campus, 70013 Heraklion, Crete, Greece; Department of Microbial Ecophysiology, Faculty of Biology, University of Bremen, 28359, Bremen, Germany; Department of Biology, Faculty of Sciences, University of Ghent, 9000 Ghent, Belgium.
| | - Anastasis Oulas
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Thalassocosmos, P.O. Box 2214, 71003 Heraklion, Crete, Greece.
| | - Katerina Vasileiadou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Thalassocosmos, P.O. Box 2214, 71003 Heraklion, Crete, Greece.
| | - Elena Sarropoulou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Thalassocosmos, P.O. Box 2214, 71003 Heraklion, Crete, Greece.
| | - Georgios Kotoulas
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Thalassocosmos, P.O. Box 2214, 71003 Heraklion, Crete, Greece.
| | - Christos Arvanitidis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Thalassocosmos, P.O. Box 2214, 71003 Heraklion, Crete, Greece.
| |
Collapse
|
15
|
Rubino A, Bensi M, Hainbucher D, Zanchettin D, Mapelli F, Ogrinc N, Marchetto D, Borin S, Cardin V, Fajon V, Horvat M, Taricco C, Baldi F. Biogeochemical, Isotopic and Bacterial Distributions Trace Oceanic Abyssal Circulation. PLoS One 2016; 11:e0145299. [PMID: 26761666 PMCID: PMC4711998 DOI: 10.1371/journal.pone.0145299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 12/01/2015] [Indexed: 11/19/2022] Open
Abstract
We explore the possibility of tracing routes of dense waters toward and within the ocean abyss by the use of an extended set of observed physical and biochemical parameters. To this purpose, we employ mercury, isotopic oxygen, biopolymeric carbon and its constituents, together with indicators of microbial activity and bacterial diversity found in bottom waters of the Eastern Mediterranean. In this basin, which has been considered as a miniature global ocean, two competing sources of bottom water (one in the Adriatic and one in the Aegean seas) contribute to the ventilation of the local abyss. However, due to a recent substantial reduction of the differences in the physical characteristics of these two water masses it has become increasingly complex a water classification using the traditional approach with temperature, salinity and dissolved oxygen alone. Here, we show that an extended set of observed physical and biochemical parameters allows recognizing the existence of two different abyssal routes from the Adriatic source and one abyssal route from the Aegean source despite temperature and salinity of such two competing sources of abyssal water being virtually indistinguishable. Moreover, as the near-bottom development of exogenous bacterial communities transported by convectively-generated water masses in the abyss can provide a persistent trace of episodic events, intermittent flows like those generating abyssal waters in the Eastern Mediterranean basin may become detectable beyond the availability of concomitant measurements.
Collapse
Affiliation(s)
- Angelo Rubino
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari di Venezia, Campus Scientifico, Via Torino 155, 30172 Mestre, VE, Italy
- * E-mail:
| | - Manuel Bensi
- Istituto Nazionale di Oceanografia e di Geofisica Sperimentale, OGS, B.go Grotta Gigante 42/c, Sgonico, Trieste, Italy
| | - Dagmar Hainbucher
- CEN, Institut für Meereskunde, University of Hamburg, Bundesstraße 53, 20146, Hamburg, Germany
| | - Davide Zanchettin
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari di Venezia, Campus Scientifico, Via Torino 155, 30172 Mestre, VE, Italy
| | - Francesca Mapelli
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, Milan, Italy
| | - Nives Ogrinc
- Department of Environmental Sciences, “Jožef Stefan” Institut, Jamova 39, 1000, Ljubljana, Slovenia
| | - Davide Marchetto
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia, Campus Scientifico, Via Torino 155, 30172, Mestre, VE, Italy
| | - Sara Borin
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, Milan, Italy
| | - Vanessa Cardin
- Istituto Nazionale di Oceanografia e di Geofisica Sperimentale, OGS, B.go Grotta Gigante 42/c, Sgonico, Trieste, Italy
| | - Vesna Fajon
- Department of Environmental Sciences, “Jožef Stefan” Institut, Jamova 39, 1000, Ljubljana, Slovenia
| | - Milena Horvat
- Department of Environmental Sciences, “Jožef Stefan” Institut, Jamova 39, 1000, Ljubljana, Slovenia
| | - Carla Taricco
- Dipartimento di Fisica, Università di Torino, Torino, Italy
- Osservatorio Astrofisico di Torino, INAF, Pino Torinese, Italy
| | - Franco Baldi
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia, Campus Scientifico, Via Torino 155, 30172, Mestre, VE, Italy
| |
Collapse
|
16
|
Caruso G, La Ferla R, Azzaro M, Zoppini A, Marino G, Petochi T, Corinaldesi C, Leonardi M, Zaccone R, Fonda Umani S, Caroppo C, Monticelli L, Azzaro F, Decembrini F, Maimone G, Cavallo RA, Stabili L, Hristova Todorova N, K. Karamfilov V, Rastelli E, Cappello S, Acquaviva MI, Narracci M, De Angelis R, Del Negro P, Latini M, Danovaro R. Microbial assemblages for environmental quality assessment: Knowledge, gaps and usefulness in the European Marine Strategy Framework Directive. Crit Rev Microbiol 2015; 42:883-904. [DOI: 10.3109/1040841x.2015.1087380] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
Devereux R, Mosher JJ, Vishnivetskaya TA, Brown SD, Beddick DL, Yates DF, Palumbo AV. Changes in northern Gulf of Mexico sediment bacterial and archaeal communities exposed to hypoxia. GEOBIOLOGY 2015; 13:478-493. [PMID: 25939270 DOI: 10.1111/gbi.12142] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/30/2015] [Indexed: 06/04/2023]
Abstract
Biogeochemical changes in marine sediments during coastal water hypoxia are well described, but less is known about underlying changes in microbial communities. Bacterial and archaeal communities in Louisiana continental shelf (LCS) hypoxic zone sediments were characterized by pyrosequencing 16S rRNA V4-region gene fragments obtained by PCR amplification of community genomic DNA with bacterial- or archaeal-specific primers. Duplicate LCS sediment cores collected during hypoxia had higher concentrations of Fe(II), and dissolved inorganic carbon, phosphate, and ammonium than cores collected when overlying water oxygen concentrations were normal. Pyrosequencing yielded 158,686 bacterial and 225,591 archaeal sequences from 20 sediment samples, representing five 2-cm depth intervals in the duplicate cores. Bacterial communities grouped by sampling date and sediment depth in a neighbor-joining analysis using Chao-Jaccard shared species values. Redundancy analysis indicated that variance in bacterial communities was mainly associated with differences in sediment chemistry between oxic and hypoxic water column conditions. Gammaproteobacteria (26.5%) were most prominent among bacterial sequences, followed by Firmicutes (9.6%), and Alphaproteobacteria (5.6%). Crenarchaeotal, thaumarchaeotal, and euryarchaeotal lineages accounted for 57%, 27%, and 16% of archaeal sequences, respectively. In Thaumarchaeota Marine Group I, sequences were 96-99% identical to the Nitrosopumilus maritimus SCM1 sequence, were highest in surficial sediments, and accounted for 31% of archaeal sequences when waters were normoxic vs. 13% of archaeal sequences when waters were hypoxic. Redundancy analysis showed Nitrosopumilus-related sequence abundance was correlated with high solid-phase Fe(III) concentrations, whereas most of the remaining archaeal clusters were not. In contrast, crenarchaeotal sequences were from phylogenetically diverse lineages, differed little in relative abundance between sampling times, and increased to high relative abundance with sediment depth. These results provide further evidence that marine sediment microbial community composition can be structured according to sediment chemistry and suggest the expansion of hypoxia in coastal waters may alter sediment microbial communities involved in carbon and nitrogen cycling.
Collapse
Affiliation(s)
- R Devereux
- Gulf Ecology Division, U.S. Environmental Protection Agency, Gulf Breeze, FL, USA
| | - J J Mosher
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | | | - S D Brown
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - D L Beddick
- Gulf Ecology Division, U.S. Environmental Protection Agency, Gulf Breeze, FL, USA
| | - D F Yates
- Gulf Ecology Division, U.S. Environmental Protection Agency, Gulf Breeze, FL, USA
| | - A V Palumbo
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| |
Collapse
|
18
|
Shi X, Ng KK, Li XR, Ng HY. Investigation of intertidal wetland sediment as a novel inoculation source for anaerobic saline wastewater treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:6231-6239. [PMID: 25884391 DOI: 10.1021/acs.est.5b00546] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Biological treatment of saline wastewater is considered unfavorable due to salinity inhibition on microbial activity. In this study, intertidal wetland sediment (IWS) collected from a high saline environment was investigated as a novel inoculation source for anaerobic treatment of saline pharmaceutical wastewater. Two parallel lab-scale anaerobic sequencing batch reactors (AnSBR) were set up to compare the organic removal potential of IWS with conventional anaerobic digested sludge (ADS). Under steady-state condition, IWS reactor (R(i)) showed organic reduction performance significantly superior to that of ADS reactor (R(a)), achieving COD removal efficiency of 71.4 ± 3.7 and 32.3 ± 6.1%, respectively. In addition, as revealed by fluorescent in situ hybridization (FISH) analysis, a higher relative abundance of methanogenic populations was detected in R(i). A further 16S rRNA gene pyrosequencing test was conducted to understand both the bacterial and archaeal community populations in the two AnSBRs. A predominance of halophilic/tolerant microorganisms (class Clostridia of bacteria, genera Methanosarcina, and Methanohalophilus of archaea) in R(i) enhanced its organic removal efficiency. Moreover, several microbial groups related with degradation of hardly biodegradable compounds (PAHs, n-alkenes, aliphatic hydrocarbons, and alkanes, etc.) were detected in the IWS. All these findings indicated that IWS is a promising inoculation source for anaerobic treatment of saline wastewater.
Collapse
Affiliation(s)
- Xueqing Shi
- †Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576
| | - Kok Kwang Ng
- †Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576
| | - Xiao-Ran Li
- ‡Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - How Yong Ng
- †Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576
| |
Collapse
|
19
|
Diversity of marine microbes in a changing Mediterranean Sea. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2014. [DOI: 10.1007/s12210-014-0333-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Zhang K, Cao X, Sheng Y, Cao H. Spatial distribution of bacterial community in EGSB reactor treating synthetic sulfate-containing wastewater at low organic loading rate. CHINESE SCIENCE BULLETIN-CHINESE 2013. [DOI: 10.1007/s11434-013-0043-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Bioremediation of Southern Mediterranean oil polluted sites comes of age. N Biotechnol 2013; 30:743-8. [DOI: 10.1016/j.nbt.2013.05.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 04/21/2013] [Accepted: 05/10/2013] [Indexed: 11/21/2022]
|
22
|
Wright KE, Williamson C, Grasby SE, Spear JR, Templeton AS. Metagenomic evidence for sulfur lithotrophy by Epsilonproteobacteria as the major energy source for primary productivity in a sub-aerial arctic glacial deposit, Borup Fiord Pass. Front Microbiol 2013; 4:63. [PMID: 23626586 PMCID: PMC3631710 DOI: 10.3389/fmicb.2013.00063] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 03/04/2013] [Indexed: 02/01/2023] Open
Abstract
We combined free enenergy calculations and metagenomic analyses of an elemental sulfur (S0) deposit on the surface of Borup Fiord Pass Glacier in the Canadian High Arctic to investigate whether the energy available from different redox reactions in an environment predicts microbial metabolism. Many S, C, Fe, As, Mn, and NH4+ oxidation reactions were predicted to be energetically feasible in the deposit, and aerobic oxidation of S0 was the most abundant chemical energy source. Small subunit ribosomal RNA (SSU rRNA) gene sequence data showed that the dominant phylotypes were Sulfurovum and Sulfuricurvum, both Epsilonproteobacteria known to be capable of sulfur lithotrophy. Sulfur redox genes were abundant in the metagenome, but sox genes were significantly more abundant than reverse dsr (dissimilatory sulfite reductase)genes. Interestingly, there appeared to be habitable niches that were unoccupied at the depth of genome coverage obtained. Photosynthesis and NH4+ oxidation should both be energetically favorable, but we found few or no functional genes for oxygenic or anoxygenic photosynthesis, or for NH4+ oxidation by either oxygen (nitrification) or nitrite (anammox). The free energy, SSU rRNA gene and quantitative functional gene data are all consistent with the hypothesis that sulfur-based chemolithoautotrophy by Epsilonproteobacteria (Sulfurovum and Sulfuricurvum) is the main form of primary productivity at this site, instead of photosynthesis. This is despite the presence of 24-h sunlight, and the fact that photosynthesis is not known to be inhibited by any of the environmental conditions present. This is the first time that Sulfurovum and Sulfuricurvum have been shown to dominate a sub-aerial environment, rather than anoxic or sulfidic settings. We also found that Flavobacteria dominate the surface of the sulfur deposits. We hypothesize that this aerobic heterotroph uses enough oxygen to create a microoxic environment in the sulfur below, where the Epsilonproteobacteria can flourish.
Collapse
Affiliation(s)
- Katherine E Wright
- Department of Geological Sciences, University of Colorado at Boulder Boulder, CO, USA
| | | | | | | | | |
Collapse
|
23
|
Yu J, Seon J, Park Y, Cho S, Lee T. Electricity generation and microbial community in a submerged-exchangeable microbial fuel cell system for low-strength domestic wastewater treatment. BIORESOURCE TECHNOLOGY 2012; 117:172-9. [PMID: 22613893 DOI: 10.1016/j.biortech.2012.04.078] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 04/19/2012] [Accepted: 04/21/2012] [Indexed: 05/11/2023]
Abstract
A submerged type microbial fuel cell (MFC) system, which consisted of six readily exchangeable air-cathode MFCs, was evaluated for continuous treatment of low-strength domestic wastewater. When supplied with synthetic wastewater (COD 100 mg/L), the system showed increasing maximum power densities from 191 to 754 mW/m2 as COD loading rates increased (0.20-0.40 kg/m3/day). COD removal efficiencies decreased with increased COD loading rates but the effluent COD concentrations met the relevant effluent quality standard (CODMn 20 mg/L) at all conditions. The system was then operated with domestic wastewater (c.a. 100 mg COD/L) at 0.32 and 0.43 kg/m3/day. The system showed much lower power densities (116-149 mW/m2) at both loading rates, compared to synthetic wastewater. Anodic microbial communities were completely different when the wastewater type was changed. These results suggest that the newly developed MFC system could be applied to treat low-strength domestic wastewater without requiring any additional organic removal stage.
Collapse
Affiliation(s)
- Jaecheul Yu
- Department of Civil and Environmental Engineering, Pusan National University, Busan 609-735, Republic of Korea
| | | | | | | | | |
Collapse
|
24
|
Vandieken V, Pester M, Finke N, Hyun JH, Friedrich MW, Loy A, Thamdrup B. Three manganese oxide-rich marine sediments harbor similar communities of acetate-oxidizing manganese-reducing bacteria. ISME JOURNAL 2012; 6:2078-90. [PMID: 22572639 DOI: 10.1038/ismej.2012.41] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dissimilatory manganese reduction dominates anaerobic carbon oxidation in marine sediments with high manganese oxide concentrations, but the microorganisms responsible for this process are largely unknown. In this study, the acetate-utilizing manganese-reducing microbiota in geographically well-separated, manganese oxide-rich sediments from Gullmar Fjord (Sweden), Skagerrak (Norway) and Ulleung Basin (Korea) were analyzed by 16S rRNA-stable isotope probing (SIP). Manganese reduction was the prevailing terminal electron-accepting process in anoxic incubations of surface sediments, and even the addition of acetate stimulated neither iron nor sulfate reduction. The three geographically distinct sediments harbored surprisingly similar communities of acetate-utilizing manganese-reducing bacteria: 16S rRNA of members of the genera Colwellia and Arcobacter and of novel genera within the Oceanospirillaceae and Alteromonadales were detected in heavy RNA-SIP fractions from these three sediments. Most probable number (MPN) analysis yielded up to 10(6) acetate-utilizing manganese-reducing cells cm(-3) in Gullmar Fjord sediment. A 16S rRNA gene clone library that was established from the highest MPN dilutions was dominated by sequences of Colwellia and Arcobacter species and members of the Oceanospirillaceae, supporting the obtained RNA-SIP results. In conclusion, these findings strongly suggest that (i) acetate-dependent manganese reduction in manganese oxide-rich sediments is catalyzed by members of taxa (Arcobacter, Colwellia and Oceanospirillaceae) previously not known to possess this physiological function, (ii) similar acetate-utilizing manganese reducers thrive in geographically distinct regions and (iii) the identified manganese reducers differ greatly from the extensively explored iron reducers in marine sediments.
Collapse
Affiliation(s)
- Verona Vandieken
- Nordic Center for Earth Evolution, University of Southern Denmark, Odense, Denmark.
| | | | | | | | | | | | | |
Collapse
|
25
|
Miqueletto PB, Andreote FD, Dias ACF, Ferreira JC, dos Santos Neto EV, de Oliveira VM. Cultivation-independent methods applied to the microbial prospection of oil and gas in soil from a sedimentary basin in Brazil. AMB Express 2011; 1:35. [PMID: 22018208 PMCID: PMC3282667 DOI: 10.1186/2191-0855-1-35] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 10/22/2011] [Indexed: 11/10/2022] Open
Abstract
The upper parts of oil field structures may leak gas which is supposed to be indirectly detected by the soil bacterial populations. Such microorganisms are capable of consuming this gas, supporting the Microbial Prospection of Oil and Gas (MPOG) methodology. The goal of the present work was to characterize microbial communities involved in short-chain alkane metabolism, namely methane, ethane and propane, in samples from a petroliferous (P) soil through clone libraries of the 16S rRNA gene of the Domains Bacteria and Archaea and the catabolic gene coding for the soluble di-iron monooxygenase (SDIMO) enzyme alpha subunit. The microbial community presented high abundance of the bacterial phylum Actinobacteria, which represented 53% of total clones, and the Crenarchaeota group I.1b from the Archaea Domain. The analysis of the catabolic genes revealed the occurrence of seven Operational Protein Families (OPF) and higher richness (Chao = 7; Ace = 7.5) and diversity (Shannon = 1.09) in P soil when compared with a non-petroliferous (Np) soil (Chao = 2; Ace = 0, Shannon = 0.44). Clones related to the ethene monooxygenase (EtnC) and methane monooxygenase (MmoX) coding genes occurred only in P soil, which also presented higher levels of methane and lower levels of ethane and propane, revealed by short-chain hydrocarbon measures. Real-time PCR results suggested that the SDIMO genes occur in very low abundance in the soil samples under study. Further investigations on SDIMOs genes in natural environments are necessary to unravel their still uncharted diversity and to provide reliable tools for the prospection of degrading populations.
Collapse
Affiliation(s)
- Paula B Miqueletto
- Division of Microbial Resources, Research Center for Chemistry, Biology and Agriculture (CPQBA), UNICAMP, CP 6171, CEP 13081-970, Campinas, SP, Brazil
- Biomedical Sciences Institute (ICB-IV), University of São Paulo, São Paulo, Brazil
| | - Fernando D Andreote
- Departament of Soil Sciences, ESALQ, University of São Paulo, CP 09, CEP: 13418-900, Piracicaba, SP, Brazil
| | - Armando CF Dias
- Departament of Soil Sciences, ESALQ, University of São Paulo, CP 09, CEP: 13418-900, Piracicaba, SP, Brazil
| | - Justo C Ferreira
- PETROBRAS R&D Center, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, CEP 21949-900, Brazil
| | - Eugênio V dos Santos Neto
- PETROBRAS R&D Center, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, CEP 21949-900, Brazil
| | - Valéria M de Oliveira
- Division of Microbial Resources, Research Center for Chemistry, Biology and Agriculture (CPQBA), UNICAMP, CP 6171, CEP 13081-970, Campinas, SP, Brazil
| |
Collapse
|
26
|
Giacomucci L, Bertoncello R, Salvadori O, Martini I, Favaro M, Villa F, Sorlini C, Cappitelli F. Microbial deterioration of artistic tiles from the façade of the Grande Albergo Ausonia & Hungaria (Venice, Italy). MICROBIAL ECOLOGY 2011; 62:287-298. [PMID: 21286701 DOI: 10.1007/s00248-011-9812-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 01/19/2011] [Indexed: 05/30/2023]
Abstract
The Grande Albergo Ausonia & Hungaria (Venice Lido, Italy) has an Art Nouveau polychrome ceramic coating on its façade, which was restored in 2007. Soon after the conservation treatment, many tiles of the façade decoration showed coloured alterations putatively attributed to the presence of microbial communities. To confirm the presence of the biological deposit and the stratigraphy of the Hungaria tiles, stereomicroscope, optical and environmental scanning electron microscope observations were made. The characterisation of the microbial community was performed using a PCR-DGGE approach. This study reported the first use of a culture-independent approach to identify the total community present in biodeteriorated artistic tiles. The case study examined here reveals that the coloured alterations on the tiles were mainly due to the presence of cryptoendolithic cyanobacteria. In addition, we proved that the microflora present on the tiles was generally greatly influenced by the environment of the Hungaria hotel. We found several microorganisms related to the alkaline environment, which is in the range of the tile pH, and related to the aquatic environment, the presence of the acrylic resin Paraloid B72® used during the 2007 treatment and the pollutants of the Venice lagoon.
Collapse
Affiliation(s)
- Lucia Giacomucci
- Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Nogales B, Lanfranconi MP, Piña-Villalonga JM, Bosch R. Anthropogenic perturbations in marine microbial communities. FEMS Microbiol Rev 2011; 35:275-98. [DOI: 10.1111/j.1574-6976.2010.00248.x] [Citation(s) in RCA: 229] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
28
|
Bacterioplankton diversity and community composition in the Southern Lagoon of Venice. Syst Appl Microbiol 2010; 33:128-38. [PMID: 20227843 DOI: 10.1016/j.syapm.2009.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 12/21/2009] [Accepted: 12/23/2009] [Indexed: 11/21/2022]
Abstract
The Lagoon of Venice is a large water basin that exchanges water with the Northern Adriatic Sea through three large inlets. In this study, the 16S rRNA approach was used to investigate the bacterial diversity and community composition within the southern basin of the Lagoon of Venice and at one inlet in October 2007 and June 2008. Comparative sequence analysis of 645 mostly partial 16S rRNA gene sequences indicated high diversity and dominance of Alphaproteobacteria, Gammaproteobacteria and Bacteroidetes at the lagoon as well as at the inlet station, therefore pointing to significant mixing. Many of these sequences were close to the 16S rRNA of marine, often coastal, bacterioplankton, such as the Roseobacter clade, the family Vibrionaceae, and class Flavobacteria. Sequences of Actinobacteria were indicators of a freshwater input. The composition of the bacterioplankton was quantified by catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) with a set of rRNA-targeted oligonucleotide probes. CARD-FISH counts corroborated the dominance of members of the phyla Alphaproteobacteria, Gammaproteobacteria and Bacteroidetes. When assessed by a probe set for the quantification of selected clades within Alphaproteobacteria and Gammaproteobacteria, bacterioplankton composition differed between October 2007 and June 2008, and also between the inlet and the lagoon. In particular, members of the readily culturable copiotrophic gammaproteobacterial genera Vibrio, Alteromonas and Pseudoalteromonas were enriched in the southern basin of the Lagoon of Venice. Interestingly, the alphaproteobacterial SAR11 clade and related clusters were also present in high abundances at the inlet and within the lagoon, which was indicative of inflow of water from the open sea.
Collapse
|