1
|
Li Y, Pu R, Zhang Y, Zhang Y, Wei Y, Zeng S, Gao C, Wang Y, Yin D, Zhang Y, Wan J, Zou Q, Gu J. Self-assembled ferritin nanoparticles displaying PcrV and OprI as an adjuvant-free Pseudomonas aeruginosa vaccine. Front Immunol 2023; 14:1184863. [PMID: 37415986 PMCID: PMC10321299 DOI: 10.3389/fimmu.2023.1184863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/12/2023] [Indexed: 07/08/2023] Open
Abstract
Introduction Serious infections of Pseudomonas aeruginosa (PA) in hospitals and the emergence and increase of multidrug resistance have raised an urgent need for effective vaccines. However, no vaccine has been approved to date. One possible reason for this is the limited immune response due to the lack of an efficient delivery system. Self-assembled ferritin nanoparticles are good carriers of heterogeneous antigens, which enhance the activation of immunological responses. Methods In this study, two well-studied antigen candidates, PcrV and OprI, were selected and connected to the ferritin nanoparticle by the Spytag/SpyCatcher system to generate the nanovaccine rePO-FN. Results Compared to recombinant PcrV-OprI formulated with aluminum adjuvants, intramuscular immunization with adjuvant-free rePO-FN induced quick and efficient immunity and conferred protection against PA pneumonia in mice. In addition, intranasal immunization with adjuvant-free rePO-FN enhanced protective mucosal immunity. Moreover, rePO-FN exhibited good biocompatibility and safety. Discussion Our results suggest that rePO-FN is a promising vaccine candidate, as well as, provide additional evidence for the success of ferritin-based nanovaccines.
Collapse
Affiliation(s)
- Yuhang Li
- College of Pharmacy, Dali University, Dali, China
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, China
| | - Ruixue Pu
- The Third Outpatient Department, The General Hospital of Western Theater Command, Chengdu, China
| | - Yi Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, China
| | - Yiwen Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, China
| | - Yujie Wei
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, China
| | - Sheng Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, China
| | - Chen Gao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, China
| | - Ying Wang
- 953th Hospital, Xinqiao Hospital, Army Medical University, Shigatse, China
| | - Daijiajia Yin
- Health Management Center, PLA Hangzhou Sanatorium, Hangzhou, China
| | - Yueyue Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, China
| | - Jiqing Wan
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, China
| | - Quanming Zou
- College of Pharmacy, Dali University, Dali, China
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, China
| | - Jiang Gu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, China
| |
Collapse
|
2
|
Grosse C, Brandt N, Van Antwerpen P, Wintjens R, Matthijs S. Two new siderophores produced by Pseudomonas sp. NCIMB 10586: The anti-oomycete non-ribosomal peptide synthetase-dependent mupirochelin and the NRPS-independent triabactin. Front Microbiol 2023; 14:1143861. [PMID: 37032897 PMCID: PMC10080011 DOI: 10.3389/fmicb.2023.1143861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/02/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Globisporangium ultimum is an oomycetal pathogen causing damping-off on over 300 different plant hosts. Currently, as for many phytopathogens, its control relies in the use of chemicals with negative impact on health and ecosystems. Therefore, many biocontrol strategies are under investigation to reduce the use of fungicides. Results In this study, the soil bacterium Pseudomonas sp. NCIMB 10586 demonstrates a strong iron-repressed in vitro antagonism against G. ultimum MUCL 38045. This antagonism does not depend on the secretion of the broad-range antibiotic mupirocin or of the siderophore pyoverdine by the bacterial strain. The inhibitor molecule was identified as a novel non-ribosomal peptide synthetase (NRPS) siderophore named mupirochelin. Its putative structure bears similarities to other siderophores and bioactive compounds. The transcription of its gene cluster is affected by the biosynthesis of pyoverdine, the major known siderophore of the strain. Besides mupirochelin, we observed the production of a third and novel NRPS-independent siderophore (NIS), here termed triabactin. The iron-responsive transcriptional repression of the two newly identified siderophore gene clusters corroborates their role as iron scavengers. However, their respective contributions to the strain fitness are dissimilar. Bacterial growth in iron-deprived conditions is greatly supported by pyoverdine production and, to a lesser extent, by triabactin. On the contrary, mupirochelin does not contribute to the strain fitness under the studied conditions. Conclusion Altogether, we have demonstrated here that besides pyoverdine, Pseudomonas sp. NCIMB 10586 produces two newly identified siderophores, namely mupirochelin, a weak siderophore with strong antagonism activity against G. ultimum, and the potent siderophore triabactin.
Collapse
Affiliation(s)
- Camille Grosse
- Unité de Recherche NaturaMonas, Institut de Recherche LABIRIS, Brussels, Belgium
| | - Nathalie Brandt
- Unité de Recherche NaturaMonas, Institut de Recherche LABIRIS, Brussels, Belgium
| | - Pierre Van Antwerpen
- RD3 – Pharmacognosy, Bioanalysis and Drug Discovery and Analytical Platform of the Faculty of Pharmacy, Université Libre de Bruxelles, Brussels, Belgium
| | - René Wintjens
- Unité Microbiologie, Chimie Bioorganique et Macromoléculaire, Department of Research in Drug Development (RD3), Faculty of Pharmacy, Université Libre de Bruxelles, Brussels, Belgium
| | - Sandra Matthijs
- Unité de Recherche NaturaMonas, Institut de Recherche LABIRIS, Brussels, Belgium
- *Correspondence: Sandra Matthijs,
| |
Collapse
|
3
|
Tran NBV, Truong QM, Nguyen LQA, Nguyen NMH, Tran QH, Dinh TTP, Hua VS, Nguyen VD, Lambert PA, Nguyen TTH. Prevalence and Virulence of Commensal Pseudomonas Aeruginosa Isolates from Healthy Individuals in Southern Vietnam (2018-2020). Biomedicines 2022; 11:biomedicines11010054. [PMID: 36672562 PMCID: PMC9855430 DOI: 10.3390/biomedicines11010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Understanding the colonization of Pseudomonas aeruginosa (P. aeruginosa) in healthy humans is useful for future prevention and treatment of P. aeruginosa infection. This study aimed to investigate the prevalence and risk factors of of P. aeruginosa colonization in healthy humans. At the same time, the virulence of the isolated P. aeruginosa was also studied. In the study, 609 Vietnamese volunteers (310 females and 299 males, age range of 2 to 73 years), who had no acute infection or disease symptoms participated at the time of sample collection. Samples were taken from the throat, nostrils, and outer ears. P. aeruginosa was found in 19 participants (3.12%, 95% CI: 0.017−0.045), mainly from the throat (11/19, 57.89%). Participants with a history of sinusitis were 11.57 times more likely to be colonized with P. aeruginosa than participants without a history of sinusitis (OR: 11.57, 95% CI: 4.08−32.76, p-value < 0.0001, Fisher’s Exact test). Age and sex were not significantly associated with P. aeruginosa colonization. Among 16 P. aeruginosa isolates used in virulence tests, 100% (16/16) were positive for the synthesis of biofilm, pyocyanin, and siderophores; 93.75% (15/16) isolates were positive for the synthesis of gelatinase and protease; and 50% (8/16) isolates were positive for lipase. There were no differences in the pattern and range of virulence factors of P. aeruginosa isolates taken from participants with and without sinusitis history. P. aeruginosa colonized 3.12% of participants, and its presence was associated with sinusitis history.
Collapse
Affiliation(s)
- Nguyen Bao Vy Tran
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Quang Minh Truong
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Lam Que Anh Nguyen
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Ngoc My Huong Nguyen
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Quang Hung Tran
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Thi Tuyet Phuong Dinh
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Vinh Son Hua
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Van Dung Nguyen
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Peter A. Lambert
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Thi Thu Hoai Nguyen
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
- Research Center for Infectious Diseases, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
- Correspondence:
| |
Collapse
|
4
|
Najafpour B, Pinto PIS, Canario AVM, Power DM. Quantifying dominant bacterial genera detected in metagenomic data from fish eggs and larvae using genus-specific primers. Microbiologyopen 2022; 11:e1274. [PMID: 35765179 PMCID: PMC9055463 DOI: 10.1002/mbo3.1274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/05/2022] [Indexed: 12/03/2022] Open
Abstract
The goal of this study was to design genus-specific primers for rapid evaluation of the most abundant bacterial genera identified using amplicon-based sequencing of the 16S rRNA gene in fish-related samples and surrounding water. Efficient genus-specific primers were designed for 11 bacterial genera including Alkalimarinus, Colwellia, Enterovibrio, Marinomonas, Massilia, Oleispira, Phaeobacter, Photobacterium, Polarbacerium, Pseudomonas, and Psychrobium. The specificity of the primers was confirmed by the phylogeny of the sequenced polymerase chain reaction (PCR) amplicons that indicated primers were genus-specific except in the case of Colwellia and Phaeobacter. Copy number of the 16S rRNA gene obtained by quantitative PCR using genus-specific primers and the relative abundance obtained by 16S rRNA gene sequencing using universal primers were well correlated for the five analyzed abundant bacterial genera. Low correlations between quantitative PCR and 16S rRNA gene sequencing for Pseudomonas were explained by the higher coverage of known Pseudomonas species by the designed genus-specific primers than the universal primers used in 16S rRNA gene sequencing. The designed genus-specific primers are proposed as rapid and cost-effective tools to evaluate the most abundant bacterial genera in fish-related or potentially other metagenomics samples.
Collapse
Affiliation(s)
- Babak Najafpour
- Centro de Ciências do Mar (CCMAR/CIMAR)Universidade do AlgarveFaroPortugal
| | - Patricia I. S. Pinto
- Centro de Ciências do Mar (CCMAR/CIMAR)Universidade do AlgarveFaroPortugal
- International Center for Marine StudiesShanghai Ocean UniversityShanghaiChina
| | - A. V. M. Canario
- Centro de Ciências do Mar (CCMAR/CIMAR)Universidade do AlgarveFaroPortugal
- International Center for Marine StudiesShanghai Ocean UniversityShanghaiChina
| | - Deborah M. Power
- Centro de Ciências do Mar (CCMAR/CIMAR)Universidade do AlgarveFaroPortugal
| |
Collapse
|
5
|
Mulet M, Duman M, Altun S, Saticioglu IB, Gomila M, Matthijs S, Lalucat J, García-Valdés E. Pseudomonas arcuscaelestis sp. nov., isolated from rainbow trout and water. Int J Syst Evol Microbiol 2021; 71. [PMID: 34242155 DOI: 10.1099/ijsem.0.004860] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cells of strains P66T, V1 and W15Feb18 are Gram-stain-negative short rods and motile by one polar flagellum. Strain P66T was isolated from rainbow trout (Oncorhynchus mykiss) cultivated at a fish farm in Turkey. Strain V1 was isolated from sand of an intertidal shore on the Galicia coast in Spain and strain W15Feb18 was isolated from water collected at the Woluwe River in Belgium. Based on 16S rRNA sequence similarity values, the strains were grouped under the genus Pseudomonas and the Pseudomonas putida phylogenetic group of species. The DNA G+C content ranged from 58.5 to 58.9 mol%. The strains were characterized phenotypically by the API 20NE and Biolog GEN III tests, and chemotaxonomically by their whole-cell MALDI-TOF MS protein profiles and fatty acid contents. The absence of the hydrolysis of gelatin and the assimilation of arabinose, mannose and mannitol differentiated these strains from the closest species, Pseudomonas alkylphenolica. The major fatty acid components were C16:0 (29.91-31.68 %) and summed feature 3 (36.44-37.55 %). Multilocus sequence analysis with four and 83 housekeeping gene sequences and a core proteome analysis showed that these strains formed a phylogenetic cluster in the P. putida group of species. Genome comparisons by the average nucleotide identity based on blast and the Genome-to-Genome Distance Calculator demonstrated that the three strains belonged to the same genomic species and were distant from any known species, with similarity values lower than the thresholds established for species in the genus Pseudomonas. These data permitted us to conclude that strains P66T, V1 and W15Feb18 belong to a novel species in the genus Pseudomonas, for which the name Pseudomonas arcuscaelestis sp. nov. is proposed. The type strain is P66T (=CECT 30176T=CCUG 74872T). The other strains have been deposited in the CECT with the corresponding collection numbers: V1 (=CECT 30356) and W15Feb18 (=CECT 30355).
Collapse
Affiliation(s)
- Magdalena Mulet
- Microbiologia, Departament de Biologia, Edifici Guillem Colom, Universitat de les Illes Balears, Campus UIB, 07122 Palma de Mallorca, Spain
| | - Muhammed Duman
- Department of Aquatic Animal Diseases, Bursa Uludag University, 16059, Bursa, Turkey
| | - Soner Altun
- Department of Aquatic Animal Diseases, Bursa Uludag University, 16059, Bursa, Turkey
| | - Izzet Burcin Saticioglu
- Department of Aquatic Animal Diseases, Faculty of Veterinary Medicine, Erciyes University, 38280, Kayseri, Turkey
| | - Margarita Gomila
- Microbiologia, Departament de Biologia, Edifici Guillem Colom, Universitat de les Illes Balears, Campus UIB, 07122 Palma de Mallorca, Spain
| | - Sandra Matthijs
- Institut de recherche LABIRIS, Avenue Emile Gryzon, 1 - 1070 Bruxelles, Belgium
| | - Jorge Lalucat
- Microbiologia, Departament de Biologia, Edifici Guillem Colom, Universitat de les Illes Balears, Campus UIB, 07122 Palma de Mallorca, Spain.,Institut Mediterrani d'Estudis Avançats (IMEDEA, CSIC-UIB), Campus UIB, 07122 Palma de Mallorca, Spain
| | - Elena García-Valdés
- Microbiologia, Departament de Biologia, Edifici Guillem Colom, Universitat de les Illes Balears, Campus UIB, 07122 Palma de Mallorca, Spain.,Institut Mediterrani d'Estudis Avançats (IMEDEA, CSIC-UIB), Campus UIB, 07122 Palma de Mallorca, Spain
| |
Collapse
|
6
|
Antibiogram profile and virulence signatures of Pseudomonas aeruginosa isolates recovered from selected agrestic hospital effluents. Sci Rep 2021; 11:11800. [PMID: 34083705 PMCID: PMC8175747 DOI: 10.1038/s41598-021-91280-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/24/2021] [Indexed: 02/04/2023] Open
Abstract
Hospital wastewater (HWW) harbours diverse microbial species and a miscellany of genome that would facilitate the emergence of novel pathogen upon genome integration that manifests novel traits in infectious pathogens. The study aimed to determine the antibiogram, and virulence signatures of Pseudomonas aeruginosa (P. aeruginosa) recovered from selected agrestic hospital effluents in Eastern Cape, South Africa. Thirty-six (36) wastewater samples were collected from selected hospital drains between February 2018 and April 2018, processed and analyzed by culture-dependent methods for the isolation of P. aeruginosa. The identity confirmation of isolates was achieved by amplification of oprl and oprL genes. Antibiogram was done using standard disk diffusion technique of Kirby-Bauer as approved by CLSI 2018 guidelines. Virulence signatures (lasA, lasB, toxA, popB) among isolates were analysed using polymerase chain reaction. A total of 54 P. aeruginosa isolates were confirmed by amplification of oprl and oprL genes in the hospital wastewater effluent samples. The isolates showed a 100% susceptibility to gentamicin, amikacin and imipenem antimicrobial agents. Ceftazidime recorded the most resistance (63%) against the isolates studied. Other antibiotics had a resistance range of 7% and 35%. The MAR index among the isolates revealed a range of 0.23 and 0.38. ToxA virulence gene was detected in all isolates while popB, lasB, lasA were detected in 82%, 75% and 54% of the isolates. This study reveals P. aeruginosa isolates with virulence traits and some strains showing multiple antibiotic resistance. The multiple antibiotic resistance index (MARI) of ≥ 0.2 indicates that the some isolates may have emerged from high-risk sources, thus projecting a risk to public health. However, with the high sensitivity pattern observed among the studied isolates, most of the antibiotics used in the susceptibility tests are not at peril. Hence, the use of these antibiotics is encouraged for treatment of infection attributed to P. aeruginosa. It is also pertinent to initiate strict control and rigid antibiotics therapeutic policy with surveillance programmes for multidrug-resistant pathogens to forestall the development and transmission of resistance traits in the pathogens.
Collapse
|
7
|
Baskaran SM, Zakaria MR, Mukhlis Ahmad Sabri AS, Mohamed MS, Wasoh H, Toshinari M, Hassan MA, Banat IM. Valorization of biodiesel side stream waste glycerol for rhamnolipids production by Pseudomonas aeruginosa RS6. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116742. [PMID: 33621735 DOI: 10.1016/j.envpol.2021.116742] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 02/06/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Biodiesel side stream waste glycerol was identified as a cheap carbon source for rhamnolipids (RLs) production which at the same time could improve the management of waste. The present study aimed to produce RLs by using Pseudomonas aeruginosa RS6 utilizing waste glycerol as a substrate and to evaluate their physico-chemicals properties. Fermentation conditions such as temperature, initial medium pH, waste glycerol concentration, nitrogen sources and concentrations resulted in different compositions of the mono- and di-RLs produced. The maximum RLs production of 2.73 g/L was obtained when P. aeruginosa RS6 was grown in a basal salt medium supplemented with 1% waste glycerol and 0.2 M sodium nitrate at 35 °C and pH 6.5. At optimal fermentation conditions, the emulsification index (E24) values of cooking oil, diesel oil, benzene, olive oil, petroleum, and kerosene were all above E24=50%. The surface tension reduction obtained from 72.13 mN/m to 29.4-30.4 mN/m was better than the surface activity of some chemical-based surfactants. The RLs produced possessed antimicrobial activities against Gram-negative and Gram-positive bacteria with values ranging from 37% to 77% of growth inhibition when 1 mg/mL of RLs was used. Concentrations of RLs below 1500 μg/mL did not induce phytotoxicity effects on the tested seeds (Vigna radiata) compared to the chemical-based- surfactant, SDS. Furthermore, RLs tested on zebrafish (Danio rerio) embryos only exhibited low acute toxicity with an LC50 value of 72.97 μg/mL at 48 h of exposure suggesting a green and eco-biochemical worthy of future applications to replace chemical-based surfactants.
Collapse
Affiliation(s)
- Shobanah Menon Baskaran
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Mohd Rafein Zakaria
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Laboratory of Processing and Product Development, Institute of Plantation Studies, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| | - Ahmad Syafiq Mukhlis Ahmad Sabri
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Mohd Shamzi Mohamed
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Helmi Wasoh
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Maeda Toshinari
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu, 808-0196, Japan
| | - Mohd Ali Hassan
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Laboratory of Processing and Product Development, Institute of Plantation Studies, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Ibrahim M Banat
- School of Biomedical Sciences, Faculty of Life and Health Sciences, University of Ulster, Coleraine BT52 1SA, Northern Ireland, UK
| |
Collapse
|
8
|
Duman M, Mulet M, Saticioglu IB, Altun S, Gomila M, Lalucat J, García-Valdés E. Pseudomonas sivasensis sp. nov. isolated from farm fisheries in Turkey. Syst Appl Microbiol 2020; 43:126103. [PMID: 32690194 DOI: 10.1016/j.syapm.2020.126103] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 10/24/2022]
Abstract
A study of 91 isolates from fish farms in Turkey showed that isolates P7T, P11, P24b, P29, P72, P73 and P158 belonged to the genus Pseudomonas according to 16S rRNA nucleotide sequence analysis. The analysis of the sequences of the RNA polymerase sigma factor gene (rpoD) located these strains in the Pseudomonas fluorescens lineage of species within the P. fluorescens subgroup, close to the cluster composed of the species Pseudomonas grimontii, Pseudomonas marginalis and Pseudomonas panacis. Based on similarities in the 16S rRNA and rpoD gene sequences of three previously isolated strains from other origins (CCUG 57209, CCUG 62357 and W5.2-93) linked them to the same cluster. A polyphasic taxonomic approach including phenotypic characterization, fatty acid composition, and multilocus sequence analysis, together with whole-cell MALDI-TOF data, corroborated this assumption. The genome G+C mol% contents were 59.48 and 59.71, respectively. The average nucleotide indices based on BLAST analysis and the genome-to-genome distance calculation for the P7T and CCUG 57209 strains with their closest relative, P. grimontii, were 88.16-88.29% and 38.10-38.20%, respectively. These data confirm that isolates P7T, P11, P24b, P29, P72, P73, P158, CCUG 57209, CCUG 62357 and W5.2-93 represent a new species for which the name Pseudomonas sivasensis is proposed, with P7T as a type strain (=CCUG 74260T= and CECT30107T).
Collapse
Affiliation(s)
- Muhammed Duman
- Department of Aquatic Animals Disease, Faculty of Veterinary Medicine, Bursa Uludag University, 16059 Bursa, Turkey
| | - Magdalena Mulet
- Microbiologia, Departament de Biologia, Edifici Guillem Colom, Universitat de les Illes Balears, Campus UIB, 07122 Palma de Mallorca, Spain
| | - Izzet Burcin Saticioglu
- Department of Aquatic Animal Disease, Faculty of Veterinary Medicine, Erciyes University, 38280 Kayseri, Turkey
| | - Soner Altun
- Department of Aquatic Animals Disease, Faculty of Veterinary Medicine, Bursa Uludag University, 16059 Bursa, Turkey
| | - Margarita Gomila
- Microbiologia, Departament de Biologia, Edifici Guillem Colom, Universitat de les Illes Balears, Campus UIB, 07122 Palma de Mallorca, Spain
| | - Jorge Lalucat
- Microbiologia, Departament de Biologia, Edifici Guillem Colom, Universitat de les Illes Balears, Campus UIB, 07122 Palma de Mallorca, Spain; Institut Mediterrani d'Estudis Avançats (IMEDEA, CSIC-UIB), Campus UIB, 07122 Palma de Mallorca, Spain
| | - Elena García-Valdés
- Microbiologia, Departament de Biologia, Edifici Guillem Colom, Universitat de les Illes Balears, Campus UIB, 07122 Palma de Mallorca, Spain; Institut Mediterrani d'Estudis Avançats (IMEDEA, CSIC-UIB), Campus UIB, 07122 Palma de Mallorca, Spain.
| |
Collapse
|
9
|
Michalsen MM, King AS, Istok JD, Crocker FH, Fuller ME, Kucharzyk KH, Gander MJ. Spatially-distinct redox conditions and degradation rates following field-scale bioaugmentation for RDX-contaminated groundwater remediation. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:121529. [PMID: 31911385 DOI: 10.1016/j.jhazmat.2019.121529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 10/10/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
In situ bioaugmentation for cleanup of an hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)-contaminated groundwater plume was recently demonstrated. Results of a forced-gradient, field-scale cell transport test with Gordonia sp. KTR9 and Pseudomonas fluorescens strain I-C cells (henceforth "KTR9" and "Strain I-C") showed these strains were transported 13 m downgradient over 1 month. Abundances of xplA and xenB genes, respective indicators of KTR9 and Strain I-C, approached injection well cell densities at 6 m downgradient, whereas gene abundances (and conservative tracer) had begun to increase at 13 m downgradient at test conclusion. In situ push-pull tests were subsequently completed to measure RDX degradation rates in the bioaugmented wells under ambient gradient conditions. Time-series monitoring of RDX, RDX end-products, conservative tracer, xplA and xenB gene copy numbers and XplA and XenB protein abundance were used to assess the efficacy of bioaugmentation and to estimate the apparent first-order RDX degradation rates during each test. A collective evaluation of redox conditions, RDX end-products, varied RDX degradation kinetics, and biomarkers indicated that Strain I-C and KTR9 rapidly degraded RDX. Results showed bioaugmentation is a viable technology for accelerating RDX cleanup in the demonstration site aquifer and may be applicable to other sites. Full-scale implementation considerations are discussed.
Collapse
Affiliation(s)
- M M Michalsen
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS 39180, United States.
| | - A S King
- U.S. Army Corps of Engineers, Seattle District, Seattle, WA 98134, United States
| | - J D Istok
- School of Civil and Construction Engineering, Oregon State University, Corvallis, OR 97331, United States
| | - F H Crocker
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS 39180, United States
| | - M E Fuller
- Aptim Federal Services, Lawrenceville, NJ 08648, United States
| | - K H Kucharzyk
- Battelle Memorial Institute, 505 King Ave, Columbus, OH, 43201, United States
| | - M J Gander
- Naval Facilities Engineering Command, Northwest, 1101 Tautog Circle, Silverdale, WA 98113, United States
| |
Collapse
|
10
|
Li Y, Qiu Y, Ye C, Chen L, Liang Y, Liu G, Liu J. High-flux simultaneous screening of common foodborne pathogens and their virulent factors. Bioprocess Biosyst Eng 2020; 43:693-700. [PMID: 31863186 DOI: 10.1007/s00449-019-02267-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/30/2019] [Indexed: 02/05/2023]
Abstract
Rapid and sensitive detection techniques for foodborne pathogens are important to the food industry. However, traditional detection methods rely on bacterial culture in combination with biochemical tests, a process that typically takes 4-7 days to complete. In this study, we described a high-flux polymerase chain reaction (PCR) method for simultaneous detection of nine targeted genes (rfbE, stx1, stx2, invA, oprI, tlh, trh, tdh, and hlyA) with multiplex strains. The designed primers were highly specific for their respective target gene fragments. As the selected primers follow the principles of similar melting and annealing temperature, all the targeted genes could be detected for one strain with the same PCR program. Combining with 96-well PCR plate, by adding a single different gene to each well in each row, both the ATCC strains (E. coli, Salmonella spp., V. parahaemolyticus, L. monocytogenes, P. aeruginosa, S. aureus) and the clinical strains (E. coli, P. aeruginosa, S. aureus) were simultaneously detected to carry their specific and virulence genes. Therefore, using 96-well PCR plate for PCR amplification might be applied to high-flux sequencing of specific and virulence genes.
Collapse
Affiliation(s)
- Yanmei Li
- Department of Haematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yisen Qiu
- Department of Spine Surgery, The Second Affiliated Hospital of Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong, China
| | - Congxiu Ye
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510640, China
| | - Ling Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China
| | - Yi Liang
- Guangdong Zhongqing Font Biochemical Science and Technology Co. Ltd, Maoming, 525427, Guangdong, China
| | - Guoxing Liu
- Guangzhou KEO Biotechnology Co. LTD, Guangzhou, Guangdong, China.
| | - Junyan Liu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
11
|
Murahari EC, West TP. The pyrimidine biosynthetic pathway and its regulation in Pseudomonas jessenii. Antonie van Leeuwenhoek 2018; 112:461-469. [PMID: 30251112 DOI: 10.1007/s10482-018-1168-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/17/2018] [Indexed: 11/29/2022]
Abstract
The control of the pyrimidine biosynthetic pathway by pyrimidine bases was examined in Pseudomonas jessenii ATCC 700870. The pyrimidine biosynthetic enzymes aspartate transcarbamoylase, dihydroorotase, dihydroorotate dehydrogenase, orotate phosphoribosyltransferase, and orotidine 5'-monophosphate (OMP) decarboxylase activities were found to be higher in the succinate-grown ATCC 700870 cells than the glucose-grown cells. All the enzyme activities were depressed in uracil-supplemented ATCC 700870 glucose-grown cells relative to the unsupplemented cells which was indicative of possible repression of enzyme synthesis by uracil. In the succinate-grown, ATCC 700870 cells, transcarbamoylase, dihydroorotase and dehydrogenase activities were decreased by uracil and orotate supplementation while decarboxylase activity was decreased following uracil addition. A pyrimidine auxotroph was isolated by conventional chemical mutagenesis and resistance to 5-fluoroorotic acid whose pyrimidine requirement was met by uracil or cytosine. The mutant strain was deficient for orotate phosphoribosyltransferase activity. Pyrimidine limitation of the mutant strain cells for 1 or 2 h caused about a two-fold increase in aspartate transcarbamoylase or dihydroorotase activity independent of carbon source relative to excess uracil growth conditions. At the level of enzyme activity, aspartate transcarbamoylase activity in P. jessenii ATCC 700870 was inhibited strongly by pyrophosphate, ATP, UTP, GTP and UMP under saturating substrate concentrations.
Collapse
Affiliation(s)
- Eswara C Murahari
- Department of Chemistry, Texas A&M University-Commerce, Commerce, TX, 75429, USA
| | - Thomas P West
- Department of Chemistry, Texas A&M University-Commerce, Commerce, TX, 75429, USA.
| |
Collapse
|
12
|
Pereira RPA, Peplies J, Mushi D, Brettar I, Höfle MG. Pseudomonas-Specific NGS Assay Provides Insight Into Abundance and Dynamics of Pseudomonas Species Including P. aeruginosa in a Cooling Tower. Front Microbiol 2018; 9:1958. [PMID: 30186269 PMCID: PMC6110898 DOI: 10.3389/fmicb.2018.01958] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 08/02/2018] [Indexed: 12/23/2022] Open
Abstract
Pseudomonas species are frequent inhabitants of freshwater environments and colonizers of water supply networks via bioadhesion and biofilm formation. P. aeruginosa is the species most commonly associated with human disease, causing a wide variety of infections with links to its presence in freshwater systems. Though several other Pseudomonas species are of ecological and public health importance, little knowledge exists regarding environmental abundances of these species. In the present study, an Illumina-based next-generation sequencing (NGS) approach using Pseudomonas-specific primers targeting the 16S rRNA gene was evaluated and applied to a set of freshwater samples from different environments including a cooling tower sampled monthly during 2 years. Our approach showed high in situ specificity and accuracy. NGS read counts revealed a precise quantification of P. aeruginosa and a good correlation with the absolute number of Pseudomonas genome copies in a validated genus-specific qPCR assay, demonstrating the ability of the NGS approach to determine both relative and absolute abundances of Pseudomonas species and P. aeruginosa. The characterization of Pseudomonas communities in cooling tower water allowed us to identify 43 phylotypes, with P. aeruginosa being the most abundant. A shift existed within each year from a community dominated by phylotypes belonging to P. fluorescens and P. oleovorans phylogenetic groups to a community where P. aeruginosa was highly abundant. Co-occurrence was observed between P. aeruginosa and other phylotypes of P. aeruginosa group as well as the potentially pathogenic species P. stutzeri, but not with phylotypes of the P. fluorescens group, indicating the need to further investigate the metabolic networks and ecological traits of Pseudomonas species. This study demonstrates the potential of deep sequencing as a valuable tool in environmental diagnostics and surveillance of health-related pathogens in freshwater environments.
Collapse
Affiliation(s)
- Rui P A Pereira
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Douglas Mushi
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Department of Biological Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Ingrid Brettar
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Manfred G Höfle
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
13
|
Bel’kova NL, Dzyuba EV, Klimenko ES, Khanaev IV, Denikina NN. Detection and Genetic Characterization of Bacteria of the Genus Pseudomonas from Microbial Communities of Lake Baikal. RUSS J GENET+ 2018; 54:514-524. [DOI: 10.1134/s1022795418040038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/18/2017] [Indexed: 07/26/2024]
|
14
|
Vaccination with a recombinant OprL fragment induces a Th17 response and confers serotype-independent protection against Pseudomonas aeruginosa infection in mice. Clin Immunol 2017; 183:354-363. [PMID: 28970186 DOI: 10.1016/j.clim.2017.09.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/06/2017] [Accepted: 09/25/2017] [Indexed: 01/06/2023]
Abstract
Pseudomonas aeruginosa (PA) is the major causative agent of nosocomial infection. Despite of adequate use of antibiotics, it still represents a major challenge in controlling PA infection. The local pulmonary Th17 response plays an important protective role against PA infection. And the Th17-mediated protection is antibody independent, so we hypothesized that it would be an optimal strategy of a vaccine for PA control to induce an effective Th17 response. Herein we report the successful production of a recombinant fragment of the OprL (reOprL) of PA. Purified reOprL forms homogeneous monomers in solution and vaccination with reOprL elicited a remarkable Th17 response. In addition, reOprL vaccination conferred effective serotype-independent protection against PA infection, which relied on the Th17 response. Our data suggest that reOprL is a good candidate for the future development of Th17 immunity based PA vaccines.
Collapse
|
15
|
Chan KG, Priya K, Chang CY, Abdul Rahman AY, Tee KK, Yin WF. Transcriptome analysis of Pseudomonas aeruginosa PAO1 grown at both body and elevated temperatures. PeerJ 2016; 4:e2223. [PMID: 27547539 PMCID: PMC4957987 DOI: 10.7717/peerj.2223] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 06/15/2016] [Indexed: 01/15/2023] Open
Abstract
Functional genomics research can give us valuable insights into bacterial gene function. RNA Sequencing (RNA-seq) can generate information on transcript abundance in bacteria following abiotic stress treatments. In this study, we used the RNA-seq technique to study the transcriptomes of the opportunistic nosocomial pathogen Pseudomonas aeruginosa PAO1 following heat shock. Samples were grown at both the human body temperature (37 °C) and an arbitrarily-selected temperature of 46 °C. In this work using RNA-seq, we identified 133 genes that are differentially expressed at 46 °C compared to the human body temperature. Our work identifies some key P. aeruginosa PAO1 genes whose products have importance in both environmental adaptation as well as in vivo infection in febrile hosts. More importantly, our transcriptomic results show that many genes are only expressed when subjected to heat shock. Because the RNA-seq can generate high throughput gene expression profiles, our work reveals many unanticipated genes with further work to be done exploring such genes products.
Collapse
Affiliation(s)
- Kok-Gan Chan
- ISB (Genetics & Molecular Biology), Faculty of Science, University of Malaya , Kuala Lumpur , Malaysia
| | - Kumutha Priya
- ISB (Genetics & Molecular Biology), Faculty of Science, University of Malaya , Kuala Lumpur , Malaysia
| | - Chien-Yi Chang
- School of Life Sciences, Heriot-Watt University , Edinburgh , United Kingdom
| | | | - Kok Keng Tee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| | - Wai-Fong Yin
- ISB (Genetics & Molecular Biology), Faculty of Science, University of Malaya , Kuala Lumpur , Malaysia
| |
Collapse
|
16
|
Ficarra FA, Santecchia I, Lagorio SH, Alarcón S, Magni C, Espariz M. Genome mining of lipolytic exoenzymes from Bacillus safensis S9 and Pseudomonas alcaliphila ED1 isolated from a dairy wastewater lagoon. Arch Microbiol 2016; 198:893-904. [PMID: 27270463 DOI: 10.1007/s00203-016-1250-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/09/2016] [Accepted: 05/27/2016] [Indexed: 10/21/2022]
Abstract
Dairy production plants produce highly polluted wastewaters rich in organic molecules such as lactose, proteins and fats. Fats generally lead to low overall performance of the treatment system. In this study, a wastewater dairy lagoon was used as microbial source and different screening strategies were conducted to select 58 lipolytic microorganisms. Exoenzymes and RAPD analyses revealed genetic and phenotypic diversity among isolates. Bacillus safensis, Pseudomonas alcaliphila and the potential pathogens, B. cereus, Aeromonas and Acinetobacter were identified by 16S-rRNA, gyrA, oprI and/or oprL sequence analyses. Five out of 10 selected isolates produced lipolytic enzymes and grew in dairy wastewater. Based on these abilities and their safety, B. safensis S9 and P. alcaliphila ED1 were selected and their genome sequences determined. The genome of strain S9 and ED1 consisted of 3,794,315 and 5,239,535 bp and encoded for 3990 and 4844 genes, respectively. Putative extracellular enzymes with lipolytic (12 and 16), proteolytic (20) or hydrolytic (10 and 15) activity were identified for S9 and ED1 strains, respectively. These bacteria also encoded other technological relevant proteins such as amylases, proteases, glucanases, xylanases and pectate lyases.
Collapse
Affiliation(s)
- Florencia A Ficarra
- Instituto de Biología Molecular de Rosario (IBR-CONICET), Suipacha 590, S2002LRK, Rosario, Argentina.,Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| | - Ignacio Santecchia
- Instituto de Biología Molecular de Rosario (IBR-CONICET), Suipacha 590, S2002LRK, Rosario, Argentina.,Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| | - Sebastián H Lagorio
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| | - Sergio Alarcón
- Instituto de Química de Rosario (IQUIR-CONICET), Suipacha 531, S2002LRK, Rosario, Argentina.,Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| | - Christian Magni
- Instituto de Biología Molecular de Rosario (IBR-CONICET), Suipacha 590, S2002LRK, Rosario, Argentina.,Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| | - Martín Espariz
- Instituto de Biología Molecular de Rosario (IBR-CONICET), Suipacha 590, S2002LRK, Rosario, Argentina. .,Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina.
| |
Collapse
|
17
|
Pyoverdine and histicorrugatin-mediated iron acquisition in Pseudomonas thivervalensis. Biometals 2016; 29:467-85. [DOI: 10.1007/s10534-016-9929-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/19/2016] [Indexed: 12/17/2022]
|
18
|
Nübling S, Schmidt H, Weiss A. Variation of the Pseudomonas community structure on oak leaf lettuce during storage detected by culture-dependent and -independent methods. Int J Food Microbiol 2016; 216:95-103. [PMID: 26425802 DOI: 10.1016/j.ijfoodmicro.2015.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 08/20/2015] [Accepted: 09/10/2015] [Indexed: 11/29/2022]
Abstract
The genus Pseudomonas plays an important role in the lettuce leaf microbiota and certain species can induce spoilage. The aim of this study was to investigate the occurrence and diversity of Pseudomonas spp. on oak leaf lettuce and to follow their community shift during a six day cold storage with culture-dependent and culture-independent methods. In total, 21 analysed partial Pseudomonas 16S rRNA gene sequences matched closely (> 98.3%) to the different reference strain sequences, which were distributed among 13 different phylogenetic groups or subgroups within the genus Pseudomonas. It could be shown that all detected Pseudomonas species belonged to the P. fluorescens lineage. In the culture-dependent analysis, 73% of the isolates at day 0 and 79% of the isolates at day 6 belonged to the P. fluorescens subgroup. The second most frequent group, with 12% of the isolates, was the P. koreensis subgroup. This subgroup was only detected at day 0. In the culture-independent analysis the P. fluorescens subgroup and P. extremaustralis could not be differentiated by RFLP. Both groups were most abundant and amounted to approximately 46% at day 0 and 79% at day 6. The phytopathogenic species P. salmonii, P. viridiflava and P. marginalis increased during storage. Both approaches identified the P. fluorescens group as the main phylogenetic group. The results of the present study suggest that pseudomonads found by plating methods indeed represent the most abundant part of the Pseudomonas community on oak leaf lettuce.
Collapse
Affiliation(s)
- Simone Nübling
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 28, 70599 Stuttgart, Germany.
| | - Herbert Schmidt
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 28, 70599 Stuttgart, Germany.
| | - Agnes Weiss
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 28, 70599 Stuttgart, Germany.
| |
Collapse
|
19
|
rpoD gene pyrosequencing for the assessment of Pseudomonas diversity in a water sample from the Woluwe River. Appl Environ Microbiol 2015; 80:4738-44. [PMID: 24858084 DOI: 10.1128/aem.00412-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A water sample from a noncontaminated site at the source of the Woluwe River (Belgium) was analyzed by culture-dependent and -independent methods. Pseudomonas isolates were identified by sequencing and analysis of the rpoD gene. Cultureindependent methods consisted of cloning and pyrosequencing of a Pseudomonas rpoD amplicon from total DNA extracted from the same sample and amplified with selective rpoD gene primers. Among a total of 14,540 reads, 6,228 corresponded to Pseudomonas rpoD gene sequences by a BLAST analysis in the NCBI database. The selection criteria for the reads were sequences longer than 400 bp, an average Q40 value greater than 25, and>85% identity with a Pseudomonas species. Of the 6,228 Pseudomonas rpoD sequences, 5,345 sequences met the established criteria for selection. Sequences were clustered by phylogenetic analysis and by use of the QIIME software package. Representative sequences of each cluster were assigned by BLAST analysis to a known Pseudomonas species when the identity with the type strain was greater than or equal to 96%. Twenty-six species distributed among 12 phylogenetic groups or subgroups within the genus were detected by pyrosequencing. Pseudomonas stutzeri, P. moraviensis, and P. simiae were the only cultured species not detected by pyrosequencing. The predominant phylogenetic group within the Pseudomonas genus was the P. fluorescens group, as determined by culture-dependent and -independent analyses. In all analyses, a high number of putative novel phylospecies was found: 10 were identified in the cultured strains and 246 were detected by pyrosequencing, indicating that the diversity of Pseudomonas species has not been fully described.
Collapse
|
20
|
Andreani N, Martino M, Fasolato L, Carraro L, Montemurro F, Mioni R, Bordin P, Cardazzo B. Reprint of ‘Tracking the blue: A MLST approach to characterise the Pseudomonas fluorescens group’. Food Microbiol 2015; 45:148-58. [DOI: 10.1016/j.fm.2014.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 11/18/2013] [Accepted: 11/20/2013] [Indexed: 01/20/2023]
|
21
|
Matthijs S, Vander Wauven C, Cornu B, Ye L, Cornelis P, Thomas CM, Ongena M. Antimicrobial properties of Pseudomonas strains producing the antibiotic mupirocin. Res Microbiol 2014; 165:695-704. [PMID: 25303834 DOI: 10.1016/j.resmic.2014.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 09/17/2014] [Accepted: 09/29/2014] [Indexed: 11/19/2022]
Abstract
Mupirocin is a polyketide antibiotic with broad antibacterial activity. It was isolated and characterized about 40 years ago from Pseudomonas fluorescens NCIMB 10586. To study the phylogenetic distribution of mupirocin producing strains in the genus Pseudomonas a large collection of Pseudomonas strains of worldwide origin, consisting of 117 Pseudomonas type strains and 461 strains isolated from different biological origins, was screened by PCR for the mmpD gene of the mupirocin gene cluster. Five mmpD(+) strains from different geographic and biological origin were identified. They all produced mupirocin and were strongly antagonistic against Staphylococcus aureus. Phylogenetic analysis showed that mupirocin production is limited to a single species. Inactivation of mupirocin production leads to complete loss of in vitro antagonism against S. aureus, except on certain iron-reduced media where the siderophore pyoverdine is responsible for the in vitro antagonism of a mupirocin-negative mutant. In addition to mupirocin some of the strains produced lipopeptides of the massetolide group. These lipopeptides do not play a role in the observed in vitro antagonism of the mupirocin producing strains against S. aureus.
Collapse
Affiliation(s)
- Sandra Matthijs
- Institut de Recherches Microbiologiques - Wiame, Campus du CERIA, 1 avenue Emile Gryson, bât 4B, B-1070 Bruxelles, Belgium.
| | - Corinne Vander Wauven
- Institut de Recherches Microbiologiques - Wiame, Campus du CERIA, 1 avenue Emile Gryson, bât 4B, B-1070 Bruxelles, Belgium.
| | - Bertrand Cornu
- Institut de Recherches Microbiologiques - Wiame, Campus du CERIA, 1 avenue Emile Gryson, bât 4B, B-1070 Bruxelles, Belgium.
| | - Lumeng Ye
- Department of Bioengineering Sciences, Research Group of Microbiology and Vlaams Instituut voor Biotechnologie, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Pierre Cornelis
- Department of Bioengineering Sciences, Research Group of Microbiology and Vlaams Instituut voor Biotechnologie, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Christopher M Thomas
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Marc Ongena
- Walloon Center for Industrial Biology, University of Liège, Gembloux Agro-Bio Tech, Gembloux, Belgium.
| |
Collapse
|
22
|
Roosa S, Wauven CV, Billon G, Matthijs S, Wattiez R, Gillan DC. The Pseudomonas community in metal-contaminated sediments as revealed by quantitative PCR: a link with metal bioavailability. Res Microbiol 2014; 165:647-56. [PMID: 25102022 DOI: 10.1016/j.resmic.2014.07.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 07/21/2014] [Indexed: 01/05/2023]
Abstract
Pseudomonas bacteria are ubiquitous Gram-negative and aerobic microorganisms that are known to harbor metal resistance mechanisms such as efflux pumps and intracellular redox enzymes. Specific Pseudomonas bacteria have been quantified in some metal-contaminated environments, but the entire Pseudomonas population has been poorly investigated under these conditions, and the link with metal bioavailability was not previously examined. In the present study, quantitative PCR and cell cultivation were used to monitor and characterize the Pseudomonas population at 4 different sediment sites contaminated with various levels of metals. At the same time, total metals and metal bioavailability (as estimated using an HCl 1 m extraction) were measured. It was found that the total level of Pseudomonas, as determined by qPCR using two different genes (oprI and the 16S rRNA gene), was positively and significantly correlated with total and HCl-extractable Cu, Co, Ni, Pb and Zn, with high correlation coefficients (>0.8). Metal-contaminated sediments featured isolates of the Pseudomonas putida, Pseudomonas fluorescens, Pseudomonas lutea and Pseudomonas aeruginosa groups, with other bacterial genera such as Mycobacterium, Klebsiella and Methylobacterium. It is concluded that Pseudomonas bacteria do proliferate in metal-contaminated sediments, but are still part of a complex community.
Collapse
Affiliation(s)
- Stéphanie Roosa
- Proteomics and Microbiology Lab, Research Institute for Biosciences, Université de Mons, 20 Place du Parc, B-7000 Mons, Belgium.
| | - Corinne Vander Wauven
- Institut de Recherches Microbiologiques JMW, 1 Av. E. Gryzon, 1070 Bruxelles, Belgium.
| | - Gabriel Billon
- Géosystèmes Lab, UFR de Chimie, Lille-1 University, Sciences and Technologies, 59655 Villeneuve d'Ascq, France.
| | - Sandra Matthijs
- Institut de Recherches Microbiologiques JMW, 1 Av. E. Gryzon, 1070 Bruxelles, Belgium.
| | - Ruddy Wattiez
- Proteomics and Microbiology Lab, Research Institute for Biosciences, Université de Mons, 20 Place du Parc, B-7000 Mons, Belgium.
| | - David C Gillan
- Proteomics and Microbiology Lab, Research Institute for Biosciences, Université de Mons, 20 Place du Parc, B-7000 Mons, Belgium.
| |
Collapse
|
23
|
Tracking the blue: A MLST approach to characterise the Pseudomonas fluorescens group. Food Microbiol 2014; 39:116-26. [DOI: 10.1016/j.fm.2013.11.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 11/18/2013] [Accepted: 11/20/2013] [Indexed: 11/17/2022]
|
24
|
Ye L, Matthijs S, Bodilis J, Hildebrand F, Raes J, Cornelis P. Analysis of the draft genome of Pseudomonas fluorescens ATCC17400 indicates a capacity to take up iron from a wide range of sources, including different exogenous pyoverdines. Biometals 2014; 27:633-44. [PMID: 24756978 DOI: 10.1007/s10534-014-9734-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/03/2014] [Indexed: 12/16/2022]
Abstract
All fluorescent pseudomonads (Pseudomonas aeruginosa, P. putida, P. fluorescens, P. syringae and others) are known to produce the high-affinity peptidic yellow-green fluorescent siderophore pyoverdine. These siderophores have peptide chains that are quite diverse and more than 50 pyoverdine structures have been elucidated. In the majority of the cases, a Pseudomonas species is also able to produce a second siderophore of lower affinity for iron. Pseudomonas fluorescens ATCC 17400 has been shown to produce a unique second siderophore, (thio)quinolobactin, which has an antimicrobial activity against the phytopathogenic Oomycete Pythium debaryanum. We show that this strain has the capacity to utilize 16 different pyoverdines, suggesting the presence of several ferripyoverdine receptors. Analysis of the draft genome of P. fluorescens ATCC 17400 confirmed the presence of 55 TonB-dependent receptors, the largest so far for Pseudomonas, among which 15 are predicted to be ferripyoverdine receptors (Fpv). Phylogenetic analysis revealed the presence of two different clades containing ferripyoverdine receptors, with sequences similar to the P. aeruginosa type II FpvA forming a separate cluster. Among the other receptors we confirmed the presence of the QbsI (thio)quinolobactin receptor, an ferri-achromobactin and an ornicorrugatin receptor, several catecholate and four putative heme receptors. Twenty five of the receptors genes were found to be associated with genes encoding extracytoplasmic sigma factors (ECF σ) and transmembrane anti-σ sensors.
Collapse
Affiliation(s)
- Lumeng Ye
- Department of Bioengineering Sciences, Research Group Microbiology, VIB Structural Biology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | | | | | | | | | | |
Collapse
|