1
|
Schickele A, Debeljak P, Ayata SD, Bittner L, Pelletier E, Guidi L, Irisson JO. The genomic potential of photosynthesis in piconanoplankton is functionally redundant but taxonomically structured at a global scale. SCIENCE ADVANCES 2024; 10:eadl0534. [PMID: 39151014 PMCID: PMC11328907 DOI: 10.1126/sciadv.adl0534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 07/11/2024] [Indexed: 08/18/2024]
Abstract
Carbon fixation is a key metabolic function shaping marine life, but the underlying taxonomic and functional diversity involved is only partially understood. Using metagenomic resources targeted at marine piconanoplankton, we provide a reproducible machine learning framework to derive the potential biogeography of genomic functions through the multi-output regression of gene read counts on environmental climatologies. Leveraging the Marine Atlas of Tara Oceans Unigenes, we investigate the genomic potential of primary production in the global ocean. The latter is performed by ribulose-1,5-bisphosphate carboxylase/oxygenase (RUBISCO) and is often associated with carbon concentration mechanisms in piconanoplankton, major marine unicellular photosynthetic organisms. We show that the genomic potential supporting C4 enzymes and RUBISCO exhibits strong functional redundancy and important affinity toward tropical oligotrophic waters. This redundancy is taxonomically structured by the dominance of Mamiellophyceae and Prymnesiophyceae in mid and high latitudes. These findings enhance our understanding of the relationship between functional and taxonomic diversity of microorganisms and environmental drivers of key biogeochemical cycles.
Collapse
Affiliation(s)
- Alexandre Schickele
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, F-06230 Villefranche-sur-Mer, France
| | - Pavla Debeljak
- Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS, EPHE, Université des Antilles, Institut de Systématique, Evolution, Biodiversité (ISYEB), F-75005, Paris, France
- SupBiotech, Villejuif, France
| | - Sakina-Dorothée Ayata
- Sorbonne Université, CNRS, IRD, MNHN, Laboratoire d'Océanographie et du Climat, Institut Pierre Simon Laplace, LOCEAN-IPSL, F-75005 Paris, France
- Institut Universitaire de France, Paris, France
| | - Lucie Bittner
- Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS, EPHE, Université des Antilles, Institut de Systématique, Evolution, Biodiversité (ISYEB), F-75005, Paris, France
- Institut Universitaire de France, Paris, France
| | - Eric Pelletier
- Metabolic Genomics, Genoscope, Institut de Biologie François Jacob, CEA, CNRS, Université d'Evry, Université Paris Saclay, 91000 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| | - Lionel Guidi
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, F-06230 Villefranche-sur-Mer, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| | - Jean-Olivier Irisson
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, F-06230 Villefranche-sur-Mer, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| |
Collapse
|
2
|
Rey Redondo E, Xu Y, Yung CCM. Genomic characterisation and ecological distribution of Mantoniella tinhauana: a novel Mamiellophycean green alga from the Western Pacific. Front Microbiol 2024; 15:1358574. [PMID: 38774501 PMCID: PMC11106453 DOI: 10.3389/fmicb.2024.1358574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/12/2024] [Indexed: 05/24/2024] Open
Abstract
Mamiellophyceae are dominant marine algae in much of the ocean, the most prevalent genera belonging to the order Mamiellales: Micromonas, Ostreococcus and Bathycoccus, whose genetics and global distributions have been extensively studied. Conversely, the genus Mantoniella, despite its potential ecological importance, remains relatively under-characterised. In this study, we isolated and characterised a novel species of Mamiellophyceae, Mantoniella tinhauana, from subtropical coastal waters in the South China Sea. Morphologically, it resembles other Mantoniella species; however, a comparative analysis of the 18S and ITS2 marker genes revealed its genetic distinctiveness. Furthermore, we sequenced and assembled the first genome of Mantoniella tinhauana, uncovering significant differences from previously studied Mamiellophyceae species. Notably, the genome lacked any detectable outlier chromosomes and exhibited numerous unique orthogroups. We explored gene groups associated with meiosis, scale and flagella formation, shedding light on species divergence, yet further investigation is warranted. To elucidate the biogeography of Mantoniella tinhauana, we conducted a comprehensive analysis using global metagenomic read mapping to the newly sequenced genome. Our findings indicate this species exhibits a cosmopolitan distribution with a low-level prevalence worldwide. Understanding the intricate dynamics between Mamiellophyceae and the environment is crucial for comprehending their impact on the ocean ecosystem and accurately predicting their response to forthcoming environmental changes.
Collapse
Affiliation(s)
| | | | - Charmaine Cheuk Man Yung
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| |
Collapse
|
3
|
Differential global distribution of marine picocyanobacteria gene clusters reveals distinct niche-related adaptive strategies. THE ISME JOURNAL 2023; 17:720-732. [PMID: 36841901 PMCID: PMC10119275 DOI: 10.1038/s41396-023-01386-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/27/2023]
Abstract
The ever-increasing number of available microbial genomes and metagenomes provides new opportunities to investigate the links between niche partitioning and genome evolution in the ocean, especially for the abundant and ubiquitous marine picocyanobacteria Prochlorococcus and Synechococcus. Here, by combining metagenome analyses of the Tara Oceans dataset with comparative genomics, including phyletic patterns and genomic context of individual genes from 256 reference genomes, we show that picocyanobacterial communities thriving in different niches possess distinct gene repertoires. We also identify clusters of adjacent genes that display specific distribution patterns in the field (eCAGs) and are thus potentially involved in the same metabolic pathway and may have a key role in niche adaptation. Several eCAGs are likely involved in the uptake or incorporation of complex organic forms of nutrients, such as guanidine, cyanate, cyanide, pyrimidine, or phosphonates, which might be either directly used by cells, for example for the biosynthesis of proteins or DNA, or degraded to inorganic nitrogen and/or phosphorus forms. We also highlight the enrichment of eCAGs involved in polysaccharide capsule biosynthesis in Synechococcus populations thriving in both nitrogen- and phosphorus-depleted areas vs. low-iron (Fe) regions, suggesting that the complexes they encode may be too energy-consuming for picocyanobacteria thriving in the latter areas. In contrast, Prochlorococcus populations thriving in Fe-depleted areas specifically possess an alternative respiratory terminal oxidase, potentially involved in the reduction of Fe(III) to Fe(II). Altogether, this study provides insights into how phytoplankton communities populate oceanic ecosystems, which is relevant to understanding their capacity to respond to ongoing climate change.
Collapse
|
4
|
Thomy J, Sanchez F, Gut M, Cruz F, Alioto T, Piganeau G, Grimsley N, Yau S. Combining Nanopore and Illumina Sequencing Permits Detailed Analysis of Insertion Mutations and Structural Variations Produced by PEG-Mediated Transformation in Ostreococcus tauri. Cells 2021; 10:cells10030664. [PMID: 33802698 PMCID: PMC8002553 DOI: 10.3390/cells10030664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 12/13/2022] Open
Abstract
Ostreococcus tauri is a simple unicellular green alga representing an ecologically important group of phytoplankton in oceans worldwide. Modern molecular techniques must be developed in order to understand the mechanisms that permit adaptation of microalgae to their environment. We present for the first time in O. tauri a detailed characterization of individual genomic integration events of foreign DNA of plasmid origin after PEG-mediated transformation. Vector integration occurred randomly at a single locus in the genome and mainly as a single copy. Thus, we confirmed the utility of this technique for insertional mutagenesis. While the mechanism of double-stranded DNA repair in the O. tauri model remains to be elucidated, we clearly demonstrate by genome resequencing that the integration of the vector leads to frequent structural variations (deletions/insertions and duplications) and some chromosomal rearrangements in the genome at the insertion loci. Furthermore, we often observed variations in the vector sequence itself. From these observations, we speculate that a nonhomologous end-joining-like mechanism is employed during random insertion events, as described in plants and other freshwater algal models. PEG-mediated transformation is therefore a promising molecular biology tool, not only for functional genomic studies, but also for biotechnological research in this ecologically important marine alga.
Collapse
Affiliation(s)
- Julie Thomy
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France; (J.T.); (F.S.); (G.P.)
| | - Frederic Sanchez
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France; (J.T.); (F.S.); (G.P.)
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain; (M.G.); (F.C.); (T.A.)
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Fernando Cruz
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain; (M.G.); (F.C.); (T.A.)
| | - Tyler Alioto
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain; (M.G.); (F.C.); (T.A.)
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Gwenael Piganeau
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France; (J.T.); (F.S.); (G.P.)
| | - Nigel Grimsley
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France; (J.T.); (F.S.); (G.P.)
- Correspondence: (N.G.); (S.Y.)
| | - Sheree Yau
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France; (J.T.); (F.S.); (G.P.)
- Correspondence: (N.G.); (S.Y.)
| |
Collapse
|
5
|
van Lis R, Couté Y, Brugière S, Tourasse NJ, Laurent B, Nitschke W, Vallon O, Atteia A. Phylogenetic and functional diversity of aldehyde-alcohol dehydrogenases in microalgae. PLANT MOLECULAR BIOLOGY 2021; 105:497-511. [PMID: 33415608 DOI: 10.1007/s11103-020-01105-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
The study shows the biochemical and enzymatic divergence between the two aldehyde-alcohol dehydrogenases of the alga Polytomella sp., shedding light on novel aspects of the enzyme evolution amid unicellular eukaryotes. Aldehyde-alcohol dehydrogenases (ADHEs) are large metalloenzymes that typically perform the two-step reduction of acetyl-CoA into ethanol. These enzymes consist of an N-terminal acetylating aldehyde dehydrogenase domain (ALDH) and a C-terminal alcohol dehydrogenase (ADH) domain. ADHEs are present in various bacterial phyla as well as in some unicellular eukaryotes. Here we focus on ADHEs in microalgae, a diverse and polyphyletic group of plastid-bearing unicellular eukaryotes. Genome survey shows the uneven distribution of the ADHE gene among free-living algae, and the presence of two distinct genes in various species. We show that the non-photosynthetic Chlorophyte alga Polytomella sp. SAG 198.80 harbors two genes for ADHE-like enzymes with divergent C-terminal ADH domains. Immunoblots indicate that both ADHEs accumulate in Polytomella cells growing aerobically on acetate or ethanol. ADHE1 of ~ 105-kDa is found in particulate fractions, whereas ADHE2 of ~ 95-kDa is mostly soluble. The study of the recombinant enzymes revealed that ADHE1 has both the ALDH and ADH activities, while ADHE2 has only the ALDH activity. Phylogeny shows that the divergence occurred close to the root of the Polytomella genus within a clade formed by the majority of the Chlorophyte ADHE sequences, next to the cyanobacterial clade. The potential diversification of function in Polytomella spp. unveiled here likely took place after the loss of photosynthesis. Overall, our study provides a glimpse at the complex evolutionary history of the ADHE in microalgae which includes (i) acquisition via different gene donors, (ii) gene duplication and (iii) independent evolution of one of the two enzymatic domains.
Collapse
Affiliation(s)
- Robert van Lis
- Aix Marseille Université, CNRS, BIP UMR 7281, Marseille, France
- LBE, Univ Montpellier, INRAE, Narbonne, France
| | - Yohann Couté
- Univ Grenoble Alpes, CEA, INSERM, IRIG, Grenoble, BGE, France
| | - Sabine Brugière
- Univ Grenoble Alpes, CEA, INSERM, IRIG, Grenoble, BGE, France
| | - Nicolas J Tourasse
- UMR7141 CNRS-Sorbonne Université, Institut de Biologie Physico-Chimique, Paris, France
| | - Benoist Laurent
- FR 550 CNRS, Institut de Biologie Physico-Chimique, Paris, France
| | | | - Olivier Vallon
- UMR7141 CNRS-Sorbonne Université, Institut de Biologie Physico-Chimique, Paris, France
| | - Ariane Atteia
- Aix Marseille Université, CNRS, BIP UMR 7281, Marseille, France.
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Sète, France.
- MARBEC, Station Ifremer, Avenue Jean Monnet, Sète, France.
| |
Collapse
|
6
|
Derilus D, Rahman MZ, Pinero F, Massey SE. Synergism between the Black Queen effect and the proteomic constraint on genome size reduction in the photosynthetic picoeukaryotes. Sci Rep 2020; 10:8918. [PMID: 32488045 PMCID: PMC7265537 DOI: 10.1038/s41598-020-65476-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/05/2020] [Indexed: 01/01/2023] Open
Abstract
The photosynthetic picoeukaryotes (PPEs) comprise a rare example of free-living eukaryotes that have undergone genome reduction. Here, we examine a duality in the process; the proposed driver of genome reduction (the Black Queen hypothesis, BQH), and the resultant impact of genome information loss (the Proteomic Constraint hypothesis, PCH). The BQH predicts that some metabolites may be shared in the open ocean, thus driving loss of redundant metabolic pathways in individual genomes. In contrast, the PCH predicts that as the information content of a genome is reduced, the total mutation load is also reduced, leading to loss of DNA repair genes due to the resulting reduction in selective constraint. Consistent with the BQH, we observe that biosynthetic pathways involved with soluble metabolites such as amino acids and carotenoids are preferentially lost from the PPEs, in contrast to biosynthetic pathways involved with insoluble metabolites, such as lipids, which are retained. Consistent with the PCH, a correlation between proteome size and the number of DNA repair genes, and numerous other informational categories, is observed. While elevated mutation rates resulting from the loss of DNA repair genes have been linked to reduced effective population sizes in intracellular bacteria, this remains to be established. This study shows that in microbial species with large population sizes, an underlying factor in modulating their DNA repair capacity appears to be information content.
Collapse
Affiliation(s)
- D Derilus
- Environmental Sciences Department, University of Puerto Rico - Rio Piedras, San Juan, Puerto Rico
| | - M Z Rahman
- Biology Department, University of Puerto Rico - Rio Piedras, San Juan, Puerto Rico
| | - F Pinero
- Mathematics Department, University of Puerto Rico - Ponce, Ponce, Puerto Rico
| | - S E Massey
- Biology Department, University of Puerto Rico - Rio Piedras, San Juan, Puerto Rico.
| |
Collapse
|
7
|
Joo S, Wang MH, Lui G, Lee J, Barnas A, Kim E, Sudek S, Worden AZ, Lee JH. Common ancestry of heterodimerizing TALE homeobox transcription factors across Metazoa and Archaeplastida. BMC Biol 2018; 16:136. [PMID: 30396330 PMCID: PMC6219170 DOI: 10.1186/s12915-018-0605-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/25/2018] [Indexed: 12/22/2022] Open
Abstract
Background Complex multicellularity requires elaborate developmental mechanisms, often based on the versatility of heterodimeric transcription factor (TF) interactions. Homeobox TFs in the TALE superclass are deeply embedded in the gene regulatory networks that orchestrate embryogenesis. Knotted-like homeobox (KNOX) TFs, homologous to animal MEIS, have been found to drive the haploid-to-diploid transition in both unicellular green algae and land plants via heterodimerization with other TALE superclass TFs, demonstrating remarkable functional conservation of a developmental TF across lineages that diverged one billion years ago. Here, we sought to delineate whether TALE-TALE heterodimerization is ancestral to eukaryotes. Results We analyzed TALE endowment in the algal radiations of Archaeplastida, ancestral to land plants. Homeodomain phylogeny and bioinformatics analysis partitioned TALEs into two broad groups, KNOX and non-KNOX. Each group shares previously defined heterodimerization domains, plant KNOX-homology in the KNOX group and animal PBC-homology in the non-KNOX group, indicating their deep ancestry. Protein-protein interaction experiments showed that the TALEs in the two groups all participated in heterodimerization. Conclusions Our study indicates that the TF dyads consisting of KNOX/MEIS and PBC-containing TALEs must have evolved early in eukaryotic evolution. Based on our results, we hypothesize that in early eukaryotes, the TALE heterodimeric configuration provided transcription-on switches via dimerization-dependent subcellular localization, ensuring execution of the haploid-to-diploid transition only when the gamete fusion is correctly executed between appropriate partner gametes. The TALE switch then diversified in the several lineages that engage in a complex multicellular organization. Electronic supplementary material The online version of this article (10.1186/s12915-018-0605-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sunjoo Joo
- Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| | - Ming Hsiu Wang
- Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| | - Gary Lui
- Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| | - Jenny Lee
- Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| | - Andrew Barnas
- Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| | - Eunsoo Kim
- Division of Invertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, 200 Central Park West, New York, NY, 10024, USA
| | - Sebastian Sudek
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA
| | - Alexandra Z Worden
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA
| | - Jae-Hyeok Lee
- Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
8
|
Krasovec M, Eyre-Walker A, Sanchez-Ferandin S, Piganeau G. Spontaneous Mutation Rate in the Smallest Photosynthetic Eukaryotes. Mol Biol Evol 2017; 34:1770-1779. [PMID: 28379581 PMCID: PMC5455958 DOI: 10.1093/molbev/msx119] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mutation is the ultimate source of genetic variation, and knowledge of mutation rates is fundamental for our understanding of all evolutionary processes. High throughput sequencing of mutation accumulation lines has provided genome wide spontaneous mutation rates in a dozen model species, but estimates from nonmodel organisms from much of the diversity of life are very limited. Here, we report mutation rates in four haploid marine bacterial-sized photosynthetic eukaryotic algae; Bathycoccus prasinos, Ostreococcus tauri, Ostreococcus mediterraneus, and Micromonas pusilla. The spontaneous mutation rate between species varies from μ = 4.4 × 10-10 to 9.8 × 10-10 mutations per nucleotide per generation. Within genomes, there is a two-fold increase of the mutation rate in intergenic regions, consistent with an optimization of mismatch and transcription-coupled DNA repair in coding sequences. Additionally, we show that deviation from the equilibrium GC content increases the mutation rate by ∼2% to ∼12% because of a GC bias in coding sequences. More generally, the difference between the observed and equilibrium GC content of genomes explains some of the inter-specific variation in mutation rates.
Collapse
Affiliation(s)
- Marc Krasovec
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls/Mer, France
| | - Adam Eyre-Walker
- Evolution, behaviour and environment, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Sophie Sanchez-Ferandin
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls/Mer, France
| | - Gwenael Piganeau
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls/Mer, France
| |
Collapse
|
9
|
Yau S, Hemon C, Derelle E, Moreau H, Piganeau G, Grimsley N. A Viral Immunity Chromosome in the Marine Picoeukaryote, Ostreococcus tauri. PLoS Pathog 2016; 12:e1005965. [PMID: 27788272 PMCID: PMC5082852 DOI: 10.1371/journal.ppat.1005965] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 09/29/2016] [Indexed: 12/22/2022] Open
Abstract
Micro-algae of the genus Ostreococcus and related species of the order Mamiellales are globally distributed in the photic zone of world's oceans where they contribute to fixation of atmospheric carbon and production of oxygen, besides providing a primary source of nutrition in the food web. Their tiny size, simple cells, ease of culture, compact genomes and susceptibility to the most abundant large DNA viruses in the sea render them attractive as models for integrative marine biology. In culture, spontaneous resistance to viruses occurs frequently. Here, we show that virus-producing resistant cell lines arise in many independent cell lines during lytic infections, but over two years, more and more of these lines stop producing viruses. We observed sweeping over-expression of all genes in more than half of chromosome 19 in resistant lines, and karyotypic analyses showed physical rearrangements of this chromosome. Chromosome 19 has an unusual genetic structure whose equivalent is found in all of the sequenced genomes in this ecologically important group of green algae. We propose that chromosome 19 of O. tauri is specialized in defence against viral attack, a constant threat for all planktonic life, and that the most likely cause of resistance is the over-expression of numerous predicted glycosyltransferase genes. O. tauri thus provides an amenable model for molecular analysis of genome evolution under environmental stress and for investigating glycan-mediated host-virus interactions, such as those seen in herpes, influenza, HIV, PBCV and mimivirus.
Collapse
Affiliation(s)
- Sheree Yau
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM, UMR 7232), Observatoire Océanologique, Banyuls sur Mer, France
| | - Claire Hemon
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM, UMR 7232), Observatoire Océanologique, Banyuls sur Mer, France
| | - Evelyne Derelle
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM, UMR 7232), Observatoire Océanologique, Banyuls sur Mer, France
| | - Hervé Moreau
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM, UMR 7232), Observatoire Océanologique, Banyuls sur Mer, France
| | - Gwenaël Piganeau
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM, UMR 7232), Observatoire Océanologique, Banyuls sur Mer, France
| | - Nigel Grimsley
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM, UMR 7232), Observatoire Océanologique, Banyuls sur Mer, France
- * E-mail:
| |
Collapse
|
10
|
Giant viruses and the origin of modern eukaryotes. Curr Opin Microbiol 2016; 31:44-49. [PMID: 26894379 DOI: 10.1016/j.mib.2016.02.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 01/28/2023]
Abstract
Several authors have suggested that viruses from the NucleoCytoplasmic Large DNA Viruses group (NCLDV) have played an important role in the origin of modern eukaryotes. Notably, the viral eukaryogenesis theory posits that the nucleus originated from an ancient NCLDV-related virus. Focusing on the viral factory instead of the virion adds credit to this hypothesis, but also suggests alternative scenarios. Beside a role in the emergence of the nucleus, ancient NCLDV may have provided new genes and/or chromosomes to the proto-eukaryotic lineage. Phylogenetic analyses suggest that NCLDV informational proteins, related to those of Archaea and Eukarya, were either recruited by ancient NCLDV from proto-eukaryotes and/or transferred to proto-eukaryotes, in agreement with the antiquity of NCLDV and their possible role in eukaryogenesis.
Collapse
|
11
|
Clerissi C, Desdevises Y, Romac S, Audic S, de Vargas C, Acinas SG, Casotti R, Poulain J, Wincker P, Hingamp P, Ogata H, Grimsley N. Deep sequencing of amplified Prasinovirus and host green algal genes from an Indian Ocean transect reveals interacting trophic dependencies and new genotypes. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:979-989. [PMID: 26472079 DOI: 10.1111/1758-2229.12345] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 10/08/2015] [Accepted: 10/08/2015] [Indexed: 06/05/2023]
Abstract
High-throughput sequencing of Prasinovirus DNA polymerase and host green algal (Mamiellophyceae) ribosomal RNA genes was used to analyse the diversity and distribution of these taxa over a ∼10 000 km latitudinal section of the Indian Ocean. New viral and host groups were identified among the different trophic conditions observed, and highlighted that although unknown prasinoviruses are diverse, the cosmopolitan algal genera Bathycoccus, Micromonas and Ostreococcus represent a large proportion of the host diversity. While Prasinovirus communities were correlated to both the geography and the environment, host communities were not, perhaps because the genetic marker used lacked sufficient resolution. Nevertheless, analysis of single environmental variables showed that eutrophic conditions strongly influence the distributions of both hosts and viruses. Moreover, these communities were not correlated, in their composition or specific richness. These observations could result from antagonistic dynamics, such as that illustrated in a prey-predator model, and/or because hosts might be under a complex set of selective pressures. Both of these reasons must be considered to interpret environmental surveys of viruses and hosts, because covariation does not always imply interaction.
Collapse
Affiliation(s)
- Camille Clerissi
- Observatoire Océanologique, Sorbonne Universités, UPMC Univ Paris 06, Avenue du Fontaulé, 66650, Banyuls-sur-Mer, France
- Biologie Intégrative des Organismes Marins, CNRS, UMR 7232, Avenue du Fontaulé, 66650, Banyuls-sur-Mer, France
| | - Yves Desdevises
- Observatoire Océanologique, Sorbonne Universités, UPMC Univ Paris 06, Avenue du Fontaulé, 66650, Banyuls-sur-Mer, France
- Biologie Intégrative des Organismes Marins, CNRS, UMR 7232, Avenue du Fontaulé, 66650, Banyuls-sur-Mer, France
| | - Sarah Romac
- Sorbonne Universités, UPMC Univ Paris 06, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France
- Equipe Evolution du Plancton et Paleo-Ocean, CNRS, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France
| | - Stéphane Audic
- Sorbonne Universités, UPMC Univ Paris 06, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France
- Equipe Evolution du Plancton et Paleo-Ocean, CNRS, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France
| | - Colomban de Vargas
- Sorbonne Universités, UPMC Univ Paris 06, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France
- Equipe Evolution du Plancton et Paleo-Ocean, CNRS, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France
| | - Silvia G Acinas
- Department of Marine Biology and Oceanography, Institute of Marine Science (ICM), CSIC, Pg Marítim de la Barceloneta 37-49, Barcelona, Spain
| | - Raffaella Casotti
- Stazione Zoologica, Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Julie Poulain
- CEA, Institut de Génomique, Génoscope, 2 Rue Gaston Crémieux, BP5706, Evry, 91057, France
| | - Patrick Wincker
- CEA, Institut de Génomique, Génoscope, 2 Rue Gaston Crémieux, BP5706, Evry, 91057, France
| | - Pascal Hingamp
- CNRS, Université Aix-Marseille, Laboratoire Information Génomique et Structurale (UMR 7256), Mediterranean Institute of Microbiology (FR 3479), 13288, Marseille, France
| | - Hiroyuki Ogata
- Institute for Chemical Research, Kyoto University, Kyoto, 611-0011, Japan
| | - Nigel Grimsley
- Observatoire Océanologique, Sorbonne Universités, UPMC Univ Paris 06, Avenue du Fontaulé, 66650, Banyuls-sur-Mer, France
- Biologie Intégrative des Organismes Marins, CNRS, UMR 7232, Avenue du Fontaulé, 66650, Banyuls-sur-Mer, France
| |
Collapse
|
12
|
Diversity of Viruses Infecting the Green Microalga Ostreococcus lucimarinus. J Virol 2015; 89:5812-21. [PMID: 25787287 DOI: 10.1128/jvi.00246-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/06/2015] [Indexed: 01/10/2023] Open
Abstract
UNLABELLED The functional diversity of eukaryotic viruses infecting a single host strain from seawater samples originating from distant marine locations is unknown. To estimate this diversity, we used lysis plaque assays to detect viruses that infect the widespread species Ostreococcus lucimarinus, which is found in coastal and mesotrophic systems, and O. tauri, which was isolated from coastal and lagoon sites from the northwest Mediterranean Sea. Detection of viral lytic activities against O. tauri was not observed using seawater from most sites, except those close to the area where the host strain was isolated. In contrast, the more cosmopolitan O. lucimarinus species recovered viruses from locations in the Atlantic and Pacific Oceans and the Mediterranean Sea. Six new O. lucimarinus viruses (OlVs) then were characterized and their genomes sequenced. Two subgroups of OlVs were distinguished based on their genetic distances and on the inversion of a central 32-kb-long DNA fragment, but overall their genomes displayed a high level of synteny. The two groups did not correspond to proximity of isolation sites, and the phylogenetic distance between these subgroups was higher than the distances observed among viruses infecting O. tauri. Our study demonstrates that viruses originating from very distant sites are able to infect the same algal host strain and can be more diverse than those infecting different species of the same genus. Finally, distinctive features and evolutionary distances between these different viral subgroups does not appear to be linked to biogeography of the viral isolates. IMPORTANCE Marine eukaryotic phytoplankton virus diversity has yet to be addressed, and more specifically, it is unclear whether diversity is connected to geographical distance and whether differential infection and lysis patterns exist among such viruses that infect the same host strain. Here, we assessed the genetic distance of geographically segregated viruses that infect the ubiquitous green microalga Ostreococcus. This study provides the first glimpse into the diversity of predicted gene functions in Ostreococcus viruses originating from distant sites and provides new insights into potential host distributions and restrictions in the world oceans.
Collapse
|
13
|
Michely S, Toulza E, Subirana L, John U, Cognat V, Maréchal-Drouard L, Grimsley N, Moreau H, Piganeau G. Evolution of codon usage in the smallest photosynthetic eukaryotes and their giant viruses. Genome Biol Evol 2013; 5:848-59. [PMID: 23563969 PMCID: PMC3673656 DOI: 10.1093/gbe/evt053] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Prasinoviruses are among the largest viruses (>200 kb) and encode several hundreds of
protein coding genes, including most genes of the DNA replication machinery and several
genes involved in transcription and translation, as well as transfer RNAs (tRNAs). They
can infect and lyse small eukaryotic planktonic marine green algae, thereby affecting
global algal population dynamics. Here, we investigate the causes of codon usage bias
(CUB) in one prasinovirus, OtV5, and its host Ostreococcus tauri, during
a viral infection using microarray expression data. We show that 1) CUB in the host and in
the viral genes increases with expression levels and 2) optimal codons use those tRNAs
encoded by the most abundant host tRNA genes, supporting the notion of translational
optimization by natural selection. We find evidence that viral tRNA genes complement the
host tRNA pool for those viral amino acids whose host tRNAs are in short supply. We
further discuss the coevolution of CUB in hosts and prasinoviruses by comparing optimal
codons in three evolutionary diverged host–virus-specific pairs whose complete
genome sequences are known.
Collapse
Affiliation(s)
- Stephanie Michely
- UPMC Univ Paris 06, UMR7232, BIOM, Observatoire Océanologique, F-66650, Banyuls-sur-Mer, France
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Subirana L, Péquin B, Michely S, Escande ML, Meilland J, Derelle E, Marin B, Piganeau G, Desdevises Y, Moreau H, Grimsley NH. Morphology, Genome Plasticity, and Phylogeny in the Genus Ostreococcus Reveal a Cryptic Species, O. mediterraneus sp. nov. (Mamiellales, Mamiellophyceae). Protist 2013; 164:643-59. [PMID: 23892412 DOI: 10.1016/j.protis.2013.06.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 05/27/2013] [Accepted: 06/18/2013] [Indexed: 01/16/2023]
|
15
|
Álvarez S, Rodríguez F, Riobó P, Garrido JL, Vaz B. Chlorophyll cCS-170 Isolated from Ostreococcus sp. Is [7-Methoxycarbonyl-8-vinyl]protochlorophyllide a. Org Lett 2013; 15:4430-3. [DOI: 10.1021/ol4019826] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Susana Álvarez
- IBIV Instituto de Investigación Biomédica de Vigo, Universidade de Vigo, 36310 Vigo, Spain, Instituto Español de Oceanografía, Subida a Radio Faro, 50. 36390 Vigo, Spain, Instituto de Investigacións Mariñas (CSIC), Av. Eduardo Cabello 6, 36208, Vigo, Spain, and Departamento de Química Orgánica, Facultade de Química, Universidade de Vigo, 36310 Vigo, Spain
| | - Francisco Rodríguez
- IBIV Instituto de Investigación Biomédica de Vigo, Universidade de Vigo, 36310 Vigo, Spain, Instituto Español de Oceanografía, Subida a Radio Faro, 50. 36390 Vigo, Spain, Instituto de Investigacións Mariñas (CSIC), Av. Eduardo Cabello 6, 36208, Vigo, Spain, and Departamento de Química Orgánica, Facultade de Química, Universidade de Vigo, 36310 Vigo, Spain
| | - Pilar Riobó
- IBIV Instituto de Investigación Biomédica de Vigo, Universidade de Vigo, 36310 Vigo, Spain, Instituto Español de Oceanografía, Subida a Radio Faro, 50. 36390 Vigo, Spain, Instituto de Investigacións Mariñas (CSIC), Av. Eduardo Cabello 6, 36208, Vigo, Spain, and Departamento de Química Orgánica, Facultade de Química, Universidade de Vigo, 36310 Vigo, Spain
| | - José L. Garrido
- IBIV Instituto de Investigación Biomédica de Vigo, Universidade de Vigo, 36310 Vigo, Spain, Instituto Español de Oceanografía, Subida a Radio Faro, 50. 36390 Vigo, Spain, Instituto de Investigacións Mariñas (CSIC), Av. Eduardo Cabello 6, 36208, Vigo, Spain, and Departamento de Química Orgánica, Facultade de Química, Universidade de Vigo, 36310 Vigo, Spain
| | - Belén Vaz
- IBIV Instituto de Investigación Biomédica de Vigo, Universidade de Vigo, 36310 Vigo, Spain, Instituto Español de Oceanografía, Subida a Radio Faro, 50. 36390 Vigo, Spain, Instituto de Investigacións Mariñas (CSIC), Av. Eduardo Cabello 6, 36208, Vigo, Spain, and Departamento de Química Orgánica, Facultade de Química, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
16
|
Vlachakis D, Pavlopoulou A, Kazazi D, Kossida S. Unraveling microalgal molecular interactions using evolutionary and structural bioinformatics. Gene 2013; 528:109-19. [PMID: 23900196 DOI: 10.1016/j.gene.2013.07.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/08/2013] [Accepted: 07/18/2013] [Indexed: 10/26/2022]
Abstract
Microalgae are unicellular microorganisms indispensible for environmental stability and life on earth, because they produce approximately half of the atmospheric oxygen, with simultaneously feeding on the harmful greenhouse gas carbon dioxide. Using gene fusion analysis, a series of five fusion/fission events was identified, that provided the basis for critical insights to their evolutionary history. Moreover, the three-dimensional structures of both the fused and the component proteins were predicted, allowing us to envisage putative protein-protein interactions that are invaluable for the efficient usage, handling and exploitation of microalgae. Collectively, our proposed approach on the five fusion/fission alga protein events contributes towards the expansion of the microalgae knowledgebase, bridging protein evolution of the ancient microalgal species and the rapidly evolving, modern, bioinformatics field.
Collapse
Affiliation(s)
- Dimitrios Vlachakis
- Bioinformatics & Medical Informatics Team, Biomedical Research Foundation, Academy of Athens, Soranou Efessiou 4, Athens 11527, Greece
| | | | | | | |
Collapse
|
17
|
Forterre P, Prangishvili D. The major role of viruses in cellular evolution: facts and hypotheses. Curr Opin Virol 2013; 3:558-65. [PMID: 23870799 DOI: 10.1016/j.coviro.2013.06.013] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 06/13/2013] [Accepted: 06/22/2013] [Indexed: 01/18/2023]
Abstract
Viral particles are much more abundant than cells and viral genes outnumber cellular ones in the biosphere. Cellular genomes also harbour many integrated viruses whereas cellular genes are rare in viral genomes. The gene flux from virus to cell is thus overwhelming if compared with the opposite event. Novel viral genes continuously arose during replication/recombination of viral genomes in the virocell. These genes can become 'cellular genes' when viral genomes integrate into cellular ones. Together with the arm race between viruses and cells, this explains why viruses have played a major role in shaping cellular gene contents. Several documented cases show that viruses have been involved in the emergence of evolutionary innovations. This gives credit to hypotheses suggesting that viruses have played an important role in the formation of modern cells.
Collapse
Affiliation(s)
- Patrick Forterre
- Institut Pasteur, 25 rue du Docteur Roux, Paris 75015, France; Univ Paris-Sud, CNRS UMR8621, Orsay Cedex 91405, France.
| | | |
Collapse
|
18
|
Terrado R, Scarcella K, Thaler M, Vincent WF, Lovejoy C. Small phytoplankton in Arctic seas: vulnerability to climate change. ACTA ACUST UNITED AC 2013. [DOI: 10.1080/14888386.2012.704839] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Moreau H, Verhelst B, Couloux A, Derelle E, Rombauts S, Grimsley N, Van Bel M, Poulain J, Katinka M, Hohmann-Marriott MF, Piganeau G, Rouzé P, Da Silva C, Wincker P, Van de Peer Y, Vandepoele K. Gene functionalities and genome structure in Bathycoccus prasinos reflect cellular specializations at the base of the green lineage. Genome Biol 2012; 13:R74. [PMID: 22925495 PMCID: PMC3491373 DOI: 10.1186/gb-2012-13-8-r74] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 08/24/2012] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Bathycoccus prasinos is an extremely small cosmopolitan marine green alga whose cells are covered with intricate spider's web patterned scales that develop within the Golgi cisternae before their transport to the cell surface. The objective of this work is to sequence and analyze its genome, and to present a comparative analysis with other known genomes of the green lineage. RESEARCH Its small genome of 15 Mb consists of 19 chromosomes and lacks transposons. Although 70% of all B. prasinos genes share similarities with other Viridiplantae genes, up to 428 genes were probably acquired by horizontal gene transfer, mainly from other eukaryotes. Two chromosomes, one big and one small, are atypical, an unusual synapomorphic feature within the Mamiellales. Genes on these atypical outlier chromosomes show lower GC content and a significant fraction of putative horizontal gene transfer genes. Whereas the small outlier chromosome lacks colinearity with other Mamiellales and contains many unknown genes without homologs in other species, the big outlier shows a higher intron content, increased expression levels and a unique clustering pattern of housekeeping functionalities. Four gene families are highly expanded in B. prasinos, including sialyltransferases, sialidases, ankyrin repeats and zinc ion-binding genes, and we hypothesize that these genes are associated with the process of scale biogenesis. CONCLUSION The minimal genomes of the Mamiellophyceae provide a baseline for evolutionary and functional analyses of metabolic processes in green plants.
Collapse
|
20
|
Domozych DS, Ciancia M, Fangel JU, Mikkelsen MD, Ulvskov P, Willats WGT. The Cell Walls of Green Algae: A Journey through Evolution and Diversity. FRONTIERS IN PLANT SCIENCE 2012; 3:82. [PMID: 22639667 PMCID: PMC3355577 DOI: 10.3389/fpls.2012.00082] [Citation(s) in RCA: 208] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 04/12/2012] [Indexed: 05/18/2023]
Abstract
The green algae represent a large group of morphologically diverse photosynthetic eukaryotes that occupy virtually every photic habitat on the planet. The extracellular coverings of green algae including cell walls are also diverse. A recent surge of research in green algal cell walls fueled by new emerging technologies has revealed new and critical insight concerning these coverings. For example, the late divergent taxa of the Charophycean green algae possess cell walls containing assemblages of polymers with notable similarity to the cellulose, pectins, hemicelluloses, arabinogalactan proteins (AGPs), extensin, and lignin present in embryophyte walls. Ulvophycean seaweeds have cell wall components whose most abundant fibrillar constituents may change from cellulose to β-mannans to β-xylans and during different life cycle phases. Likewise, these algae produce complex sulfated polysaccharides, AGPs, and extensin. Chlorophycean green algae produce a wide array of walls ranging from cellulose-pectin complexes to ones made of hydroxyproline-rich glycoproteins. Larger and more detailed surveys of the green algal taxa including incorporation of emerging genomic and transcriptomic data are required in order to more fully resolve evolutionary trends within the green algae and in relationship with higher plants as well as potential applications of wall components in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- David S. Domozych
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore CollegeSaratoga Springs, NY, USA
| | - Marina Ciancia
- Cátedra de Química de Biomoléculas, Departamento de Biología Aplicada y Alimentos, Facultad de Agronomía, Universidad de Buenos AiresBuenos Aires, Argentina
| | - Jonatan U. Fangel
- Department of Plant Biology and Biochemistry, Faculty of Life Sciences, University of CopenhagenFrederiksberg, Denmark
| | - Maria Dalgaard Mikkelsen
- Department of Plant Biology and Biochemistry, Faculty of Life Sciences, University of CopenhagenFrederiksberg, Denmark
| | - Peter Ulvskov
- Department of Plant Biology and Biochemistry, Faculty of Life Sciences, University of CopenhagenFrederiksberg, Denmark
| | - William G. T. Willats
- Department of Plant Biology and Biochemistry, Faculty of Life Sciences, University of CopenhagenFrederiksberg, Denmark
| |
Collapse
|