1
|
Cianciotto NP. The type II secretion system as an underappreciated and understudied mediator of interbacterial antagonism. Infect Immun 2024; 92:e0020724. [PMID: 38980047 PMCID: PMC11320942 DOI: 10.1128/iai.00207-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
Interbacterial antagonism involves all major phyla, occurs across the full range of ecological niches, and has great significance for the environment, clinical arena, and agricultural and industrial sectors. Though the earliest insight into interbacterial antagonism traces back to the discovery of antibiotics, a paradigm shift happened when it was learned that protein secretion systems (e.g., types VI and IV secretion systems) deliver toxic "effectors" against competitors. However, a link between interbacterial antagonism and the Gram-negative type II secretion system (T2SS), which exists in many pathogens and environmental species, is not evident in prior reviews on bacterial competition or T2SS function. A current examination of the literature revealed four examples of a T2SS or one of its known substrates having a bactericidal activity against a Gram-positive target or another Gram-negative. When further studied, the T2SS effectors proved to be peptidases that target the peptidoglycan of the competitor. There are also reports of various bacteriolytic enzymes occurring in the culture supernatants of some other Gram-negative species, and a link between these bactericidal activities and T2SS is suggested. Thus, a T2SS can be a mediator of interbacterial antagonism, and it is possible that many T2SSs have antibacterial outputs. Yet, at present, the T2SS remains relatively understudied for its role in interbacterial competition. Arguably, there is a need to analyze the T2SSs of a broader range of species for their role in interbacterial antagonism. Such investigation offers, among other things, a possible pathway toward developing new antimicrobials for treating disease.
Collapse
Affiliation(s)
- Nicholas P. Cianciotto
- Department of Microbiology-Immunology, Northwestern University School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
2
|
Liu H, Xu G, Guo B, Liu F. Old role with new feature: T2SS ATPase as a cyclic-di-GMP receptor to regulate antibiotic production. Appl Environ Microbiol 2024; 90:e0041824. [PMID: 38624198 PMCID: PMC11107153 DOI: 10.1128/aem.00418-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/26/2024] [Indexed: 04/17/2024] Open
Abstract
Cyclic di-GMP (c-di-GMP) is a crucial signaling molecule found extensively in bacteria, involved in the regulation of various physiological and biochemical processes such as biofilm formation, motility, and pathogenicity through binding to downstream receptors. However, the structural dissimilarity of c-di-GMP receptor proteins has hindered the discovery of many such proteins. In this study, we identified LspE, a homologous protein of the type II secretion system (T2SS) ATPase GspE in Lysobacter enzymogenes, as a receptor protein for c-di-GMP. We identified the more conservative c-di-GMP binding amino acid residues as K358 and T359, which differ from the previous reports, indicating that GspE proteins may represent a class of c-di-GMP receptor proteins. Additionally, we found that LspE in L. enzymogenes also possesses a novel role in regulating the production of the antifungal antibiotic HSAF. Further investigations revealed the critical involvement of both ATPase activity and c-di-GMP binding in LspE-mediated regulation of HSAF (Heat-Stable Antifungal Factor) production, with c-di-GMP binding having no impact on LspE's ATPase activity. This suggests that the control of HSAF production by LspE encompasses two distinct processes: c-di-GMP binding and the inherent ATPase activity of LspE. Overall, our study unraveled a new function for the conventional protein GspE of the T2SS as a c-di-GMP receptor protein and shed light on its role in regulating antibiotic production.IMPORTANCEThe c-di-GMP signaling pathway in bacteria is highly intricate. The identification and functional characterization of novel receptor proteins have posed a significant challenge in c-di-GMP research. The type II secretion system (T2SS) is a well-studied secretion system in bacteria. In this study, our findings revealed the ATPase GspE protein of the T2SS as a class of c-di-GMP receptor protein. Notably, we discovered its novel function in regulating the production of antifungal antibiotic HSAF in Lysobacter enzymogenes. Given that GspE may be a conserved c-di-GMP receptor protein, it is worthwhile for researchers to reevaluate its functional roles and mechanisms across diverse bacterial species.
Collapse
Affiliation(s)
- Haofei Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Gaoge Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
- School of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou, China
| | - Baodian Guo
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
| | - Fengquan Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China
| |
Collapse
|
3
|
Wang Y, Fan J, Shen Y, Ye F, Feng Z, Yang Q, Wang D, Cai X, Mao Y. Bromate reduction by Shewanella oneidensis MR-1 is mediated by dimethylsulfoxide reductase. Front Microbiol 2022; 13:955249. [PMID: 36110297 PMCID: PMC9468665 DOI: 10.3389/fmicb.2022.955249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Microbial bromate reduction plays an important role in remediating bromate-contaminated waters as well as biogeochemical cycling of bromine. However, little is known about the molecular mechanism of microbial bromate reduction so far. Since the model strain Shewanella oneidensis MR-1 is capable of reducing a variety of oxyanions such as iodate, which has a high similarity to bromate, we hypothesize that S. oneidensis MR-1 can reduce bromate. Here, we conducted an experiment to investigate whether S. oneidensis MR-1 can reduce bromate, and report bromate reduction mediated by a dimethylsulfoxide reductase encoded with dmsA. S. oneidensis MR-1 is not a bromate-respiring bacterium but can reduce bromate to bromide under microaerobic conditions. When exposed to 0.15, 0.2, 0.25, 0.5, and 1 mM bromate, S. oneidensis MR-1 reduced bromate by around 100, 75, 64, 48, and 23%, respectively, within 12 h. In vivo evidence from gene deletion mutants and complemented strains of S. oneidensis MR-1 indicates that MtrB, MtrC, CymA, GspD, and DmsA are involved in bromate reduction, but not NapA, FccA, or SYE4. Based on our results as well as previous findings, a proposed molecular mechanism for bromate reduction is presented in this study. Moreover, a genomic survey indicates that 9 of the other 56 reported Shewanella species encode proteins highly homologous to CymA, GspD, and DmsA of S. oneidensis MR-1 by sequence alignment. The results of this study contribute to understanding a pathway for microbial bromate reduction.
Collapse
Affiliation(s)
- Yicheng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Jiale Fan
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Yonglin Shen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Fan Ye
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Zhiying Feng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Qianning Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Dan Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Xunchao Cai
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen, China
| | - Yanping Mao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
- *Correspondence: Yanping Mao,
| |
Collapse
|
4
|
InvL, an Invasin-Like Adhesin, Is a Type II Secretion System Substrate Required for Acinetobacter baumannii Uropathogenesis. mBio 2022; 13:e0025822. [PMID: 35638734 PMCID: PMC9245377 DOI: 10.1128/mbio.00258-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Acinetobacter baumannii is an opportunistic pathogen of growing concern, as isolates are commonly multidrug resistant. While A. baumannii is most frequently associated with pulmonary infections, a significant proportion of clinical isolates come from urinary sources, highlighting its uropathogenic potential. The type II secretion system (T2SS) of commonly used model Acinetobacter strains is important for virulence in various animal models, but the potential role of the T2SS in urinary tract infection (UTI) remains unknown. Here, we used a catheter-associated UTI (CAUTI) model to demonstrate that a modern urinary isolate, UPAB1, requires the T2SS for full virulence. A proteomic screen to identify putative UPAB1 T2SS effectors revealed an uncharacterized lipoprotein with structural similarity to the intimin-invasin family, which serve as type V secretion system (T5SS) adhesins required for the pathogenesis of several bacteria. This protein, designated InvL, lacked the β-barrel domain associated with T5SSs but was confirmed to require the T2SS for both surface localization and secretion. This makes InvL the first identified T2SS effector belonging to the intimin-invasin family. InvL was confirmed to be an adhesin, as the protein bound to extracellular matrix components and mediated adhesion to urinary tract cell lines in vitro. Additionally, the invL mutant was attenuated in the CAUTI model, indicating a role in Acinetobacter uropathogenesis. Finally, bioinformatic analyses revealed that InvL is present in nearly all clinical isolates belonging to international clone 2, a lineage of significant clinical importance. In all, we conclude that the T2SS substrate InvL is an adhesin required for A. baumannii uropathogenesis. IMPORTANCE While pathogenic Acinetobacter can cause various infections, we recently found that 20% of clinical isolates come from urinary sources. Despite the clinical relevance of Acinetobacter as a uropathogen, few virulence factors involved in urinary tract colonization have been defined. Here, we identify a novel type II secretion system effector, InvL, which is required for full uropathogenesis by a modern urinary isolate. Although InvL has predicted structural similarity to the intimin-invasin family of autotransporter adhesins, InvL is predicted to be anchored to the membrane as a lipoprotein. Similar to other invasin homologs, however, we demonstrate that InvL is a bona fide adhesin capable of binding extracellular matrix components and mediating adhesion to urinary tract cell lines. In all, this work establishes InvL as an adhesin important for Acinetobacter's urinary tract virulence and represents the first report of a type II secretion system effector belonging to the intimin-invasin family.
Collapse
|
5
|
Havenga B, Reyneke B, Waso-Reyneke M, Ndlovu T, Khan S, Khan W. Biological Control of Acinetobacter baumannii: In Vitro and In Vivo Activity, Limitations, and Combination Therapies. Microorganisms 2022; 10:microorganisms10051052. [PMID: 35630494 PMCID: PMC9147981 DOI: 10.3390/microorganisms10051052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
The survival, proliferation, and epidemic spread of Acinetobacter baumannii (A. baumannii) in hospital settings is associated with several characteristics, including resistance to many commercially available antibiotics as well as the expression of multiple virulence mechanisms. This severely limits therapeutic options, with increased mortality and morbidity rates recorded worldwide. The World Health Organisation, thus, recognises A. baumannii as one of the critical pathogens that need to be prioritised for the development of new antibiotics or treatment. The current review will thus provide a brief overview of the antibiotic resistance and virulence mechanisms associated with A. baumannii’s “persist and resist strategy”. Thereafter, the potential of biological control agents including secondary metabolites such as biosurfactants [lipopeptides (surfactin and serrawettin) and glycolipids (rhamnolipid)] as well as predatory bacteria (Bdellovibrio bacteriovorus) and bacteriophages to directly target A. baumannii, will be discussed in terms of their in vitro and in vivo activity. In addition, limitations and corresponding mitigations strategies will be outlined, including curtailing resistance development using combination therapies, product stabilisation, and large-scale (up-scaling) production.
Collapse
Affiliation(s)
- Benjamin Havenga
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa; (B.H.); (B.R.)
| | - Brandon Reyneke
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa; (B.H.); (B.R.)
| | - Monique Waso-Reyneke
- Faculty of Health Sciences, University of Johannesburg, Doornfontein 2028, South Africa; (M.W.-R.); (S.K.)
| | - Thando Ndlovu
- Department of Biological Sciences, Faculty of Science, University of Botswana, Private Bag UB, Gaborone 0022, Botswana;
| | - Sehaam Khan
- Faculty of Health Sciences, University of Johannesburg, Doornfontein 2028, South Africa; (M.W.-R.); (S.K.)
| | - Wesaal Khan
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa; (B.H.); (B.R.)
- Correspondence: ; Tel.: +27-21-808-5804
| |
Collapse
|
6
|
Napieralski SA, Fang Y, Marcon V, Forsythe B, Brantley SL, Xu H, Roden EE. Microbial chemolithotrophic oxidation of pyrite in a subsurface shale weathering environment: Geologic considerations and potential mechanisms. GEOBIOLOGY 2022; 20:271-291. [PMID: 34633148 DOI: 10.1111/gbi.12474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 09/02/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Oxidative weathering of pyrite plays an important role in the biogeochemical cycling of Fe and S in terrestrial environments. While the mechanism and occurrence of biologically accelerated pyrite oxidation under acidic conditions are well established, much less is known about microbially mediated pyrite oxidation at circumneutral pH. Recent work (Percak-Dennett et al., 2017, Geobiology, 15, 690) has demonstrated the ability of aerobic chemolithotrophic microorganisms to accelerate pyrite oxidation at circumneutral pH and proposed two mechanistic models by which this phenomenon might occur. Here, we assess the potential relevance of aerobic microbially catalyzed circumneutral pH pyrite oxidation in relation to subsurface shale weathering at Susquehanna Shale Hills Critical Zone Observatory (SSHCZO) in Pennsylvania, USA. Specimen pyrite mixed with native shale was incubated in groundwater for 3 months at the inferred depth of in situ pyrite oxidation. The colonized materials were used as an inoculum for pyrite-oxidizing enrichment cultures. Microbial activity accelerated the release of sulfate across all conditions. 16S rRNA gene sequencing and metagenomic analysis revealed the dominance of a putative chemolithoautotrophic sulfur-oxidizing bacterium from the genus Thiobacillus in the enrichment cultures. Previously proposed models for aerobic microbial pyrite oxidation were assessed in terms of physical constraints, enrichment culture geochemistry, and metagenomic analysis. Although we conclude that subsurface pyrite oxidation at SSCHZO is largely abiotic, this work nonetheless yields new insight into the potential pathways by which aerobic microorganisms may accelerate pyrite oxidation at circumneutral pH. We propose a new "direct sulfur oxidation" pathway, whereby sulfhydryl-bearing outer membrane proteins mediate oxidation of pyrite surfaces through a persulfide intermediate, analogous to previously proposed mechanisms for direct microbial oxidation of elemental sulfur. The action of this and other direct microbial pyrite oxidation pathways have major implications for controls on pyrite weathering rates in circumneutral pH sedimentary environments where pore throat sizes permit widespread access of microorganisms to pyrite surfaces.
Collapse
Affiliation(s)
| | - Yihang Fang
- Department of Geoscience, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Virginia Marcon
- Earth and Environmental Systems Institute, University Park, Pennsylvania, USA
- The Department of Geosciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Brandon Forsythe
- Earth and Environmental Systems Institute, University Park, Pennsylvania, USA
| | - Susan L Brantley
- Earth and Environmental Systems Institute, University Park, Pennsylvania, USA
- The Department of Geosciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Huifang Xu
- Department of Geoscience, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Eric E Roden
- Department of Geoscience, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
7
|
Grigoryeva LS, Rehman S, White RC, Garnett JA, Cianciotto NP. Assay for Assessing Mucin Binding to Bacteria and Bacterial Proteins. Bio Protoc 2021; 11:e3933. [PMID: 33796607 DOI: 10.21769/bioprotoc.3933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 11/02/2022] Open
Abstract
Legionella pneumophila, a Gram-negative bacterium and the causative agent of Legionnaires' disease, exports over 300 effector proteins/virulence factors, through its type II (T2SS) and type IV secretion systems (T4SS). One such T2SS virulence factor, ChiA, not only functions as a chitinase, but also as a novel mucinase, which we believe aids ChiA-dependent virulence during lung infection. Previously published protocols manipulated wild-type L. pneumophila strain 130b and its chiA mutant to express plasmid-encoded GFP. Similarly, earlier studies demonstrated that wheat germ agglutinin (WGA) can be fluorescently labeled and can bind to mucins. In the current protocol, GFP-labeled bacteria were incubated with type II and type III porcine stomach mucins, which were then labeled with TexasRed-tagged WGA and analyzed by flow-cytometry to measure the binding of bacteria to mucins in the presence or absence of endogenous ChiA. In addition, we analysed binding of purified ChiA to type II and type III porcine stomach mucins. This protocol couples both bacterial and direct protein binding to mucins and is the first to measure Gram-negative bacterial binding to mucins using WGA and flow-cytometric analysis. Graphic abstract: Strategy for assessing bacterial and protein binding to mucins.
Collapse
Affiliation(s)
- Lubov S Grigoryeva
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Saima Rehman
- Centre for Host-Microbiome Interactions, Dental institute, King's College London, London, UK
| | - Richard C White
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - James A Garnett
- Centre for Host-Microbiome Interactions, Dental institute, King's College London, London, UK
| | - Nicholas P Cianciotto
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
8
|
Secrete or perish: The role of secretion systems in Xanthomonas biology. Comput Struct Biotechnol J 2020; 19:279-302. [PMID: 33425257 PMCID: PMC7777525 DOI: 10.1016/j.csbj.2020.12.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/13/2020] [Accepted: 12/13/2020] [Indexed: 12/22/2022] Open
Abstract
Bacteria of the Xanthomonas genus are mainly phytopathogens of a large variety of crops of economic importance worldwide. Xanthomonas spp. rely on an arsenal of protein effectors, toxins and adhesins to adapt to the environment, compete with other microorganisms and colonize plant hosts, often causing disease. These protein effectors are mainly delivered to their targets by the action of bacterial secretion systems, dedicated multiprotein complexes that translocate proteins to the extracellular environment or directly into eukaryotic and prokaryotic cells. Type I to type VI secretion systems have been identified in Xanthomonas genomes. Recent studies have unravelled the diverse roles played by the distinct types of secretion systems in adaptation and virulence in xanthomonads, unveiling new aspects of their biology. In addition, genome sequence information from a wide range of Xanthomonas species and pathovars have become available recently, uncovering a heterogeneous distribution of the distinct families of secretion systems within the genus. In this review, we describe the architecture and mode of action of bacterial type I to type VI secretion systems and the distribution and functions associated with these important nanoweapons within the Xanthomonas genus.
Collapse
|
9
|
Barger PC, Liles MR, Newton JC. Type II Secretion Is Essential for Virulence of the Emerging Fish Pathogen, Hypervirulent Aeromonas hydrophila. Front Vet Sci 2020; 7:574113. [PMID: 33088835 PMCID: PMC7544816 DOI: 10.3389/fvets.2020.574113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/24/2020] [Indexed: 11/18/2022] Open
Abstract
Hypervirulent Aeromonas hydrophila (vAh) is an emerging pathogen in freshwater aquaculture systems. In the U.S.A., outbreaks of motile aeromonad septicemia associated with vAh result in the loss of over 3 million pounds of channel catfish from Southeastern production systems each year. A. hydrophila is a well-known opportunistic pathogen that secretes degradative and potentially toxigenic proteins, and the rapid mortality that occurs when catfish are challenged with vAh by intraperitoneal injection suggests that vAh-induced motile aeromonad septicemia may be, in part, a toxin-mediated disease. While vAh isolates from carp isolated in China possess complete Type I, Type II, and Type VI secretion systems, many of the US catfish isolates only possess complete Type I and Type II secretions systems. In order to determine the role of secreted proteins in vAh-induced disease, and to determine the extent of protein secretion by the Type II secretion pathway, an exeD secretin mutant was constructed using a recombineering method in the well-characterized US vAh strain, ML09-119. Wild-type and mutant secretomes were analyzed for protein content by SDS-PAGE and by assays for specific enzymes and toxins. Type II secretion-deficient mutants had a near complete loss of secreted proteins and enzyme/toxin activity, including hemolytic and proteolytic activity. The intact Type II secretion system was cloned and used to complement the deletion mutant, ML09-119 exeD, which restored protein secretion and the degradative and toxigenic potential. In vivo challenges in channel catfish resulted in complete attenuation of virulence in ML09-119 exeD, while the complemented mutant was observed to have restored virulence. These results indicate that secreted proteins are critical to vAh virulence, and that the Type II secretion system is the primary secretory pathway utilized for multiple effectors of vAh pathogenesis.
Collapse
Affiliation(s)
- Priscilla C. Barger
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Biological Sciences, College of Sciences and Math, Auburn University, Auburn, AL, United States
| | - Mark R. Liles
- Biological Sciences, College of Sciences and Math, Auburn University, Auburn, AL, United States
| | - Joseph C. Newton
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| |
Collapse
|
10
|
Mustafa A, Ibrahim M, Rasheed MA, Kanwal S, Hussain A, Sami A, Ahmed R, Bo Z. Genome-wide Analysis of Four Enterobacter cloacae complex type strains: Insights into Virulence and Niche Adaptation. Sci Rep 2020; 10:8150. [PMID: 32424332 PMCID: PMC7235008 DOI: 10.1038/s41598-020-65001-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/23/2020] [Indexed: 02/04/2023] Open
Abstract
Enterobacter cloacae complex (Ecc) species are widely distributed opportunistic pathogens mainly associated with humans and plants. In this study, the genomes of clinical isolates including E. hormaechei, E. kobei, and E. ludwigii and non-clinical isolate including E. nimipressuralis were analysed in combination with the genome of E. asburiae by using the reference strain E. cloacae subsp. cloacae ATCC 13047; the Ecc strains were tested on artificial sputum media (ASM), which mimics the host, to evaluate T6SS genes as a case study. All five Ecc strains were sequenced in our lab. Comparative genome analysis of the Ecc strains revealed that genes associated with the survival of Ecc strains, including genes of metal-requiring proteins, defence-associated genes and genes associated with general physiology, were highly conserved in the genomes. However, the genes involved in virulence and drug resistance, specifically those involved in bacterial secretion, host determination and colonization of different strains, were present in different genomic regions. For example, T6SS accessory and core components, T4SS, and multidrug resistance genes/efflux system genes seemed vital for the survival of Ecc strains in various environmental niches, such as humans and plants. Moreover, the ASM host-mimicking growth medium revealed significantly high expression of T6SS genes, including PrpC, which is a regulatory gene of the T6SS, in all tested Ecc strains compared to the control medium. The variations in T6SS gene expression in ASM vs. control showed that the ASM system represents a simple, reproducible and economical alternative to animal models for studies such as those aimed at understanding the divergence of Ecc populations. In summary, genome sequencing of clinical and environmental Ecc genomes will assist in understanding the epidemiology of Ecc strains, including the isolation, virulence characteristics, prevention and treatment of infectious disease caused by these broad-host-range niche-associated species.
Collapse
Affiliation(s)
- Areeqa Mustafa
- School of Agriculture and Biology, Shanghai Jiao Tong University/Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, Shanghai, 200240, China.,Genomics and Computational Biology Laboratory, Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
| | - Muhammad Ibrahim
- School of Agriculture and Biology, Shanghai Jiao Tong University/Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, Shanghai, 200240, China.,Genomics and Computational Biology Laboratory, Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
| | - Muhammad Asif Rasheed
- Genomics and Computational Biology Laboratory, Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
| | - Sumaira Kanwal
- Genomics and Computational Biology Laboratory, Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
| | - Annam Hussain
- Genomics and Computational Biology Laboratory, Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
| | - Asma Sami
- Genomics and Computational Biology Laboratory, Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
| | - Raza Ahmed
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Pakistan
| | - Zhu Bo
- School of Agriculture and Biology, Shanghai Jiao Tong University/Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, Shanghai, 200240, China.
| |
Collapse
|
11
|
Rehman S, Grigoryeva LS, Richardson KH, Corsini P, White RC, Shaw R, Portlock TJ, Dorgan B, Zanjani ZS, Fornili A, Cianciotto NP, Garnett JA. Structure and functional analysis of the Legionella pneumophila chitinase ChiA reveals a novel mechanism of metal-dependent mucin degradation. PLoS Pathog 2020; 16:e1008342. [PMID: 32365117 PMCID: PMC7224574 DOI: 10.1371/journal.ppat.1008342] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 05/14/2020] [Accepted: 01/22/2020] [Indexed: 12/18/2022] Open
Abstract
Chitinases are important enzymes that contribute to the generation of carbon and nitrogen from chitin, a long chain polymer of N-acetylglucosamine that is abundant in insects, fungi, invertebrates and fish. Although mammals do not produce chitin, chitinases have been identified in bacteria that are key virulence factors in severe respiratory, gastrointestinal and urinary diseases. However, it is unclear how these enzymes are able to carry out this dual function. Legionella pneumophila is the causative agent of Legionnaires' disease, an often-fatal pneumonia and its chitinase ChiA is essential for the survival of L. pneumophila in the lung. Here we report the first atomic resolution insight into the pathogenic mechanism of a bacterial chitinase. We derive an experimental model of intact ChiA and show how its N-terminal region targets ChiA to the bacterial surface after its secretion. We provide the first evidence that L. pneumophila can bind mucins on its surface, but this is not dependent on ChiA. This demonstrates that additional peripheral mucin binding proteins are also expressed in L. pneumophila. We also show that the ChiA C-terminal chitinase domain has novel Zn2+-dependent peptidase activity against mammalian mucin-like proteins, namely MUC5AC and the C1-esterase inhibitor, and that ChiA promotes bacterial penetration of mucin gels. Our findings suggest that ChiA can facilitate passage of L. pneumophila through the alveolar mucosa, can modulate the host complement system and that ChiA may be a promising target for vaccine development.
Collapse
Affiliation(s)
- Saima Rehman
- Centre for Host-Microbiome Interactions, Dental Institute, King’s College London, London, United Kingdom
| | - Lubov S. Grigoryeva
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Katherine H. Richardson
- Chemistry and Biochemistry Department, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Paula Corsini
- Centre for Host-Microbiome Interactions, Dental Institute, King’s College London, London, United Kingdom
- Chemistry and Biochemistry Department, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Richard C. White
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Rosie Shaw
- Chemistry and Biochemistry Department, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Theo J. Portlock
- Centre for Host-Microbiome Interactions, Dental Institute, King’s College London, London, United Kingdom
- Chemistry and Biochemistry Department, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Benjamin Dorgan
- Centre for Host-Microbiome Interactions, Dental Institute, King’s College London, London, United Kingdom
- Chemistry and Biochemistry Department, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Zeinab S. Zanjani
- Chemistry and Biochemistry Department, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Arianna Fornili
- Chemistry and Biochemistry Department, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Nicholas P. Cianciotto
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - James A. Garnett
- Centre for Host-Microbiome Interactions, Dental Institute, King’s College London, London, United Kingdom
- Chemistry and Biochemistry Department, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
12
|
Dietrich HM, Edel M, Bursac T, Meier M, Sturm-Richter K, Gescher J. Soluble versions of outer membrane cytochromes function as exporters for heterologously produced cargo proteins. Microb Cell Fact 2019; 18:216. [PMID: 31870378 PMCID: PMC6929479 DOI: 10.1186/s12934-019-1270-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/13/2019] [Indexed: 11/13/2022] Open
Abstract
This study reveals that it is possible to secrete truncated versions of outer membrane cytochromes into the culture supernatant and that these proteins can provide a basis for the export of heterologously produced proteins. Different soluble and truncated versions of the outer membrane cytochrome MtrF were analyzed for their suitability to be secreted. A protein version with a very short truncation of the N-terminus to remove the recognition sequence for the addition of a lipid anchor is secreted efficiently to the culture supernatant, and moreover this protein could be further truncated by a deletion of 160 amino acid and still is detectable in the supernatant. By coupling a cellulase to this soluble outer membrane cytochrome, the export efficiency was measured by means of relative cellulase activity. We conclude that outer membrane cytochromes of S. oneidensis can be applied as transporters for the export of target proteins into the medium using the type II secretion pathway.
Collapse
Affiliation(s)
- Helge M Dietrich
- Department of Molecular Microbiology and Bioenergetics, Goethe University, Frankfurt, Germany
| | - Miriam Edel
- Department of Applied Biology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Thea Bursac
- Department of Applied Biology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Manfred Meier
- Institute for Biological Interfaces, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Katrin Sturm-Richter
- Department of Applied Biology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Johannes Gescher
- Department of Applied Biology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
- Institute for Biological Interfaces, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
13
|
Hugouvieux-Cotte-Pattat N, Jacot-des-Combes C, Briolay J. Genomic characterization of a pectinolytic isolate of Serratia oryzae isolated from lake water. J Genomics 2019; 7:64-72. [PMID: 31719848 PMCID: PMC6831795 DOI: 10.7150/jgen.38365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/16/2019] [Indexed: 11/05/2022] Open
Abstract
Only one isolate of Serratia oryzae, the type strain J11-6T has been characterized up to now. This strain was found in the endophytic bacterial flora of rice. As part of an ongoing investigation into pectinolytic bacteria present in lake water in France, a few Serratia strains were isolated, including S32 and J9 identified as new strains of S. oryzae. The genome of strain S32 consists of a circular chromosome of 4,810,389 bp that contains 4,584 protein-coding genes. The genome of S32, as well as those of the type strain J11-6T, contains several genes involved in pectin degradation and in the intracellular assimilation of pectin oligomers. The specific detection of enzyme activities confirmed that strain S32 secretes functional pectinases and that it also produces extracellular cellulase and protease activities. The ability to produce plant cell wall degrading enzymes shows that S. oryzae shares characteristics of plant associated bacteria, including phytopathogens.
Collapse
Affiliation(s)
- Nicole Hugouvieux-Cotte-Pattat
- Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, UMR5240 Microbiologie Adaptation et Pathogénie, F-69621Villeurbanne, France
| | - Cécile Jacot-des-Combes
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, plateforme DTAMB, FR3728 BioEnviS, F-69621Villeurbanne, France
| | - Jérôme Briolay
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, plateforme DTAMB, FR3728 BioEnviS, F-69621Villeurbanne, France
| |
Collapse
|
14
|
White RC, Cianciotto NP. Assessing the impact, genomics and evolution of type II secretion across a large, medically important genus: the Legionella type II secretion paradigm. Microb Genom 2019; 5. [PMID: 31166887 PMCID: PMC6617341 DOI: 10.1099/mgen.0.000273] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The type II secretion system (T2SS) plays a major role in promoting bacterial survival in the environment and in human hosts. One of the best characterized T2SS is that of Legionella pneumophila, the agent of Legionnaires’ disease. Secreting at least 25 proteins, including degradative enzymes, eukaryotic-like proteins and novel effectors, this T2SS contributes to the ability of L. pneumophila to grow at low temperatures, infect amoebal and macrophage hosts, damage lung tissue, evade the immune system, and undergo sliding motility. The genes encoding the T2SS are conserved across the genus Legionella, which includes 62 species and >30 pathogens in addition to L. pneumophila. The vast majority of effectors associated with L. pneumophila are shared by a large number of Legionella species, hinting at a critical role for them in the ecology of Legionella as a whole. However, no other species has the same repertoire as L. pneumophila, with, as a general rule, phylogenetically more closely related species sharing similar sets of effectors. T2SS effectors that are involved in infection of a eukaryotic host(s) are more prevalent throughout Legionella, indicating that they are under stronger selective pressure. The Legionella T2SS apparatus is closest to that of Aquicella (another parasite of amoebae), and a significant number of L. pneumophila effectors have their closest homologues in Aquicella. Thus, the T2SS of L. pneumophila probably originated within the order Legionellales, with some of its effectors having arisen within that Aquicella-like progenitor, while other effectors derived from the amoebal host, mimiviruses, fungi and less closely related bacteria.
Collapse
Affiliation(s)
- Richard C White
- 1 Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611, USA
| | - Nicholas P Cianciotto
- 1 Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611, USA
| |
Collapse
|
15
|
Tekedar HC, Abdelhamed H, Kumru S, Blom J, Karsi A, Lawrence ML. Comparative Genomics of Aeromonas hydrophila Secretion Systems and Mutational Analysis of hcp1 and vgrG1 Genes From T6SS. Front Microbiol 2019; 9:3216. [PMID: 30687246 PMCID: PMC6333679 DOI: 10.3389/fmicb.2018.03216] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 12/11/2018] [Indexed: 12/19/2022] Open
Abstract
Virulent Aeromonas hydrophila causes severe motile Aeromonas septicemia in warmwater fishes. In recent years, channel catfish farming in the U.S.A. and carp farming in China have been affected by virulent A. hydrophila, and genome comparisons revealed that these virulent A. hydrophila strains belong to the same clonal group. Bacterial secretion systems are often important virulence factors; in the current study, we investigated whether secretion systems contribute to the virulent phenotype of these strains. Thus, we conducted comparative secretion system analysis using 55 A. hydrophila genomes, including virulent A. hydrophila strains from U.S.A. and China. Interestingly, tight adherence (TaD) system is consistently encoded in all the vAh strains. The majority of U.S.A. isolates do not possess a complete type VI secretion system, but three core elements [tssD (hcp), tssH, and tssI (vgrG)] are encoded. On the other hand, Chinese isolates have a complete type VI secretion system operon. None of the virulent A. hydrophila isolates have a type III secretion system. Deletion of two genes encoding type VI secretion system proteins (hcp1 and vgrG1) from virulent A. hydrophila isolate ML09-119 reduced virulence 2.24-fold in catfish fingerlings compared to the parent strain ML09-119. By determining the distribution of genes encoding secretion systems in A. hydrophila strains, our study clarifies which systems may contribute to core A. hydrophila functions and which may contribute to more specialized adaptations such as virulence. Our study also clarifies the role of type VI secretion system in A. hydrophila virulence.
Collapse
Affiliation(s)
- Hasan C Tekedar
- College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Hossam Abdelhamed
- College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Salih Kumru
- College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Attila Karsi
- College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Mark L Lawrence
- College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| |
Collapse
|
16
|
Wang X, Han Q, Chen G, Zhang W, Liu W. A Putative Type II Secretion System Is Involved in Cellulose Utilization in Cytophaga hutchisonii. Front Microbiol 2017; 8:1482. [PMID: 28848505 PMCID: PMC5553014 DOI: 10.3389/fmicb.2017.01482] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/24/2017] [Indexed: 11/23/2022] Open
Abstract
Cytophaga hutchinsonii is a gliding cellulolytic bacterium that degrades cellulose in a substrate contact-dependent manner. Specific proteins are speculated to be translocated to its extracellular milieu or outer membrane surface to participate in adhesion to cellulose and further digestion. In this study, we show that three orthologous genes encoding the major components (T2S-D, -F, and -G) of type II secretion system (T2SS) are involved in cellulose degradation but not in cell motility. The individual disruption of the three t2s genes results in a significantly retarded growth on cellobiose, regenerated amorphous cellulose, and Avicel cellulose. Enzymatic analyses demonstrate that, whereas the endoglucanase activity of the t2s mutant cells is increased, the β-glucosidase activity is remarkably reduced compared to that of WT cells. Further analyses reveal that the t2s mutant cells not only exhibit a different profile of cellulose-bound outer membrane proteins from that of wild-type cells, but also display a significant decrease in their capability to adhere to cellulose. These results indicate that a functional link exits between the putative T2SS and cellulose utilization in C. hutchinsonii, and thus provide a conceptual framework to understand the unique strategy deployed by C. hutchinsonii to assimilate cellulose.
Collapse
Affiliation(s)
- Xia Wang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong UniversityJinan, China
| | - Qingqing Han
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong UniversityJinan, China
| | - Guanjun Chen
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong UniversityJinan, China
| | - Weixin Zhang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong UniversityJinan, China
| | - Weifeng Liu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong UniversityJinan, China
| |
Collapse
|
17
|
Gu S, Shevchik VE, Shaw R, Pickersgill RW, Garnett JA. The role of intrinsic disorder and dynamics in the assembly and function of the type II secretion system. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1255-1266. [PMID: 28733198 DOI: 10.1016/j.bbapap.2017.07.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/02/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022]
Abstract
Many Gram-negative commensal and pathogenic bacteria use a type II secretion system (T2SS) to transport proteins out of the cell. These exported proteins or substrates play a major role in toxin delivery, maintaining biofilms, replication in the host and subversion of host immune responses to infection. We review the current structural and functional work on this system and argue that intrinsically disordered regions and protein dynamics are central for assembly, exo-protein recognition, and secretion competence of the T2SS. The central role of intrinsic disorder-order transitions in these processes may be a particular feature of type II secretion.
Collapse
Affiliation(s)
- Shuang Gu
- Queen Mary University of London, School of Biological and Chemical Sciences, London E1 4NS, United Kingdom
| | - Vladimir E Shevchik
- Université de Lyon, F-69003, Université Lyon 1, Lyon, F-69622, INSA-Lyon, Villeurbanne F-69621, CNRS, UMR5240, Microbiologie Adaptation et Pathogénie, Lyon F-69622, France
| | - Rosie Shaw
- Queen Mary University of London, School of Biological and Chemical Sciences, London E1 4NS, United Kingdom
| | - Richard W Pickersgill
- Queen Mary University of London, School of Biological and Chemical Sciences, London E1 4NS, United Kingdom.
| | - James A Garnett
- Queen Mary University of London, School of Biological and Chemical Sciences, London E1 4NS, United Kingdom.
| |
Collapse
|
18
|
Haddad JF, Yang Y, Yeung S, Couture JF. Recognizing asymmetry in pseudo-symmetry; structural insights into the interaction between amphipathic α-helices and X-bundle proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1605-1612. [PMID: 28652208 DOI: 10.1016/j.bbapap.2017.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 05/14/2017] [Accepted: 06/21/2017] [Indexed: 11/27/2022]
Abstract
An α-helix bundle is a small and compact protein fold always composed of more than 2 α-helices that typically run nearly parallel or antiparallel to each other. The repertoire of arrangements of α-helix bundle is such that these domains bind to a myriad of molecular entities including DNA, RNA, proteins and small molecules. A special instance of α-helical bundle is the X-type in which the arrangement of two α-helices interact at 45° to form an X. Among those, some X-helix bundle proteins bind to the hydrophobic section of an amphipathic α-helix in a seemingly orientation and sequence specific manner. In this review, we will compare the binding mode of amphipathic α-helices to X-helix bundle and α-helical bundle proteins. From these structures, we will highlight potential regulatory paradigms that may control the specific interactions of X-helix bundle proteins to amphipathic α-helices. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman.
Collapse
Affiliation(s)
- John Faissal Haddad
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Yidai Yang
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Sylvain Yeung
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Jean-François Couture
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada.
| |
Collapse
|
19
|
Lewenza S, Charron-Mazenod L, Afroj S, van Tilburg Bernardes E. Hyperbiofilm phenotype of Pseudomonas aeruginosa defective for the PlcB and PlcN secreted phospholipases. Can J Microbiol 2017; 63:780-787. [PMID: 28609638 DOI: 10.1139/cjm-2017-0244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Biofilms are dense communities of bacteria enmeshed in a protective extracellular matrix composed mainly of exopolysaccharides, extracellular DNA, proteins, and outer membrane vesicles (OMVs). Given the role of biofilms in antibiotic-tolerant and chronic infections, novel strategies are needed to block, disperse, or degrade biofilms. Enzymes that degrade the biofilm matrix are a promising new therapy. We screened mutants in many of the enzymes secreted by the type II secretion system (T2SS) and determined that the T2SS, and specifically phospholipases, play a role in biofilm formation. Mutations in the xcp secretion system and in the plcB and plcN phospholipases all resulted in hyperbiofilm phenotypes. PlcB has activity against many phospholipids, including the common bacterial membrane lipid phosphatidylethanolamine, and may degrade cell membrane debris or OMVs in the biofilm matrix. Exogenous phospholipase was shown to reduce aggregation and biofilm formation, suggesting its potential role as a novel enzymatic treatment to dissolve biofilms.
Collapse
Affiliation(s)
- Shawn Lewenza
- a Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute of Chronic Diseases, Faculty of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada.,b Faculty of Science and Technology, Athabasca University, Athabasca, AB T9S 3A3, Canada
| | - Laetitia Charron-Mazenod
- a Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute of Chronic Diseases, Faculty of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Shirin Afroj
- a Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute of Chronic Diseases, Faculty of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Erik van Tilburg Bernardes
- a Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute of Chronic Diseases, Faculty of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
20
|
Lasica AM, Ksiazek M, Madej M, Potempa J. The Type IX Secretion System (T9SS): Highlights and Recent Insights into Its Structure and Function. Front Cell Infect Microbiol 2017. [PMID: 28603700 DOI: 10.3389/fcimb.2017.00215.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Protein secretion systems are vital for prokaryotic life, as they enable bacteria to acquire nutrients, communicate with other species, defend against biological and chemical agents, and facilitate disease through the delivery of virulence factors. In this review, we will focus on the recently discovered type IX secretion system (T9SS), a complex translocon found only in some species of the Bacteroidetes phylum. T9SS plays two roles, depending on the lifestyle of the bacteria. It provides either a means of movement (called gliding motility) for peace-loving environmental bacteria or a weapon for pathogens. The best-studied members of these two groups are Flavobacterium johnsoniae, a commensal microorganism often found in water and soil, and Porphyromonas gingivalis, a human oral pathogen that is a major causative agent of periodontitis. In P. gingivalis and some other periodontopathogens, T9SS translocates proteins, especially virulence factors, across the outer membrane (OM). Proteins destined for secretion bear a conserved C-terminal domain (CTD) that directs the cargo to the OM translocon. At least 18 proteins are involved in this still enigmatic process, with some engaged in the post-translational modification of T9SS cargo proteins. Upon translocation across the OM, the CTD is removed by a protease with sortase-like activity and an anionic LPS is attached to the newly formed C-terminus. As a result, a cargo protein could be secreted into the extracellular milieu or covalently attached to the bacterial surface. T9SS is regulated by a two-component system; however, the precise environmental signal that triggers it has not been identified. Exploring unknown systems contributing to bacterial virulence is exciting, as it may eventually lead to new therapeutic strategies. During the past decade, the major components of T9SS were identified, as well as hints suggesting the possible mechanism of action. In addition, the list of characterized cargo proteins is constantly growing. The actual structure of the translocon, situated in the OM of bacteria, remains the least explored area; however, new technical approaches and increasing scientific attention have resulted in a growing body of data. Therefore, we present a compact up-to-date review of this topic.
Collapse
Affiliation(s)
- Anna M Lasica
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of DentistryLouisville, KY, United States.,Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of WarsawWarsaw, Poland
| | - Miroslaw Ksiazek
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of DentistryLouisville, KY, United States.,Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Mariusz Madej
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Jan Potempa
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of DentistryLouisville, KY, United States.,Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian UniversityKrakow, Poland
| |
Collapse
|
21
|
Maffei B, Francetic O, Subtil A. Tracking Proteins Secreted by Bacteria: What's in the Toolbox? Front Cell Infect Microbiol 2017; 7:221. [PMID: 28620586 PMCID: PMC5449463 DOI: 10.3389/fcimb.2017.00221] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/15/2017] [Indexed: 01/14/2023] Open
Abstract
Bacteria have acquired multiple systems to expose proteins on their surface, release them in the extracellular environment or even inject them into a neighboring cell. Protein secretion has a high adaptive value and secreted proteins are implicated in many functions, which are often essential for bacterial fitness. Several secreted proteins or secretion machineries have been extensively studied as potential drug targets. It is therefore important to identify the secretion substrates, to understand how they are specifically recognized by the secretion machineries, and how transport through these machineries occurs. The purpose of this review is to provide an overview of the biochemical, genetic and imaging tools that have been developed to evaluate protein secretion in a qualitative or quantitative manner. After a brief overview of the different tools available, we will illustrate their advantages and limitations through a discussion of some of the current open questions related to protein secretion. We will start with the question of the identification of secreted proteins, which for many bacteria remains a critical initial step toward a better understanding of their interactions with the environment. We will then illustrate our toolbox by reporting how these tools have been applied to better understand how substrates are recognized by their cognate machinery, and how secretion proceeds. Finally, we will highlight recent approaches that aim at investigating secretion in real time, and in complex environments such as a tissue or an organism.
Collapse
Affiliation(s)
- Benoit Maffei
- Unité de Biologie Cellulaire de l'Infection Microbienne, Institut PasteurParis, France.,Centre National de la Recherche Scientifique UMR3691Paris, France
| | - Olivera Francetic
- Unité de Biochimie des Interactions Macromoléculaires, Institut PasteurParis, France.,Centre National de la Recherche Scientifique ERL6002Paris, France
| | - Agathe Subtil
- Unité de Biologie Cellulaire de l'Infection Microbienne, Institut PasteurParis, France.,Centre National de la Recherche Scientifique UMR3691Paris, France
| |
Collapse
|
22
|
Lasica AM, Ksiazek M, Madej M, Potempa J. The Type IX Secretion System (T9SS): Highlights and Recent Insights into Its Structure and Function. Front Cell Infect Microbiol 2017; 7:215. [PMID: 28603700 PMCID: PMC5445135 DOI: 10.3389/fcimb.2017.00215] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/11/2017] [Indexed: 12/11/2022] Open
Abstract
Protein secretion systems are vital for prokaryotic life, as they enable bacteria to acquire nutrients, communicate with other species, defend against biological and chemical agents, and facilitate disease through the delivery of virulence factors. In this review, we will focus on the recently discovered type IX secretion system (T9SS), a complex translocon found only in some species of the Bacteroidetes phylum. T9SS plays two roles, depending on the lifestyle of the bacteria. It provides either a means of movement (called gliding motility) for peace-loving environmental bacteria or a weapon for pathogens. The best-studied members of these two groups are Flavobacterium johnsoniae, a commensal microorganism often found in water and soil, and Porphyromonas gingivalis, a human oral pathogen that is a major causative agent of periodontitis. In P. gingivalis and some other periodontopathogens, T9SS translocates proteins, especially virulence factors, across the outer membrane (OM). Proteins destined for secretion bear a conserved C-terminal domain (CTD) that directs the cargo to the OM translocon. At least 18 proteins are involved in this still enigmatic process, with some engaged in the post-translational modification of T9SS cargo proteins. Upon translocation across the OM, the CTD is removed by a protease with sortase-like activity and an anionic LPS is attached to the newly formed C-terminus. As a result, a cargo protein could be secreted into the extracellular milieu or covalently attached to the bacterial surface. T9SS is regulated by a two-component system; however, the precise environmental signal that triggers it has not been identified. Exploring unknown systems contributing to bacterial virulence is exciting, as it may eventually lead to new therapeutic strategies. During the past decade, the major components of T9SS were identified, as well as hints suggesting the possible mechanism of action. In addition, the list of characterized cargo proteins is constantly growing. The actual structure of the translocon, situated in the OM of bacteria, remains the least explored area; however, new technical approaches and increasing scientific attention have resulted in a growing body of data. Therefore, we present a compact up-to-date review of this topic.
Collapse
Affiliation(s)
- Anna M Lasica
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of DentistryLouisville, KY, United States.,Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of WarsawWarsaw, Poland
| | - Miroslaw Ksiazek
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of DentistryLouisville, KY, United States.,Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Mariusz Madej
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Jan Potempa
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of DentistryLouisville, KY, United States.,Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian UniversityKrakow, Poland
| |
Collapse
|
23
|
Thomassin JL, Santos Moreno J, Guilvout I, Tran Van Nhieu G, Francetic O. The trans-envelope architecture and function of the type 2 secretion system: new insights raising new questions. Mol Microbiol 2017; 105:211-226. [DOI: 10.1111/mmi.13704] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Jenny-Lee Thomassin
- Department of structural biology and chemistry, Biochemistry of Macromolecular Interactions Unit; Institut Pasteur; 28 rue du Dr Roux 75724 Paris Cedex 15 France
- Centre National de la Recherche Scientifique (CNRS); ERL6002 75724 Paris France
| | - Javier Santos Moreno
- Université Paris Diderot (Paris 7) Sorbonne Paris Cité; Paris France
- Laboratory of Intercellular Communication and Microbial Infections; CIRB, Collège de France; 11 Place Marcelin Berthelot 75005 Paris France
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1050; 75005 Paris France
- Centre National de la Recherche Scientifique (CNRS), UMR7241; 75005 Paris France
- MEMOLIFE Laboratory of Excellence and Paris Sciences et Lettres; 75005 Paris France
| | - Ingrid Guilvout
- Department of structural biology and chemistry, Biochemistry of Macromolecular Interactions Unit; Institut Pasteur; 28 rue du Dr Roux 75724 Paris Cedex 15 France
- Centre National de la Recherche Scientifique (CNRS); ERL6002 75724 Paris France
| | - Guy Tran Van Nhieu
- Laboratory of Intercellular Communication and Microbial Infections; CIRB, Collège de France; 11 Place Marcelin Berthelot 75005 Paris France
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1050; 75005 Paris France
- Centre National de la Recherche Scientifique (CNRS), UMR7241; 75005 Paris France
- MEMOLIFE Laboratory of Excellence and Paris Sciences et Lettres; 75005 Paris France
| | - Olivera Francetic
- Department of structural biology and chemistry, Biochemistry of Macromolecular Interactions Unit; Institut Pasteur; 28 rue du Dr Roux 75724 Paris Cedex 15 France
- Centre National de la Recherche Scientifique (CNRS); ERL6002 75724 Paris France
| |
Collapse
|
24
|
Abstract
Type II secretion (T2S) is one means by which Gram-negative pathogens secrete proteins into the extracellular milieu and/or host organisms. Based upon recent genome sequencing, it is clear that T2S is largely restricted to the Proteobacteria, occurring in many, but not all, genera in the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Deltaproteobacteria classes. Prominent human and/or animal pathogens that express a T2S system(s) include Acinetobacter baumannii, Burkholderia pseudomallei, Chlamydia trachomatis, Escherichia coli, Klebsiella pneumoniae, Legionella pneumophila, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Vibrio cholerae, and Yersinia enterocolitica T2S-expressing plant pathogens include Dickeya dadantii, Erwinia amylovora, Pectobacterium carotovorum, Ralstonia solanacearum, Xanthomonas campestris, Xanthomonas oryzae, and Xylella fastidiosa T2S also occurs in nonpathogenic bacteria, facilitating symbioses, among other things. The output of a T2S system can range from only one to dozens of secreted proteins, encompassing a diverse array of toxins, degradative enzymes, and other effectors, including novel proteins. Pathogenic processes mediated by T2S include the death of host cells, degradation of tissue, suppression of innate immunity, adherence to host surfaces, biofilm formation, invasion into and growth within host cells, nutrient assimilation, and alterations in host ion flux. The reach of T2S is perhaps best illustrated by those bacteria that clearly use it for both environmental survival and virulence; e.g., L. pneumophila employs T2S for infection of amoebae, growth within lung cells, dampening of cytokines, and tissue destruction. This minireview provides an update on the types of bacteria that have T2S, the kinds of proteins that are secreted via T2S, and how T2S substrates promote infection.
Collapse
|
25
|
Alterations in Peptidoglycan Cross-Linking Suppress the Secretin Assembly Defect Caused by Mutation of GspA in the Type II Secretion System. J Bacteriol 2017; 199:JB.00617-16. [PMID: 28138102 DOI: 10.1128/jb.00617-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 01/23/2017] [Indexed: 12/22/2022] Open
Abstract
In Gram-negative bacteria, the peptidoglycan (PG) cell wall is a significant structural barrier for outer membrane protein assembly. In Aeromonas hydrophila, outer membrane multimerization of the type II secretion system (T2SS) secretin ExeD requires the function of the inner membrane assembly factor complex ExeAB. The putative mechanism of the complex involves the reorganization of PG and localization of ExeD, whereby ExeA functions by interacting with PG to form a site for secretin assembly and ExeB forms an interaction with ExeD. This mechanism led us to hypothesize that increasing the pore size of PG would circumvent the requirement for ExeA in the assembly of the ExeD secretin. Growth of A. hydrophila in 270 mM Gly reduced PG cross-links by approximately 30% and led to the suppression of secretin assembly defects in exeA strains and in those expressing ExeA mutants by enabling localization of the secretin in the outer membrane. We also established a heterologous ExeD assembly system in Escherichia coli and showed that ExeAB and ExeC are the only A. hydrophila proteins required for the assembly of the ExeD secretin in E. coli and that ExeAB-independent assembly of ExeD can occur upon overexpression of the d,d-carboxypeptidase PBP 5. These results support an assembly model in which, upon binding to PG, ExeA induces multimerization and pore formation in the sacculus, which enables ExeD monomers to interact with ExeB and assemble into a secretin that both is inserted in the outer membrane and crosses the PG layer to interact with the inner membrane platform of the T2SS.IMPORTANCE The PG layer imposes a strict structural impediment for the assembly of macromolecular structures that span the cell envelope and serve as virulence factors in Gram-negative species. This work revealed that by decreasing PG cross-linking by growth in Gly, the absolute requirement for the PG-binding activity of ExeA in the assembly of the ExeD secretin was alleviated in A. hydrophila In a heterologous assembly model in E. coli, expression of the carboxypeptidase PBP 5 could relieve the requirement for ExeAB in the assembly of the ExeD secretin. These results provide some mechanistic details of the ExeAB assembly complex function, in which the PG-binding and oligomerization functions of ExeAB are used to create a pore in the PG that is required for secretin assembly.
Collapse
|
26
|
Kavanagh P, Botting CH, Jana PS, Leech D, Abram F. Comparative Proteomics Implicates a Role for Multiple Secretion Systems in Electrode-Respiring Geobacter sulfurreducens Biofilms. J Proteome Res 2016; 15:4135-4145. [DOI: 10.1021/acs.jproteome.5b01019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Paul Kavanagh
- School
of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland
| | - Catherine H. Botting
- Biomedical
Sciences Research Complex, University of St. Andrews, North Haugh, Fife KY16 9ST, United Kingdom
| | - Partha S. Jana
- School
of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland
| | - Dónal Leech
- School
of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland
| | - Florence Abram
- Functional
Environmental Microbiology, School of Natural Sciences, National University of Ireland Galway, University Road, Galway, Ireland
| |
Collapse
|
27
|
Identification of protein secretion systems in bacterial genomes. Sci Rep 2016; 6:23080. [PMID: 26979785 PMCID: PMC4793230 DOI: 10.1038/srep23080] [Citation(s) in RCA: 242] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/24/2016] [Indexed: 01/08/2023] Open
Abstract
Bacteria with two cell membranes (diderms) have evolved complex systems for protein secretion. These systems were extensively studied in some model bacteria, but the characterisation of their diversity has lagged behind due to lack of standard annotation tools. We built online and standalone computational tools to accurately predict protein secretion systems and related appendages in bacteria with LPS-containing outer membranes. They consist of models describing the systems’ components and genetic organization to be used with MacSyFinder to search for T1SS-T6SS, T9SS, flagella, Type IV pili and Tad pili. We identified ~10,000 candidate systems in bacterial genomes, where T1SS and T5SS were by far the most abundant and widespread. All these data are made available in a public database. The recently described T6SSiii and T9SS were restricted to Bacteroidetes, and T6SSii to Francisella. The T2SS, T3SS, and T4SS were frequently encoded in single-copy in one locus, whereas most T1SS were encoded in two loci. The secretion systems of diderm Firmicutes were similar to those found in other diderms. Novel systems may remain to be discovered, since some clades of environmental bacteria lacked all known protein secretion systems. Our models can be fully customized, which should facilitate the identification of novel systems.
Collapse
|
28
|
Medically Relevant Acinetobacter Species Require a Type II Secretion System and Specific Membrane-Associated Chaperones for the Export of Multiple Substrates and Full Virulence. PLoS Pathog 2016; 12:e1005391. [PMID: 26764912 PMCID: PMC4713064 DOI: 10.1371/journal.ppat.1005391] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/18/2015] [Indexed: 01/31/2023] Open
Abstract
Acinetobacter baumannii, A. nosocomialis, and A. pittii have recently emerged as opportunistic human pathogens capable of causing severe human disease; however, the molecular mechanisms employed by Acinetobacter to cause disease remain poorly understood. Many pathogenic members of the genus Acinetobacter contain genes predicted to encode proteins required for the biogenesis of a type II secretion system (T2SS), which have been shown to mediate virulence in many Gram-negative organisms. Here we demonstrate that Acinetobacter nosocomialis strain M2 produces a functional T2SS, which is required for full virulence in both the Galleria mellonella and murine pulmonary infection models. Importantly, this is the first bona fide secretion system shown to be required for virulence in Acinetobacter. Using bioinformatics, proteomics, and mutational analyses, we show that Acinetobacter employs its T2SS to export multiple substrates, including the lipases LipA and LipH as well as the protease CpaA. Furthermore, the Acinetobacter T2SS, which is found scattered amongst five distinct loci, does not contain a dedicated pseudopilin peptidase, but instead relies on the type IV prepilin peptidase, reinforcing the common ancestry of these two systems. Lastly, two of the three secreted proteins characterized in this study require specific chaperones for secretion. These chaperones contain an N-terminal transmembrane domain, are encoded adjacently to their cognate effector, and their disruption abolishes type II secretion of their cognate effector. Bioinformatic analysis identified putative chaperones located adjacent to multiple previously known type II effectors from several Gram-negative bacteria, which suggests that T2SS chaperones constitute a separate class of membrane-associated chaperones mediating type II secretion.
Collapse
|
29
|
East A, Mechaly A, Huysmans G, Bernarde C, Tello-Manigne D, Nadeau N, Pugsley A, Buschiazzo A, Alzari P, Bond P, Francetic O. Structural Basis of Pullulanase Membrane Binding and Secretion Revealed by X-Ray Crystallography, Molecular Dynamics and Biochemical Analysis. Structure 2016; 24:92-104. [DOI: 10.1016/j.str.2015.10.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 10/22/2022]
|
30
|
Acinetobacter baumannii Is Dependent on the Type II Secretion System and Its Substrate LipA for Lipid Utilization and In Vivo Fitness. J Bacteriol 2015; 198:711-9. [PMID: 26668261 DOI: 10.1128/jb.00622-15] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/01/2015] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Gram-negative bacteria express a number of sophisticated secretion systems to transport virulence factors across the cell envelope, including the type II secretion (T2S) system. Genes for the T2S components GspC through GspN and PilD are conserved among isolates of Acinetobacter baumannii, an increasingly common nosocomial pathogen that is developing multidrug resistance at an alarming rate. In contrast to most species, however, the T2S genes are dispersed throughout the genome rather than linked into one or two operons. Despite this unique genetic organization, we show here that the A. baumannii T2S system is functional. Deletion of gspD or gspE in A. baumannii ATCC 17978 results in loss of secretion of LipA, a lipase that breaks down long-chain fatty acids. Due to a lack of extracellular lipase, the gspD mutant, the gspE mutant, and a lipA deletion strain are incapable of growth on long-chain fatty acids as a sole source of carbon, while their growth characteristics are indistinguishable from those of the wild-type strain in nutrient-rich broth. Genetic inactivation of the T2S system and its substrate, LipA, also has a negative impact on in vivo fitness in a neutropenic murine model for bacteremia. Both the gspD and lipA mutants are outcompeted by the wild-type strain as judged by their reduced numbers in spleen and liver following intravenous coinoculation. Collectively, our findings suggest that the T2S system plays a hitherto-unrecognized role in in vivo survival of A. baumannii by transporting a lipase that may contribute to fatty acid metabolism. IMPORTANCE Infections by multidrug-resistant Acinetobacter baumannii are a growing health concern worldwide, underscoring the need for a better understanding of the molecular mechanisms by which this pathogen causes disease. In this study, we demonstrated that A. baumannii expresses a functional type II secretion (T2S) system that is responsible for secretion of LipA, an extracellular lipase required for utilization of exogenously added lipids. The T2S system and the secreted lipase support in vivo colonization and thus contribute to the pathogenic potential of A. baumannii.
Collapse
|
31
|
Park BR, Zielke RA, Wierzbicki IH, Mitchell KC, Withey JH, Sikora AE. A metalloprotease secreted by the type II secretion system links Vibrio cholerae with collagen. J Bacteriol 2015; 197:1051-64. [PMID: 25561716 PMCID: PMC4336349 DOI: 10.1128/jb.02329-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 12/31/2014] [Indexed: 01/13/2023] Open
Abstract
Vibrio cholerae is autochthonous to various aquatic niches and is the etiological agent of the life-threatening diarrheal disease cholera. The persistence of V. cholerae in natural habitats is a crucial factor in the epidemiology of cholera. In contrast to the well-studied V. cholerae-chitin connection, scarce information is available about the factors employed by the bacteria for the interaction with collagens. Collagens might serve as biologically relevant substrates, because they are the most abundant protein constituents of metazoan tissues and V. cholerae has been identified in association with invertebrate and vertebrate marine animals, as well as in a benthic zone of the ocean where organic matter, including collagens, accumulates. Here, we describe the characterization of the V. cholerae putative collagenase, VchC, encoded by open reading frame VC1650 and belonging to the subfamily M9A peptidases. Our studies demonstrate that VchC is an extracellular collagenase degrading native type I collagen of fish and mammalian origin. Alteration of the predicted catalytic residues coordinating zinc ions completely abolished the protein enzymatic activity but did not affect the translocation of the protease by the type II secretion pathway into the extracellular milieu. We also show that the protease undergoes a maturation process with the aid of a secreted factor(s). Finally, we propose that V. cholerae is a collagenovorous bacterium, as it is able to utilize collagen as a sole nutrient source. This study initiates new lines of investigations aiming to uncover the structural and functional components of the V. cholerae collagen utilization program.
Collapse
Affiliation(s)
- Bo R Park
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
| | - Ryszard A Zielke
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
| | - Igor H Wierzbicki
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
| | - Kristie C Mitchell
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Jeffrey H Withey
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Aleksandra E Sikora
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
32
|
Computational and experimental analysis of the secretome of Methylococcus capsulatus (Bath). PLoS One 2014; 9:e114476. [PMID: 25479164 PMCID: PMC4257694 DOI: 10.1371/journal.pone.0114476] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/10/2014] [Indexed: 12/23/2022] Open
Abstract
The Gram-negative methanotroph Methylococcus capsulatus (Bath) was recently demonstrated to abrogate inflammation in a murine model of inflammatory bowel disease, suggesting interactions with cells involved in maintaining mucosal homeostasis and emphasizing the importance of understanding the many properties of M. capsulatus. Secreted proteins determine how bacteria may interact with their environment, and a comprehensive knowledge of such proteins is therefore vital to understand bacterial physiology and behavior. The aim of this study was to systematically analyze protein secretion in M. capsulatus (Bath) by identifying the secretion systems present and the respective secreted substrates. Computational analysis revealed that in addition to previously recognized type II secretion systems and a type VII secretion system, a type Vb (two-partner) secretion system and putative type I secretion systems are present in M. capsulatus (Bath). In silico analysis suggests that the diverse secretion systems in M.capsulatus transport proteins likely to be involved in adhesion, colonization, nutrient acquisition and homeostasis maintenance. Results of the computational analysis was verified and extended by an experimental approach showing that in addition an uncharacterized protein and putative moonlighting proteins are released to the medium during exponential growth of M. capsulatus (Bath).
Collapse
|
33
|
Type II secretion system: A magic beanstalk or a protein escalator. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1568-77. [DOI: 10.1016/j.bbamcr.2013.12.020] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/13/2013] [Accepted: 12/23/2013] [Indexed: 12/12/2022]
|
34
|
Vanderlinde EM, Zhong S, Li G, Martynowski D, Grochulski P, Howard SP. Assembly of the type two secretion system in Aeromonas hydrophila involves direct interaction between the periplasmic domains of the assembly factor ExeB and the secretin ExeD. PLoS One 2014; 9:e102038. [PMID: 25025769 PMCID: PMC4098917 DOI: 10.1371/journal.pone.0102038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 06/14/2014] [Indexed: 12/25/2022] Open
Abstract
The type two secretion system is a large, trans-envelope apparatus that secretes toxins across the outer membrane of many Gram-negative bacteria. In Aeromonas hydrophila, ExeA interacts with peptidoglycan and forms a heteromultimeric complex with ExeB that is required for assembly of the ExeD secretin of the secretion system in the outer membrane. While the peptidoglycan-ExeAB (PG-AB) complex is required for ExeD assembly, the assembly mechanism remains unresolved. We analyzed protein-protein interactions to address the hypothesis that ExeD assembly in the outer membrane requires direct interaction with the PG-AB complex. Yeast and bacterial two hybrid analyses demonstrated an interaction between the periplasmic domains of ExeB and ExeD. Two-codon insertion mutagenesis of exeD disrupted lipase secretion, and immunoblotting of whole cells demonstrated significantly reduced secretin in mutant cells. Mapping of the two-codon insertions and deletion analysis showed that the ExeB-ExeD interaction involves the N0 and N1 subdomains of ExeD. Rotational anisotropy using the purified periplasmic domains of ExeB and ExeD determined that the apparent dissociation constant of the interaction is 1.19±0.16 µM. These results contribute important support for a putative mechanism by which the PG-AB complex facilitates assembly of ExeD through direct interaction between ExeB and ExeD. Furthermore, our results provide novel insight into the assembly function of ExeB that may contribute to elucidating the role of homologous proteins in secretion of toxins from other Gram negative pathogens.
Collapse
Affiliation(s)
- Elizabeth M. Vanderlinde
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Su Zhong
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Gang Li
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Dariusz Martynowski
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Pawel Grochulski
- Canadian Light Source, Saskatoon, Saskatchewan, Canada
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - S. Peter Howard
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- * E-mail:
| |
Collapse
|
35
|
Zielke RA, Simmons RS, Park BR, Nonogaki M, Emerson S, Sikora AE. The type II secretion pathway in Vibrio cholerae is characterized by growth phase-dependent expression of exoprotein genes and is positively regulated by σE. Infect Immun 2014; 82:2788-801. [PMID: 24733097 PMCID: PMC4097608 DOI: 10.1128/iai.01292-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 04/10/2014] [Indexed: 01/08/2023] Open
Abstract
Vibrio cholerae, an etiological agent of cholera, circulates between aquatic reservoirs and the human gastrointestinal tract. The type II secretion (T2S) system plays a pivotal role in both stages of the lifestyle by exporting multiple proteins, including cholera toxin. Here, we studied the kinetics of expression of genes encoding the T2S system and its cargo proteins. We have found that under laboratory growth conditions, the T2S complex was continuously expressed throughout V. cholerae growth, whereas there was growth phase-dependent transcriptional activity of genes encoding different cargo proteins. Moreover, exposure of V. cholerae to different environmental cues encountered by the bacterium in its life cycle induced transcriptional expression of T2S. Subsequent screening of a V. cholerae genomic library suggested that σ(E) stress response, phosphate metabolism, and the second messenger 3',5'-cyclic diguanylic acid (c-di-GMP) are involved in regulating transcriptional expression of T2S. Focusing on σ(E), we discovered that the upstream region of the T2S operon possesses both the consensus σ(E) and σ(70) signatures, and deletion of the σ(E) binding sequence prevented transcriptional activation of T2S by RpoE. Ectopic overexpression of σ(E) stimulated transcription of T2S in wild-type and isogenic ΔrpoE strains of V. cholerae, providing additional support for the idea that the T2S complex belongs to the σ(E) regulon. Together, our results suggest that the T2S pathway is characterized by the growth phase-dependent expression of genes encoding cargo proteins and requires a multifactorial regulatory network to ensure appropriate kinetics of the secretory traffic and the fitness of V. cholerae in different ecological niches.
Collapse
Affiliation(s)
- Ryszard A Zielke
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
| | - Ryan S Simmons
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | - Bo R Park
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
| | - Mariko Nonogaki
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
| | - Sarah Emerson
- Department of Statistics, Oregon State University, Corvallis, Oregon, USA
| | - Aleksandra E Sikora
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
36
|
Abstract
The type II secretion system is utilized by many Gram-negative bacteria to export folded proteins to the surface and/or the extracellular environment of the cell. Although the function of the system is to move proteins from the periplasm to the outside of the cell, it is a large trans-envelope structure composed of more than a dozen different proteins present in multiple copies, including peripheral, integral inner membrane and integral outer membrane proteins plus a pseudopilus stretching between them. The establishment of this structure as an integral component of the entire envelope including the peptidoglycan layer between the two membranes requires assembly. Many of the participants and processes involved in this assembly have now been established, while other aspects remain to be discovered or more fully understood.
Collapse
Affiliation(s)
- S Peter Howard
- Department of Microbiology and Immunology, University of Saskatchewan, Health Sciences Building, Room 2D01, 107 Wiggins Road, Saskatoon, Saskatchewan, Canada S7N 5E5.
| |
Collapse
|