1
|
Zakharzhevskaya NB, Shagaleeva OY, Kashatnikova DA, Goncharov AO, Evsyutina DV, Kardonsky DA, Vorobeva EA, Silantiev AS, Kazakova VD, Kolesnikova IV, Butenko IO, Vanyushkina AA, Smirnova SV, Chaplin AV, Efimov BA. Proteogenomic annotation of T6SS components identified in Bacteroides fragilis secretome. Front Microbiol 2025; 16:1495971. [PMID: 40008042 PMCID: PMC11854122 DOI: 10.3389/fmicb.2025.1495971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/15/2025] [Indexed: 02/27/2025] Open
Abstract
Introduction Bacteroides fragilis (Bf)'s T6SS locus has been characterized and shown to have functional activity in competition experiments. It has been demonstrated that symbiont nontoxigenic Bf strains have a more effective "weapon" effect on pathogenic Bf, which is realized through the activity of effector-immune (E-I) protein pairs. Intensive study of the T6SS structure has led to an understanding of certain issues related to its functional activity, but the exact regulatory mechanisms of E-I protein pair activity remain unclear. Proteomic annotation of T6SS components and detailed descriptions of all immune-effector pairs are currently available. In this research, we performed detailed proteogenomic analysis and subsequent proteomic annotation of the T6SS components of the toxigenic Bf BOB25. Material and methods Fractionated cells, cultivated media and vesicles were prepared for proteome analysis by HPLC-MS/MS. Proteogenomic annotation and comparative genomic study of the T6SS loci of the toxigenic Bf BOB25 were carried out by comparison with the reference genomes of the following Bf strains: JIM10, NCTC 9343 and 638R. Results According to the data obtained, T6SS components were represented in all types of the analysed samples. The following components of the T6SS were identified in culture media and cells: ClpV (TssH), TssK, TssC, TssB, Hcp (TssD), and TetR. The predicted effector protein AKA51715.1 (VU15_08315) was also detected in media. The greatest amount of T6SS proteins, including the Hcp protein, was detected in the vesicle samples, which was also observed by TEM. Potential effectors, including AKA51715.1 (VU15_08315), AKA51716.1 (VU15_08320), AKA51728.1 (VU15_08385) and the immune protein AKA51727.1 (VU15_08380), were detected in vesicles. Discussion The presence of the immune and effector proteins in the Bf secretome indicates the high activity of the T6SS without bacterial competition. It is possible that the T6SS is also used by bacteria to regulate population size by altering the activity of different repertoires of E-I pairs.
Collapse
Affiliation(s)
- Natalya B. Zakharzhevskaya
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Olga Yu Shagaleeva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Daria A. Kashatnikova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- The Laboratory of Ecological Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Anton O. Goncharov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Department of Microbiology and Virology, Pirogov Russian National Research Medical University, Moscow, Russia
| | | | - Dmitry A. Kardonsky
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Elizaveta A. Vorobeva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Artemiy S. Silantiev
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Viktoria D. Kazakova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Irina V. Kolesnikova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Ivan O. Butenko
- Research Institute for Systems Biology and Medicine, Moscow, Russia
| | - Anna A. Vanyushkina
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Svetlana V. Smirnova
- The Laboratory of Ecological Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Andrei V. Chaplin
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Department of Microbiology and Virology, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Boris A. Efimov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Department of Microbiology and Virology, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
2
|
Wang Q, Li Q, Ouyang F, Ke B, Jiang S, Liu J, Yan J, Li B, Tan W, He D. Molecular epidemiology and antimicrobial resistance of Vibrio parahaemolyticus isolates from the Pearl River Delta region, China. Int J Food Microbiol 2025; 429:111025. [PMID: 39693858 DOI: 10.1016/j.ijfoodmicro.2024.111025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024]
Abstract
The Pearl River Delta (PRD) region in southern China is a densely populated area and a hotspot for Vibrio parahaemolyticus infections. However, systematic research on this pathogen, particularly comparing clinical and environmental strains, remains limited. This study analyzed the molecular epidemiology and antimicrobial resistance of 200 V. parahaemolyticus isolates from 12 cities in the PRD region from 2022 to 2023. The results indicated that the most prevalent serotypes were O3:K6 (39.5 %) and O10:K4 (27.5 %), predominantly found in clinical isolates. Most clinical isolates exhibited the characteristics of toxRS/new+, tdh+, and trh-, along with the sequence type 3 (ST3), while environmental isolates did not possess these genetic markers. Antimicrobial susceptibility testing showed that although clinically recommended antibiotics remain effective, some isolates have exhibited resistance, with environmental isolates displaying higher rates of antimicrobial resistance than clinical isolates. Moreover, a total of 26 antibiotic resistance genes (ARGs) associated with 10 antibiotic categories were identified, showing variations in distribution patterns among isolates from different sources. Phylogenetic analysis indicated that clinical isolates formed a distinct lineage, contrasting with the greater diversity observed in environmental isolates. Whole-genome analysis further revealed significant differences in pathogenicity-related genes between the two groups, with genes associated with biofilm formation and antimicrobial resistance being more commonly found in environmental isolates. These findings underscore the genetic variability and distinct patterns of antimicrobial resistance between clinical and environmental V. parahaemolyticus strains, highlighting the need for ongoing surveillance and targeted interventions to effectively address foodborne illnesses.
Collapse
Affiliation(s)
- Qianru Wang
- Department of Microbiological Laboratory, Baoan District Center for Disease Control and Prevention, Shenzhen 518101, China
| | - Qingmei Li
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Medical Academy of Research and Translation (SMART), Shenzhen 518107, China
| | - Fangzhu Ouyang
- Institute of Pathogenic Microbiology, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China; Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangzhou 511430, China
| | - Bixia Ke
- Institute of Pathogenic Microbiology, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China; Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangzhou 511430, China
| | - Shiqin Jiang
- Department of Clinical Pharmacy, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen 518104, China
| | - Jiajun Liu
- Institute of Pathogenic Microbiology, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China; Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangzhou 511430, China
| | - Jin Yan
- Institute of Pathogenic Microbiology, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China; Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangzhou 511430, China
| | - Baisheng Li
- Institute of Pathogenic Microbiology, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China; Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangzhou 511430, China.
| | - Wei Tan
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Dongmei He
- Institute of Pathogenic Microbiology, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China; Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangzhou 511430, China.
| |
Collapse
|
3
|
Gaddy KE, Septer AN, Mruk K, Milton ME. A mutualistic model bacterium is lethal to non-symbiotic hosts via the type VI secretion system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.13.628426. [PMID: 39713446 PMCID: PMC11661226 DOI: 10.1101/2024.12.13.628426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
What makes a bacterium pathogenic? Since the early days of germ theory, researchers have categorized bacteria as pathogens or non-pathogens, those that cause harm and those that do not, but this binary view is not always accurate. Vibrio fischeri is an exclusive mutualistic symbiont found within the light organs of Hawaiian bobtail squid. This symbiotic interaction requires V. fischeri to utilize a range of behaviors and produce molecules that are often associated with pathogenicity. This juxtaposition of employing "pathogenic" behaviors for a symbiotic relationship led the field to focus on how V. fischeri establishes a beneficial association with its host. In this study, we observe that V. fischeri induces mortality in zebrafish embryos and Artemia nauplii. Non-lethal doses of V. fischeri leads to zebrafish growth delays and phenotypes indicative of disease. Our data also provide evidence that the conserved type VI secretion system on chromosome I (T6SS1) plays a role in the V. fischeri-induced mortality of zebrafish embryos and Artemia nauplii. These results support the hypothesis that the V. fischeri T6SS1 is involved in eukaryotic cell interactions. Despite its traditional view as a beneficial symbiont, we provide evidence that V. fischeri is capable of harming aquatic organisms, indicating its potential to be pathogenic toward non-symbiotic hosts.
Collapse
Affiliation(s)
- Keegan E Gaddy
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University
| | - Alecia N Septer
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill
| | - Karen Mruk
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University
| | - Morgan E Milton
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University
| |
Collapse
|
4
|
Backman T, Burbano HA, Karasov TL. Tradeoffs and constraints on the evolution of tailocins. Trends Microbiol 2024; 32:1084-1095. [PMID: 39504934 DOI: 10.1016/j.tim.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 11/08/2024]
Abstract
Phage tail-like bacteriocins (tailocins) are protein complexes produced by bacteria with the potential to kill their neighbors. Widespread throughout Gram-negative bacteria, tailocins exhibit extreme specificity in their targets, largely killing closely related strains. Despite their presence in diverse bacteria, the impact of these competitive weapons on the surrounding microbiota is largely unknown. Recent studies revealed the rapid evolution and genetic diversity of tailocins in microbial communities and suggest that there are constraints on the evolution of specificity and resistance. Given the precision of their targeted killing and the ease of engineering new specificities, understanding the evolution and ecological impact of tailocins may enable the design of promising candidates for novel targeted antibiotics.
Collapse
Affiliation(s)
- Talia Backman
- School of Biological Sciences, University of Utah 257S 1400E, Salt Lake City, UT 84112, USA.
| | - Hernán A Burbano
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution, and Environment, University College London, London, UK.
| | - Talia L Karasov
- School of Biological Sciences, University of Utah 257S 1400E, Salt Lake City, UT 84112, USA.
| |
Collapse
|
5
|
Kumari K, Dey J, Mahapatra SR, Ma Y, Sharma PK, Misra N, Singh RP. Protein profiling and immunoinformatic analysis of the secretome of a metal-resistant environmental isolate Pseudomonas aeruginosa S-8. Folia Microbiol (Praha) 2024; 69:1095-1122. [PMID: 38457114 DOI: 10.1007/s12223-024-01152-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 02/03/2024] [Indexed: 03/09/2024]
Abstract
The bacterial secretome represents a comprehensive catalog of proteins released extracellularly that have multiple important roles in virulence and intercellular communication. This study aimed to characterize the secretome of an environmental isolate Pseudomonas aeruginosa S-8 by analyzing trypsin-digested culture supernatant proteins using nano-LC-MS/MS tool. Using a combined approach of bioinformatics and mass spectrometry, 1088 proteins in the secretome were analyzed by PREDLIPO, SecretomeP 2.0, SignalP 4.1, and PSORTb tool for their subcellular localization and further categorization of secretome proteins according to signal peptides. Using the gene ontology tool, secretome proteins were categorized into different functional categories. KEGG pathway analysis identified the secreted proteins into different metabolic functional pathways. Moreover, our LC-MS/MS data revealed the secretion of various CAZymes into the extracellular milieu, which suggests its strong biotechnological applications to breakdown complex carbohydrate polymers. The identified immunodominant epitopes from the secretome of P. aeruginosa showed the characteristic of being non-allergenic, highly antigenic, nontoxic, and having a low risk of triggering autoimmune responses, which highlights their potential as successful vaccine targets. Overall, the identification of secreted proteins of P. aeruginosa could be important for both diagnostic purposes and the development of an effective candidate vaccine.
Collapse
Affiliation(s)
- Kiran Kumari
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi, 835215, India
| | - Jyotirmayee Dey
- School of Biotechnology, Deemed to Be University, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, 751024, India
| | - Soumya Ranjan Mahapatra
- School of Biotechnology, Deemed to Be University, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, 751024, India
| | - Ying Ma
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Parva Kumar Sharma
- Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
| | - Namrata Misra
- School of Biotechnology, Deemed to Be University, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, 751024, India
| | - Rajnish Prakash Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, 201309, India.
| |
Collapse
|
6
|
Huang Q, Zhang M, Zhang Y, Li X, Luo X, Ji S, Lu R. IcmF2 of the type VI secretion system 2 plays a role in biofilm formation of Vibrio parahaemolyticus. Arch Microbiol 2024; 206:321. [PMID: 38907796 DOI: 10.1007/s00203-024-04060-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
Vibrio parahaemolyticus possesses two distinct type VI secretion systems (T6SS), namely T6SS1 and T6SS2. T6SS1 is predominantly responsible for adhesion to Caco-2 and HeLa cells and for the antibacterial activity of V. parahaemolyticus, while T6SS2 mainly contributes to HeLa cell adhesion. However, it remains unclear whether the T6SS systems have other physiological roles in V. parahaemolyticus. In this study, we demonstrated that the deletion of icmF2, a structural gene of T6SS2, reduced the biofilm formation capacity of V. parahaemolyticus under low salt conditions, which was also influenced by the incubation time. Nonetheless, the deletion of icmF2 did not affect the biofilm formation capacity in marine-like growth conditions, nor did it impact the flagella-driven swimming and swarming motility of V. parahaemolyticus. IcmF2 was found to promote the production of the main components of the biofilm matrix, including extracellular DNA (eDNA) and extracellular proteins, and cyclic di-GMP (c-di-GMP) in V. parahaemolyticus. Additionally, IcmF2 positively influenced the transcription of cpsA, mfpA, and several genes involved in c-di-GMP metabolism, including scrJ, scrL, vopY, tpdA, gefA, and scrG. Conversely, the transcription of scrA was negatively impacted by IcmF2. Therefore, IcmF2-dependent biofilm formation was mediated through its effects on the production of eDNA, extracellular proteins, and c-di-GMP, as well as its impact on the transcription of cpsA, mfpA, and genes associated with c-di-GMP metabolism. This study confirmed new physiological roles for IcmF2 in promoting biofilm formation and c-di-GMP production in V. parahaemolyticus.
Collapse
Affiliation(s)
- Qinglian Huang
- Department of Clinical Laboratory, Qidong People's Hospital, Qidong, Jiangsu, 226200, China
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, 226006, China
| | - Miaomiao Zhang
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, 226006, China
| | - Yiquan Zhang
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, 226006, China.
| | - Xue Li
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, 226006, China
| | - Xi Luo
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, 226006, China
| | - Shenjie Ji
- Department of Clinical Laboratory, Qidong People's Hospital, Qidong, Jiangsu, 226200, China.
| | - Renfei Lu
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, 226006, China.
| |
Collapse
|
7
|
Geller AM, Shalom M, Zlotkin D, Blum N, Levy A. Identification of type VI secretion system effector-immunity pairs using structural bioinformatics. Mol Syst Biol 2024; 20:702-718. [PMID: 38658795 PMCID: PMC11148199 DOI: 10.1038/s44320-024-00035-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/24/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
The type VI secretion system (T6SS) is an important mediator of microbe-microbe and microbe-host interactions. Gram-negative bacteria use the T6SS to inject T6SS effectors (T6Es), which are usually proteins with toxic activity, into neighboring cells. Antibacterial effectors have cognate immunity proteins that neutralize self-intoxication. Here, we applied novel structural bioinformatic tools to perform systematic discovery and functional annotation of T6Es and their cognate immunity proteins from a dataset of 17,920 T6SS-encoding bacterial genomes. Using structural clustering, we identified 517 putative T6E families, outperforming sequence-based clustering. We developed a logistic regression model to reliably quantify protein-protein interaction of new T6E-immunity pairs, yielding candidate immunity proteins for 231 out of the 517 T6E families. We used sensitive structure-based annotation which yielded functional annotations for 51% of the T6E families, again outperforming sequence-based annotation. Next, we validated four novel T6E-immunity pairs using basic experiments in E. coli. In particular, we showed that the Pfam domain DUF3289 is a homolog of Colicin M and that DUF943 acts as its cognate immunity protein. Furthermore, we discovered a novel T6E that is a structural homolog of SleB, a lytic transglycosylase, and identified a specific glutamate that acts as its putative catalytic residue. Overall, this study applies novel structural bioinformatic tools to T6E-immunity pair discovery, and provides an extensive database of annotated T6E-immunity pairs.
Collapse
Affiliation(s)
- Alexander M Geller
- Department of Plant Pathology and Microbiology, The Institute of Environmental Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Maor Shalom
- Department of Plant Pathology and Microbiology, The Institute of Environmental Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - David Zlotkin
- Department of Plant Pathology and Microbiology, The Institute of Environmental Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Noam Blum
- Department of Plant Pathology and Microbiology, The Institute of Environmental Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Asaf Levy
- Department of Plant Pathology and Microbiology, The Institute of Environmental Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
8
|
Reem A, Almansoob S, Senan AM, Kumar Raj A, Shah R, Kumar Shrewastwa M, Kumal JPP. Pseudomonas aeruginosa and related antibiotic resistance genes as indicators for wastewater treatment. Heliyon 2024; 10:e29798. [PMID: 38694026 PMCID: PMC11058306 DOI: 10.1016/j.heliyon.2024.e29798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024] Open
Abstract
This review aims to examine the existence of Pseudomonas aeruginosa (P. aeruginosa) and their antibiotic resistance genes (ARGs) in aquatic settings and the alternative treatment ways. P. aeruginosa in a various aquatic environment have been identified as contaminants with impacts on human health and the environment. P. aeruginosa resistance to multiple antibiotics, such as sulfamethoxazole, ciprofloxacin, quinolone, trimethoprim, tetracycline, vancomycin, as well as specific antibiotic resistance genes including sul1, qnrs, blaVIM, blaTEM, blaCTX, blaAIM-1, tetA, ampC, blaVIM. The development of resistance can occur naturally, through mutations, or via horizontal gene transfer facilitated by sterilizing agents. In addition, an overview of the current knowledge on inactivation of Pseudomonas aeruginosa and ARG and the mechanisms of action of various disinfection processes in water and wastewater (UV chlorine processes, catalytic oxidation, Fenton reaction, and ozonation) is given. An overview of the effects of nanotechnology and the resulting wetlands is also given.
Collapse
Affiliation(s)
- Alariqi Reem
- Medical Laboratory Department, Faculty of Medical Sciences, Amran University, Yemen
| | - Siham Almansoob
- International department, Changsha medical university, Changsha, Hunan, 410000, China
| | - Ahmed M. Senan
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Suleyman Demirel University, Isparta, 32260, Turkey
| | - Aditya Kumar Raj
- Department of Physiology, National Medical College, Birgunj, Nepal
| | - Rajesh Shah
- Department of Microbiology, Nepalgunj Medical College, Chisapani, Banke, Nepal
| | - Mukesh Kumar Shrewastwa
- Department of Biochemistry, Nepalgunj Medical College, Kohalpur, Banke, Nepal
- Department of Biochemistry (IMS & SUM hospital), SOA, deemed to be University, Bhubaneswar, India
| | | |
Collapse
|
9
|
Orel N, Fadeev E, Herndl GJ, Turk V, Tinta T. Recovering high-quality bacterial genomes from cross-contaminated cultures: a case study of marine Vibrio campbellii. BMC Genomics 2024; 25:146. [PMID: 38321410 PMCID: PMC10845552 DOI: 10.1186/s12864-024-10062-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 01/29/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Environmental monitoring of bacterial pathogens is critical for disease control in coastal marine ecosystems to maintain animal welfare and ecosystem function and to prevent significant economic losses. This requires accurate taxonomic identification of environmental bacterial pathogens, which often cannot be achieved by commonly used genetic markers (e.g., 16S rRNA gene), and an understanding of their pathogenic potential based on the information encoded in their genomes. The decreasing costs of whole genome sequencing (WGS), combined with newly developed bioinformatics tools, now make it possible to unravel the full potential of environmental pathogens, beyond traditional microbiological approaches. However, obtaining a high-quality bacterial genome, requires initial cultivation in an axenic culture, which is a bottleneck in environmental microbiology due to cross-contamination in the laboratory or isolation of non-axenic strains. RESULTS We applied WGS to determine the pathogenic potential of two Vibrio isolates from coastal seawater. During the analysis, we identified cross-contamination of one of the isolates and decided to use this dataset to evaluate the possibility of bioinformatic contaminant removal and recovery of bacterial genomes from a contaminated culture. Despite the contamination, using an appropriate bioinformatics workflow, we were able to obtain high quality and highly identical genomes (Average Nucleotide Identity value 99.98%) of one of the Vibrio isolates from both the axenic and the contaminated culture. Using the assembled genome, we were able to determine that this isolate belongs to a sub-lineage of Vibrio campbellii associated with several diseases in marine organisms. We also found that the genome of the isolate contains a novel Vibrio plasmid associated with bacterial defense mechanisms and horizontal gene transfer, which may offer a competitive advantage to this putative pathogen. CONCLUSIONS Our study shows that, using state-of-the-art bioinformatics tools and a sufficient sequencing effort, it is possible to obtain high quality genomes of the bacteria of interest and perform in-depth genomic analyses even in the case of a contaminated culture. With the new isolate and its complete genome, we are providing new insights into the genomic characteristics and functional potential of this sub-lineage of V. campbellii. The approach described here also highlights the possibility of recovering complete bacterial genomes in the case of non-axenic cultures or obligatory co-cultures.
Collapse
Affiliation(s)
- Neža Orel
- Marine Biology Station Piran, National Institute of Biology, Piran, Slovenia.
| | - Eduard Fadeev
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
| | - Gerhard J Herndl
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
- NIOZ, Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
| | - Valentina Turk
- Marine Biology Station Piran, National Institute of Biology, Piran, Slovenia
| | - Tinkara Tinta
- Marine Biology Station Piran, National Institute of Biology, Piran, Slovenia.
| |
Collapse
|
10
|
Wierz JC, Dirksen P, Kirsch R, Krüsemer R, Weiss B, Pauchet Y, Engl T, Kaltenpoth M. Intracellular symbiont Symbiodolus is vertically transmitted and widespread across insect orders. THE ISME JOURNAL 2024; 18:wrae099. [PMID: 38874172 PMCID: PMC11322605 DOI: 10.1093/ismejo/wrae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/05/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
Insects engage in manifold interactions with bacteria that can shift along the parasitism-mutualism continuum. However, only a small number of bacterial taxa managed to successfully colonize a wide diversity of insects, by evolving mechanisms for host-cell entry, immune evasion, germline tropism, reproductive manipulation, and/or by providing benefits to the host that stabilize the symbiotic association. Here, we report on the discovery of an Enterobacterales endosymbiont (Symbiodolus, type species Symbiodolus clandestinus) that is widespread across at least six insect orders and occurs at high prevalence within host populations. Fluorescence in situ hybridization in several Coleopteran and one Dipteran species revealed Symbiodolus' intracellular presence in all host life stages and across tissues, with a high abundance in female ovaries, indicating transovarial vertical transmission. Symbiont genome sequencing across 16 host taxa revealed a high degree of functional conservation in the eroding and transposon-rich genomes. All sequenced Symbiodolus genomes encode for multiple secretion systems, alongside effectors and toxin-antitoxin systems, which likely facilitate host-cell entry and interactions with the host. However, Symbiodolus-infected insects show no obvious signs of disease, and biosynthetic pathways for several amino acids and cofactors encoded by the bacterial genomes suggest that the symbionts may also be able to provide benefits to the hosts. A lack of host-symbiont cospeciation provides evidence for occasional horizontal transmission, so Symbiodolus' success is likely based on a mixed transmission mode. Our findings uncover a hitherto undescribed and widespread insect endosymbiont that may present valuable opportunities to unravel the molecular underpinnings of symbiosis establishment and maintenance.
Collapse
Affiliation(s)
- Jürgen C Wierz
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Philipp Dirksen
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Roy Kirsch
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Ronja Krüsemer
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Benjamin Weiss
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Yannick Pauchet
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Tobias Engl
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Martin Kaltenpoth
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| |
Collapse
|
11
|
Deng L, Wang S. Colonization resistance: the role of gut microbiota in preventing Salmonella invasion and infection. Gut Microbes 2024; 16:2424914. [PMID: 39514544 PMCID: PMC11552263 DOI: 10.1080/19490976.2024.2424914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/21/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
The human gastrointestinal tract is colonized by a complex microbial ecosystem, the gut microbiota, which is pivotal in maintaining host health and mediating resistance to diseases. This review delineates colonization resistance (CR), a critical defensive mechanism employed by the gut microbiota to safeguard against pathogenic bacterial invasions, notably by Salmonella. We detail the mechanisms through which the gut microbiota impedes Salmonella colonization, including nutrient competition, production of antimicrobial peptides, synthesis of microbial-derived metabolites, and modulation of the host immune response. Additionally, we examine how dietary interventions can influence these mechanisms, thereby augmenting the protective role of the gut microbiota. The review also discusses the sophisticated strategies utilized by Salmonella to overcome these microbial defenses. A thorough understanding of these complex interactions between microbial symbionts and pathogens is crucial for the development of innovative therapeutic strategies that enhance CR, aiming to prevent or treat microbial infections effectively.
Collapse
Affiliation(s)
- Lei Deng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Shaohui Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
12
|
Maphosa S, Moleleki LN. A computational and secretome analysis approach reveals exclusive and shared candidate type six secretion system substrates in Pectobacterium brasiliense 1692. Microbiol Res 2024; 278:127501. [PMID: 37976736 DOI: 10.1016/j.micres.2023.127501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/24/2023] [Accepted: 09/13/2023] [Indexed: 11/19/2023]
Abstract
The type 6 secretion system (T6SS) of Gram-negative bacteria (GNB) has implications for bacterial competition, virulence, and survival. For the broad host range pathogen, Pectobacterium brasiliense 1692, T6SS-mediated competition occurs in a tissue-specific manner. However, no other roles have been investigated. The aim of this study was to identify T6SS-associated proteins under virulence inducing conditions. We used Bastion tools to predict 1479 Pbr1692 secreted proteins. Sixteen percent of these overlap between type 1-4 secretion systems (T1SS-T4SS) and T6SS. Using label-free quantitative mass spectrometry of Pbr1692 T6SS active and T6SS inactive strains' secretomes cultured in minimal media supplemented with host extract, 49 T6SS-associated proteins with varied gene ontology predicted functions were identified. We report 19 and 30 T6SS primary substrates and differentially secreted proteins, respectively, in T6SS mutants versus wild type strains. Of the total 49 T6SS-associated proteins presented in this study, 25 were also predicted using the BastionX platform as T6SS exclusive and shared substrates with T1SS-T4SS. This work provides a list of Pbr1692 T6SS secreted effector candidates. These include a potential antibacterial toxin HNH endonuclease and several predicted virulence proteins, including plant cell wall degrading enzymes. A preliminary basis for potential crosstalk between GNB secretion systems is also highlighted.
Collapse
Affiliation(s)
- S Maphosa
- Department of Biochemistry, Genetics, and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Hatfield, Pretoria, South Africa.
| | - L N Moleleki
- Department of Biochemistry, Genetics, and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Hatfield, Pretoria, South Africa
| |
Collapse
|
13
|
Bleich RM, Li C, Sun S, Ahn JH, Dogan B, Barlogio CJ, Broberg CA, Franks AR, Bulik-Sullivan E, Carroll IM, Simpson KW, Fodor AA, Arthur JC. A consortia of clinical E. coli strains with distinct in vitro adherent/invasive properties establish their own co-colonization niche and shape the intestinal microbiota in inflammation-susceptible mice. MICROBIOME 2023; 11:277. [PMID: 38124090 PMCID: PMC10731797 DOI: 10.1186/s40168-023-01710-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/26/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) patients experience recurrent episodes of intestinal inflammation and often follow an unpredictable disease course. Mucosal colonization with adherent-invasive Escherichia coli (AIEC) are believed to perpetuate intestinal inflammation. However, it remains unclear if the 24-year-old AIEC in vitro definition fully predicts mucosal colonization in vivo. To fill this gap, we have developed a novel molecular barcoding approach to distinguish strain variants in the gut and have integrated this approach to explore mucosal colonization of distinct patient-derived E. coli isolates in gnotobiotic mouse models of colitis. RESULTS Germ-free inflammation-susceptible interleukin-10-deficient (Il10-/-) and inflammation-resistant WT mice were colonized with a consortium of AIEC and non-AIEC strains, then given a murine fecal transplant to provide niche competition. E. coli strains isolated from human intestinal tissue were each marked with a unique molecular barcode that permits identification and quantification by barcode-targeted sequencing. 16S rRNA sequencing was used to evaluate the microbiome response to E. coli colonization. Our data reveal that specific AIEC and non-AIEC strains reproducibly colonize the intestinal mucosa of WT and Il10-/- mice. These E. coli expand in Il10-/- mice during inflammation and induce compositional dysbiosis to the microbiome in an inflammation-dependent manner. In turn, specific microbes co-evolve in inflamed mice, potentially diversifying E. coli colonization patterns. We observed no selectivity in E. coli colonization patterns in the fecal contents, indicating minimal selective pressure in this niche from host-microbe and interbacterial interactions. Because select AIEC and non-AIEC strains colonize the mucosa, this suggests the in vitro AIEC definition may not fully predict in vivo colonization potential. Further comparison of seven E. coli genomes pinpointed unique genomic features contained only in highly colonizing strains (two AIEC and two non-AIEC). Those colonization-associated features may convey metabolic advantages (e.g., iron acquisition and carbohydrate consumption) to promote efficient mucosal colonization. CONCLUSIONS Our findings establish the in vivo mucosal colonizer, not necessarily AIEC, as a principal dysbiosis driver through crosstalk with host and associated microbes. Furthermore, we highlight the utility of high-throughput screens to decode the in vivo colonization dynamics of patient-derived bacteria in murine models. Video Abstract.
Collapse
Affiliation(s)
- Rachel M Bleich
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biology, Appalachian State University, Boone, NC, USA
| | - Chuang Li
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shan Sun
- College of Computing and Informatics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Ju-Hyun Ahn
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Belgin Dogan
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Cassandra J Barlogio
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christopher A Broberg
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adrienne R Franks
- Center for Gastrointestinal Biology & Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Emily Bulik-Sullivan
- Center for Gastrointestinal Biology & Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ian M Carroll
- Center for Gastrointestinal Biology & Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenneth W Simpson
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Anthony A Fodor
- College of Computing and Informatics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Janelle C Arthur
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Center for Gastrointestinal Biology & Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
14
|
Rout AK, Tripathy PS, Dixit S, Behera DU, Behera B, Das BK, Behera BK. Unveiling the Microbiome Landscape: A Metagenomic Study of Bacterial Diversity, Antibiotic Resistance, and Virulence Factors in the Sediments of the River Ganga, India. Antibiotics (Basel) 2023; 12:1735. [PMID: 38136769 PMCID: PMC10740832 DOI: 10.3390/antibiotics12121735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
The global rise in antibiotic resistance, fueled by indiscriminate antibiotic usage in medicine, aquaculture, agriculture, and the food industry, presents a significant public health challenge. Urban wastewater and sewage treatment plants have become key sources of antibiotic resistance proliferation. The present study focuses on the river Ganges in India, which is heavily impacted by human activities and serves as a potential hotspot for the spread of antibiotic resistance. We conducted a metagenomic analysis of sediment samples from six distinct locations along the river to assess the prevalence and diversity of antibiotic resistance genes (ARGs) within the microbial ecosystem. The metagenomic analysis revealed the predominance of Proteobacteria across regions of the river Ganges. The antimicrobial resistance (AMR) genes and virulence factors were determined by various databases. In addition to this, KEGG and COG analysis revealed important pathways related to AMR. The outcomes highlight noticeable regional differences in the prevalence of AMR genes. The findings suggest that enhancing health and sanitation infrastructure could play a crucial role in mitigating the global impact of AMR. This research contributes vital insights into the environmental aspects of antibiotic resistance, highlighting the importance of targeted public health interventions in the fight against AMR.
Collapse
Affiliation(s)
- Ajaya Kumar Rout
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR—Central Inland Fisheries Research Institute, Kolkata 700120, WB, India; (A.K.R.); (B.K.D.)
- Department of Biosciences and Biotechnology, Fakir Mohan University, Balasore 756089, OD, India;
| | - Partha Sarathi Tripathy
- Faculty of Biosciences and Aquaculture, Nord University, Universitetsalléen 11, 8026 Bodø, Norway;
| | - Sangita Dixit
- Center for Biotechnology, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to Be University), Bhubaneswar 751030, OD, India; (S.D.); (D.U.B.)
| | - Dibyajyoti Uttameswar Behera
- Center for Biotechnology, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to Be University), Bhubaneswar 751030, OD, India; (S.D.); (D.U.B.)
| | - Bhaskar Behera
- Department of Biosciences and Biotechnology, Fakir Mohan University, Balasore 756089, OD, India;
| | - Basanta Kumar Das
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR—Central Inland Fisheries Research Institute, Kolkata 700120, WB, India; (A.K.R.); (B.K.D.)
| | - Bijay Kumar Behera
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR—Central Inland Fisheries Research Institute, Kolkata 700120, WB, India; (A.K.R.); (B.K.D.)
| |
Collapse
|
15
|
Beauvois SG, Flaugnatti N, Ilbert M, Boyer M, Gavello-Fernandez E, Fronzes R, Jurėnas D, Journet L. The tip protein PAAR is required for the function of the type VI secretion system. Microbiol Spectr 2023; 11:e0147823. [PMID: 37800964 PMCID: PMC10715212 DOI: 10.1128/spectrum.01478-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/09/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE The type VI secretion system (T6SS) is a bacterial contractile injection system involved in bacterial competition by the delivery of antibacterial toxins. The T6SS consists of an envelope-spanning complex that recruits the baseplate, allowing the polymerization of a contractile tail structure. The tail is a tube wrapped by a sheath and topped by the tip of the system, the VgrG spike/PAAR complex. Effectors loaded onto the puncturing tip or into the tube are propelled in the target cells upon sheath contraction. The PAAR protein tips and sharpens the VgrG spike. However, the importance and the function of this protein remain unclear. Here, we provide evidence for association of PAAR at the tip of the VgrG spike. We also found that the PAAR protein is a T6SS critical component required for baseplate and sheath assembly.
Collapse
Affiliation(s)
- Solène G. Beauvois
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université - CNRS UMR7255, Marseille, France
| | - Nicolas Flaugnatti
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université - CNRS UMR7255, Marseille, France
| | - Marianne Ilbert
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie, Bioénergies et Biotechnologie, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université - CNRS UMR7281, Marseille, France
| | - Marie Boyer
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université - CNRS UMR7255, Marseille, France
| | - Esther Gavello-Fernandez
- Institut Européen de Chimie et Biologie, University of Bordeaux, Pessac, France
- CNRS UMR 5234 Microbiologie Fondamentale et Pathogénicité, Bordeaux, France
| | - Rémi Fronzes
- Institut Européen de Chimie et Biologie, University of Bordeaux, Pessac, France
- CNRS UMR 5234 Microbiologie Fondamentale et Pathogénicité, Bordeaux, France
| | - Dukas Jurėnas
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université - CNRS UMR7255, Marseille, France
| | - Laure Journet
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université - CNRS UMR7255, Marseille, France
| |
Collapse
|
16
|
Ramdass AC, Rampersad SN. Genome features of a novel hydrocarbonoclastic Chryseobacterium oranimense strain and its comparison to bacterial oil-degraders and to other C. oranimense strains. DNA Res 2023; 30:dsad025. [PMID: 37952165 PMCID: PMC10710014 DOI: 10.1093/dnares/dsad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/29/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023] Open
Abstract
For the first time, we report the whole genome sequence of a hydrocarbonoclastic Chryseobacterium oranimense strain isolated from Trinidad and Tobago (COTT) and its genes involved in the biotransformation of hydrocarbons and xenobiotics through functional annotation. The assembly consisted of 11 contigs with 2,794 predicted protein-coding genes which included a diverse group of gene families involved in aliphatic and polycyclic hydrocarbon degradation. Comparative genomic analyses with 18 crude-oil degrading bacteria in addition to two C. oranimense strains not associated with oil were carried out. The data revealed important differences in terms of annotated genes involved in the hydrocarbon degradation process that may explain the molecular mechanisms of hydrocarbon and xenobiotic biotransformation. Notably, many gene families were expanded to explain COTT's competitive ability to manage habitat-specific stressors. Gene-based evidence of the metabolic potential of COTT supports the application of indigenous microbes for the remediation of polluted terrestrial environments and provides a genomic resource for improving our understanding of how to optimize these characteristics for more effective bioremediation.
Collapse
Affiliation(s)
- Amanda Christine Ramdass
- Biochemistry Research Lab (Rm216), Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine, Trinidad and Tobago, West Indies
| | - Sephra Nalini Rampersad
- Biochemistry Research Lab (Rm216), Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine, Trinidad and Tobago, West Indies
| |
Collapse
|
17
|
Wu S, Tang J, Wang B, Cai J, Jian J. Roles of Hcp2, a Hallmark of T6SS2 in Motility, Adhesive Capacity, and Pathogenicity of Vibrio alginolyticus. Microorganisms 2023; 11:2893. [PMID: 38138037 PMCID: PMC10745990 DOI: 10.3390/microorganisms11122893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
The type VI secretion system (T6SS) is a large secretory device, widely found in Gram-negative bacteria, which plays important roles in virulence, bacterial competition, and environmental adaptation. Vibrio alginolyticus (V. alginolyticus) is an opportunistic pathogen that causes vibriosis in aquaculture animals. V. alginolyticus possesses two type VI secretion systems (named the T6SS1 and T6SS2), but their functions remain largely unclear. In this paper, the roles of the core component of the T6SS2 cluster of V. alginolyticus HY9901, hemolysin-coregulated protein2 coding gene hcp2, are reported. Deletion of hcp2 clearly impaired the swarming motility, adhesive capacity, and pathogenicity of V. alginolyticus against zebrafish. Furthermore, transmission electron microscopy (TEM) found that the abnormal morphology of flagellum filament in the hcp2 mutant strain could be partially restored by hcp2 complementarity. By proteomic and RT-qPCR analysis, we confirmed that the expression levels of flagellar flagellin and assembly-associated proteins were remarkably decreased in an hcp2 mutant strain, compared with the wild-type strain, and could be partially restored with a supply of hcp2. Accordingly, hcp2 had a positive influence on the transcription of flagellar regulons rpoN, rpoS, and fliA; this was verified by RT-qPCR. Taken together, these results suggested that hcp2 was involved in mediating the motility, adhesion, and pathogenicity of Vibrio alginolyticus through positively impacting its flagellar system.
Collapse
Affiliation(s)
- Shuilong Wu
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
- Key Laboratory of Diseases Controlling for Aquatic Economic Animals of Guangdong Higher Education Institutions, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
- Central People’s Hospital of Zhanjiang, Zhanjiang 524045, China
| | - Jufen Tang
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
- Key Laboratory of Diseases Controlling for Aquatic Economic Animals of Guangdong Higher Education Institutions, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Bei Wang
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
- Key Laboratory of Diseases Controlling for Aquatic Economic Animals of Guangdong Higher Education Institutions, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jia Cai
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
- Key Laboratory of Diseases Controlling for Aquatic Economic Animals of Guangdong Higher Education Institutions, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jichang Jian
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
- Key Laboratory of Diseases Controlling for Aquatic Economic Animals of Guangdong Higher Education Institutions, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
18
|
Yang WT, Yi YJ, Xia B. Unveiling the duality of Pantoea dispersa: A mini review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162320. [PMID: 36801414 DOI: 10.1016/j.scitotenv.2023.162320] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Pantoea dispersa is a Gram-negative bacterium that exists in a variety of environments and has potential in many commercial and agricultural applications, such as biotechnology, environmental protection, soil bioremediation, and plant growth stimulation. However, P. dispersa is also a harmful pathogen to both humans and plants. This "double-edged sword" phenomenon is not uncommon in nature. To ensure survival, microorganisms respond to both environmental and biological stimuli, which could be beneficial or detrimental to other species. Therefore, to harness the full potential of P. dispersa, while minimizing potential harm, it is imperative to unravel its genetic makeup, understand its ecological interactions and underlying mechanisms. This review aims to provide a comprehensive and up-to-date overview of the genetic and biological characteristics of P. dispersa, in addition to potential impacts on plants and humans, as well as to provide insights into potential applications.
Collapse
Affiliation(s)
- Wen-Tao Yang
- College of Food Science and Technology, Hunan Agricultural University, East Renmin Road, Changsha 410128, Hunan, China
| | - You-Jin Yi
- College of Food Science and Technology, Hunan Agricultural University, East Renmin Road, Changsha 410128, Hunan, China
| | - Bo Xia
- College of Food Science and Technology, Hunan Agricultural University, East Renmin Road, Changsha 410128, Hunan, China.
| |
Collapse
|
19
|
Bleich RM, Li C, Sun S, Barlogio CJ, Broberg CA, Franks AR, Bulik-Sullivan E, Dogan B, Simpson KW, Carroll IM, Fodor AA, Arthur JC. A consortia of clinical E. coli strains with distinct in-vitro adherent/invasive properties establish their own co-colonization niche and shape the intestinal microbiota in inflammation-susceptible mice. RESEARCH SQUARE 2023:rs.3.rs-2899665. [PMID: 37214858 PMCID: PMC10197778 DOI: 10.21203/rs.3.rs-2899665/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Background Inflammatory bowel disease (IBD) patients experience recurrent episodes of intestinal inflammation and often follow an unpredictable disease course. Mucosal colonization with adherent-invasive Escherichia coli (AIEC) are believed to perpetuate intestinal inflammation. However, it remains unclear if the 24-year-old AIEC in-vitro definition fully predicts mucosal colonization in-vivo. To fill this gap, we have developed a novel molecular barcoding approach to distinguish strain variants in the gut and have integrated this approach to explore mucosal colonization of distinct patient-derived E. coli isolates in gnotobiotic mouse models of colitis. Results Germ-free inflammation-susceptible interleukin-10-deficient (Il10-/-) and inflammation-resistant WT mice were colonized with a consortia of AIEC and non-AIEC strains, then given a murine fecal transplant to provide niche competition. E. coli strains isolated from human intestinal tissue were each marked with a unique molecular barcode that permits identification and quantification by barcode-targeted sequencing. 16S rRNA sequencing was used to evaluate the microbiome response to E. coli colonization. Our data reveal that specific AIEC and non-AIEC strains reproducibly colonize the intestinal mucosa of WT and Il10-/- mice. These E. coli expand in Il10-/- mice during inflammation and induce compositional dysbiosis to the microbiome in an inflammation-dependent manner. In turn, specific microbes co-evolve in inflamed mice, potentially diversifying E. coli colonization patterns. We observed no selectivity in E. coli colonization patterns in the fecal contents, indicating minimal selective pressure in this niche from host-microbe and interbacterial interactions. Because select AIEC and non-AIEC strains colonize the mucosa, this suggests the in vitro AIEC definition may not fully predict in vivo colonization potential. Further comparison of seven E. coli genomes pinpointed unique genomic features contained only in highly colonizing strains (two AIEC and two non-AIEC). Those colonization-associated features may convey metabolic advantages (e.g., iron acquisition and carbohydrate consumption) to promote efficient mucosal colonization. Conclusions Our findings establish the in-vivo mucosal colonizer, not necessarily AIEC, as a principal dysbiosis driver through crosstalk with host and associated microbes. Furthermore, we highlight the utility of high-throughput screens to decode the in-vivo colonization dynamics of patient-derived bacteria in murine models.
Collapse
Affiliation(s)
| | - Chuang Li
- University of North Carolina at Chapel Hill
| | - Shan Sun
- University of North Carolina at Charlotte
| | | | | | | | | | - Belgin Dogan
- Cornell University College of Veterinary Medicine
| | | | | | | | | |
Collapse
|
20
|
Calder A, Snyder LAS. Diversity of the type VI secretion systems in the Neisseria spp. Microb Genom 2023; 9. [PMID: 37052605 DOI: 10.1099/mgen.0.000986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
Complete Type VI Secretion Systems were identified in the genome sequence data of Neisseria subflava isolates sourced from throat swabs of human volunteers. The previous report was the first to describe two complete Type VI Secretion Systems in these isolates, both of which were distinct in terms of their gene organization and sequence homology. Since publication of the first report, Type VI Secretion System subtypes have been identified in Neisseria spp. The characteristics of each type in N. subflava are further investigated here and in the context of the other Neisseria spp., including identification of the lineages containing the different types and subtypes. Type VI Secretion Systems use VgrG for delivery of toxin effector proteins; several copies of vgrG and associated effector / immunity pairs are present in Neisseria spp. Based on sequence similarity between strains and species, these core Type VI Secretion System genes, vgrG, and effector / immunity genes may diversify via horizontal gene transfer, an instrument for gene acquisition and repair in Neisseria spp.
Collapse
Affiliation(s)
- Alan Calder
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| | - Lori A S Snyder
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| |
Collapse
|
21
|
Pérez-Lorente AI, Molina-Santiago C, de Vicente A, Romero D. Sporulation Activated via σ W Protects Bacillus from a Tse1 Peptidoglycan Hydrolase Type VI Secretion System Effector. Microbiol Spectr 2023; 11:e0504522. [PMID: 36916921 PMCID: PMC10100999 DOI: 10.1128/spectrum.05045-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
Within bacterial communities, community members engage in interactions employing diverse offensive and defensive tools to reach coexistence. Extracellular-matrix production and sporulation are defensive mechanisms used by Bacillus subtilis cells when they interact with Pseudomonas chlororaphis strains expressing a type VI secretion system (T6SS). Here, we define Tse1 as the main toxin mobilized by the Pseudomonas chlororaphis T6SS that triggers sporulation in Bacillus subtilis. We characterize Tse1 as a peptidoglycan hydrolase that indirectly alters the dynamics and functionality of the Bacillus cell membrane. We also delineate the response of Bacillus cells to Tse1, which through the coordinated actions of the extracellular sigma factor σW and the cytoplasmic histidine kinases KinA and KinB, culminates in activation of the sporulation cascade. We propose that this cellular developmental response permits bacilli to defend against the toxicity of T6SS-mobilized Tse1 effector. IMPORTANCE The study of bacterial interactions is helping to define species-specific strategies used to modulate the competition dynamics underlying the development of community compositions. In this study, we deciphered the role of Pseudomonas T6SS when competing with Bacillus and the mechanism by which a T6SS-toxin modifies Bacillus physiology. We found that Pseudomonas triggers Bacillus sporulation by injecting through T6SS a toxin that we called Tse1. We found that Tse1 is a hydrolase that degrades Bacillus peptidoglycan and indirectly damages Bacillus membrane functionality. In addition, we demonstrated the mechanism by which Bacillus cells increase the sporulation rate upon recognition of the presence of Tse1. Interestingly, asporogenic Bacillus cells are more sensitive to T6SS activity, which led us to propose sporulation as a last resort of bacilli to overcome this family of toxins.
Collapse
Affiliation(s)
- Alicia I. Pérez-Lorente
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | - Carlos Molina-Santiago
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | - Antonio de Vicente
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | - Diego Romero
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
22
|
Chen Y, He X, Chen Q, He Y, Chen F, Yang C, Wang L. Nanomaterials against intracellular bacterial infection: from drug delivery to intrinsic biofunction. Front Bioeng Biotechnol 2023; 11:1197974. [PMID: 37180049 PMCID: PMC10174311 DOI: 10.3389/fbioe.2023.1197974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
Fighting intracellular bacteria with strong antibiotics evading remains a long-standing challenge. Responding to and regulating the infectious microenvironment is crucial for treating intracellular infections. Sophisticated nanomaterials with unique physicochemical properties exhibit great potential for precise drug delivery towards infection sites, along with modulating infectious microenvironment via their instinct bioactivity. In this review, we first identify the key characters and therapeutic targets of intracellular infection microenvironment. Next, we illustrate how the nanomaterials physicochemical properties, such as size, charge, shape and functionalization affect the interaction between nanomaterials, cells and bacteria. We also introduce the recent progress of nanomaterial-based targeted delivery and controlled release of antibiotics in intracellular infection microenvironment. Notably, we highlight the nanomaterials with unique intrinsic properties, such as metal toxicity and enzyme-like activity for the treatment of intracellular bacteria. Finally, we discuss the opportunities and challenges of bioactive nanomaterials in addressing intracellular infections.
Collapse
Affiliation(s)
- Yinglu Chen
- Department of Orthopedics, Academy of Orthopedics-Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Xiaoheng He
- Department of Applied Chemistry, Xi’an University of Technology, Xi’an, China
| | - Qiuhong Chen
- Department of Orthopedics, Academy of Orthopedics-Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Yi He
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Fangman Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, Macau SAR, China
| | - Chao Yang
- Department of Orthopedics, Academy of Orthopedics-Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Liang Wang, ; Chao Yang,
| | - Liang Wang
- Department of Orthopedics, Academy of Orthopedics-Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Liang Wang, ; Chao Yang,
| |
Collapse
|
23
|
Cronobacter sakazakii Cue for the Attraction and Its Impact on the Immunity of Caenorhabditis elegans. Infect Immun 2022; 90:e0028122. [PMID: 36377894 PMCID: PMC9753658 DOI: 10.1128/iai.00281-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cronobacter sakazakii, an opportunistic foodborne pathogen prevalently detected in contaminated powdered infant formula, is associated with different diseases, including meningitis. It can cross the blood-brain barrier and affects the CNS. The impact of C. sakazakii on host neuronal cells and behavior is largely unknown. Hence, detailed molecular data are required to understand its severity. Caenorhabditis elegans is a unique model for studying chemical communication, as it relies on chemosensation for searching nutritional supplements. Although, C. sakazakii is pathogenic to C. elegans, our analysis indicated that C. elegans was highly attracted toward C. sakazakii compared to its food source, E. coli OP50. To study the cue for the attraction, bioactive components (RNA/Protein/Lipopolysaccharides/Metabolites) of C. sakazakii were isolated and used for observing the chemotaxis behavior of C. elegans. The results signified that C. elegans was more attracted toward acid extracted metabolites than those of the other extraction methods. The combined action of acid extracted metabolites of C. sakazakii and a candidate pathogen drastically reduced the survival of C. elegans. In addition, qPCR analysis suggested that the exposure of isolated metabolites through acid extraction to C. elegans for 24 h modified the candidate immune regulatory genes involved in pathogen recognition and kinase activity such as clec-60, clec-87, lys-7, akt-2, pkc-1, and jnk-1.
Collapse
|
24
|
Yan J, Guo X, Li J, Li Y, Sun H, Li A, Cao B. RpoN is required for the motility and contributes to the killing ability of Plesiomonas shigelloides. BMC Microbiol 2022; 22:299. [PMID: 36510135 PMCID: PMC9743648 DOI: 10.1186/s12866-022-02722-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND RpoN, also known as σ54, first reported in Escherichia coli, is a subunit of RNA polymerase that strictly controls the expression of different genes by identifying specific promoter elements. RpoN has an important regulatory function in carbon and nitrogen metabolism and participates in the regulation of flagellar synthesis, bacterial motility and virulence. However, little is known about the effect of RpoN in Plesiomonas shigelloides. RESULTS To identify pathways controlled by RpoN, RNA sequencing (RNA-Seq) of the WT and the rpoN deletion strain was carried out for comparison. The RNA-seq results showed that RpoN regulates ~ 13.2% of the P. shigelloides transcriptome, involves amino acid transport and metabolism, glycerophospholipid metabolism, pantothenate and CoA biosynthesis, ribosome biosynthesis, flagellar assembly and bacterial secretion system. Furthermore, we verified the results of RNA-seq using quantitative real-time reverse transcription PCR, which indicated that the absence of rpoN caused downregulation of more than half of the polar and lateral flagella genes in P. shigelloides, and the ΔrpoN mutant was also non-motile and lacked flagella. In the present study, the ability of the ΔrpoN mutant to kill E. coli MG1655 was reduced by 54.6% compared with that of the WT, which was consistent with results in RNA-seq, which showed that the type II secretion system (T2SS-2) genes and the type VI secretion system (T6SS) genes were repressed. By contrast, the expression of type III secretion system genes was largely unchanged in the ΔrpoN mutant transcriptome and the ability of the ΔrpoN mutant to infect Caco-2 cells was also not significantly different compared with the WT. CONCLUSIONS We showed that RpoN is required for the motility and contributes to the killing ability of P. shigelloides and positively regulates the T6SS and T2SS-2 genes.
Collapse
Affiliation(s)
- Junxiang Yan
- grid.216938.70000 0000 9878 7032TEDA Institute of Biological Sciences and Biotechnology, Nankai University, No. 23, Hongda StreetTianjin Economic and Technological Development Area, Tianjin, 300457 China ,grid.216938.70000 0000 9878 7032Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, No.23, Hongda StreetTianjin Economic and Technological Development Area, Tianjin, 300457 China ,grid.216938.70000 0000 9878 7032Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, No.23, Hongda StreetTianjin Economic and Technological Development Area, Tianjin, 300457 China
| | - Xueqian Guo
- grid.216938.70000 0000 9878 7032TEDA Institute of Biological Sciences and Biotechnology, Nankai University, No. 23, Hongda StreetTianjin Economic and Technological Development Area, Tianjin, 300457 China ,grid.216938.70000 0000 9878 7032Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, No.23, Hongda StreetTianjin Economic and Technological Development Area, Tianjin, 300457 China ,grid.216938.70000 0000 9878 7032Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, No.23, Hongda StreetTianjin Economic and Technological Development Area, Tianjin, 300457 China
| | - Jinghao Li
- grid.216938.70000 0000 9878 7032TEDA Institute of Biological Sciences and Biotechnology, Nankai University, No. 23, Hongda StreetTianjin Economic and Technological Development Area, Tianjin, 300457 China ,grid.216938.70000 0000 9878 7032Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, No.23, Hongda StreetTianjin Economic and Technological Development Area, Tianjin, 300457 China ,grid.216938.70000 0000 9878 7032Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, No.23, Hongda StreetTianjin Economic and Technological Development Area, Tianjin, 300457 China
| | - Yuehua Li
- grid.216938.70000 0000 9878 7032TEDA Institute of Biological Sciences and Biotechnology, Nankai University, No. 23, Hongda StreetTianjin Economic and Technological Development Area, Tianjin, 300457 China ,grid.216938.70000 0000 9878 7032Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, No.23, Hongda StreetTianjin Economic and Technological Development Area, Tianjin, 300457 China ,grid.216938.70000 0000 9878 7032Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, No.23, Hongda StreetTianjin Economic and Technological Development Area, Tianjin, 300457 China
| | - Hongmin Sun
- grid.216938.70000 0000 9878 7032TEDA Institute of Biological Sciences and Biotechnology, Nankai University, No. 23, Hongda StreetTianjin Economic and Technological Development Area, Tianjin, 300457 China ,grid.216938.70000 0000 9878 7032Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, No.23, Hongda StreetTianjin Economic and Technological Development Area, Tianjin, 300457 China ,grid.216938.70000 0000 9878 7032Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, No.23, Hongda StreetTianjin Economic and Technological Development Area, Tianjin, 300457 China
| | - Ang Li
- grid.216938.70000 0000 9878 7032State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353 China
| | - Boyang Cao
- grid.216938.70000 0000 9878 7032TEDA Institute of Biological Sciences and Biotechnology, Nankai University, No.23, Hongda StreetTianjin Economic and Technological Development Area, Tianjin, 300457 China ,grid.216938.70000 0000 9878 7032Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, No. 23, Hongda StreetTianjin Economic and Technological Development Area, Tianjin, 300457 China ,grid.216938.70000 0000 9878 7032Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, No. 23, Hongda StreetTianjin Economic and Technological Development Area, Tianjin, 300457 China
| |
Collapse
|
25
|
Recent Advances in Bacteria-Based Cancer Treatment. Cancers (Basel) 2022; 14:cancers14194945. [PMID: 36230868 PMCID: PMC9563255 DOI: 10.3390/cancers14194945] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Cancer refers to a disease involving abnormal cells that proliferate uncontrollably and can invade normal body tissue. It was estimated that at least 9 million patients are killed by cancer annually. Recent studies have demonstrated that bacteria play a significant role in cancer treatment and prevention. Owing to its unique mechanism of abundant pathogen-associated molecular patterns in antitumor immune responses and preferentially accumulating and proliferating within tumors, bacteria-based cancer immunotherapy has recently attracted wide attention. We aim to illustrate that naïve bacteria and their components can serve as robust theranostic agents for cancer eradication. In addition, we summarize the recent advances in efficient antitumor treatments by genetically engineering bacteria and bacteria-based nanoparticles. Further, possible future perspectives in bacteria-based cancer immunotherapy are also inspected. Abstract Owing to its unique mechanism of abundant pathogen-associated molecular patterns in antitumor immune responses, bacteria-based cancer immunotherapy has recently attracted wide attention. Compared to traditional cancer treatments such as surgery, chemotherapy, radiotherapy, and phototherapy, bacteria-based cancer immunotherapy exhibits the versatile capabilities for suppressing cancer thanks to its preferentially accumulating and proliferating within tumors. In particular, bacteria have demonstrated their anticancer effect through the toxins, and other active components from the cell membrane, cell wall, and dormant spores. More importantly, the design of engineering bacteria with detoxification and specificity is essential for the efficacy of bacteria-based cancer therapeutics. Meanwhile, bacteria can deliver the cytokines, antibody, and other anticancer theranostic nanoparticles to tumor microenvironments by regulating the expression of the bacterial genes or chemical and physical loading. In this review, we illustrate that naïve bacteria and their components can serve as robust theranostic agents for cancer eradication. In addition, we summarize the recent advances in efficient antitumor treatments by genetically engineering bacteria and bacteria-based nanoparticles. Further, possible future perspectives in bacteria-based cancer immunotherapy are also inspected.
Collapse
|
26
|
do Nascimento Soares T, Silva Valadares V, Cardoso Amorim G, de Mattos Lacerda de Carvalho M, Berrêdo‐Pinho M, Ceneviva Lacerda Almeida F, Mascarello Bisch P, Batista PR, Miranda Santos Lery L. The C‐terminal extension of
VgrG4
from
Klebsiella pneumoniae
remodels host cell microfilaments. Proteins 2022; 90:1655-1668. [PMID: 35430767 PMCID: PMC9542434 DOI: 10.1002/prot.26344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/11/2022] [Accepted: 04/07/2022] [Indexed: 12/12/2022]
Abstract
Klebsiella pneumoniae is an opportunistic pathogen, which concerns public health systems worldwide, as multiple antibiotic‐resistant strains are frequent. One of its pathogenicity factors is the Type VI Secretion System (T6SS), a macromolecular complex assembled through the bacterial membranes. T6SS injects effector proteins inside target cells. Such effectors confer competitive advantages or modulate the target cell signaling and metabolism to favor bacterial infection. The VgrG protein is a T6SS core component. It may present a variable C‐terminal domain carrying an additional effector function. Kp52.145 genome encodes three VgrG proteins, one of them with a C‐terminal extension (VgrG4‐CTD). VgrG4‐CTD is 138 amino acids long, does not contain domains of known function, but is conserved in some Klebsiella, and non‐Klebsiella species. To get insights into its function, recombinant VgrG4‐CTD was used in pulldown experiments to capture ligands from macrophages and lung epithelial cells. A total of 254 proteins were identified: most of them are ribosomal proteins. Cytoskeleton‐associated and proteins involved in the phagosome maturation pathway were also identified. We further showed that VgrG4‐CTD binds actin and induces actin remodeling in macrophages. This study presents novel clues on the role of K. pneumoniae T6SS in pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Marcia Berrêdo‐Pinho
- Laboratório de Microbiologia Celular Instituto Oswaldo Cruz Rio de Janeiro Brazil
| | - Fábio Ceneviva Lacerda Almeida
- Centro Nacional de Ressonância Magnética Nuclear Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Paulo Mascarello Bisch
- Laboratório de Física‐Biológica Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | | | | |
Collapse
|
27
|
Zhang M, Zhang T, Yu M, Chen YL, Jin M. The Life Cycle Transitions of Temperate Phages: Regulating Factors and Potential Ecological Implications. Viruses 2022; 14:1904. [PMID: 36146712 PMCID: PMC9502458 DOI: 10.3390/v14091904] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Phages are viruses that infect bacteria. They affect various microbe-mediated processes that drive biogeochemical cycling on a global scale. Their influence depends on whether the infection is lysogenic or lytic. Temperate phages have the potential to execute both infection types and thus frequently switch their infection modes in nature, potentially causing substantial impacts on the host-phage community and relevant biogeochemical cycling. Understanding the regulating factors and outcomes of temperate phage life cycle transition is thus fundamental for evaluating their ecological impacts. This review thus systematically summarizes the effects of various factors affecting temperate phage life cycle decisions in both culturable phage-host systems and natural environments. The review further elucidates the ecological implications of the life cycle transition of temperate phages with an emphasis on phage/host fitness, host-phage dynamics, microbe diversity and evolution, and biogeochemical cycles.
Collapse
Affiliation(s)
- Menghui Zhang
- School of Advanced Manufacturing, Fuzhou University, Fuzhou 350000, China
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China
| | - Tianyou Zhang
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China
| | - Meishun Yu
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China
| | - Yu-Lei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361000, China
| | - Min Jin
- School of Advanced Manufacturing, Fuzhou University, Fuzhou 350000, China
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519000, China
| |
Collapse
|
28
|
Liyanapathiranage P, Wagner N, Avram O, Pupko T, Potnis N. Phylogenetic Distribution and Evolution of Type VI Secretion System in the Genus Xanthomonas. Front Microbiol 2022; 13:840308. [PMID: 35495725 PMCID: PMC9048695 DOI: 10.3389/fmicb.2022.840308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
The type VI secretion system (T6SS) present in many Gram-negative bacteria is a contact-dependent apparatus that can directly deliver secreted effectors or toxins into diverse neighboring cellular targets including both prokaryotic and eukaryotic organisms. Recent reverse genetics studies with T6 core gene loci have indicated the importance of functional T6SS toward overall competitive fitness in various pathogenic Xanthomonas spp. To understand the contribution of T6SS toward ecology and evolution of Xanthomonas spp., we explored the distribution of the three distinguishable T6SS clusters, i3*, i3***, and i4, in approximately 1,740 Xanthomonas genomes, along with their conservation, genetic organization, and their evolutionary patterns in this genus. Screening genomes for core genes of each T6 cluster indicated that 40% of the sequenced strains possess two T6 clusters, with combinations of i3*** and i3* or i3*** and i4. A few strains of Xanthomonas citri, Xanthomonas phaseoli, and Xanthomonas cissicola were the exception, possessing a unique combination of i3* and i4. The findings also indicated clade-specific distribution of T6SS clusters. Phylogenetic analysis demonstrated that T6SS clusters i3* and i3*** were probably acquired by the ancestor of the genus Xanthomonas, followed by gain or loss of individual clusters upon diversification into subsequent clades. T6 i4 cluster has been acquired in recent independent events by group 2 xanthomonads followed by its spread via horizontal dissemination across distinct clades across groups 1 and 2 xanthomonads. We also noted reshuffling of the entire core T6 loci, as well as T6SS spike complex components, hcp and vgrG, among different species. Our findings indicate that gain or loss events of specific T6SS clusters across Xanthomonas phylogeny have not been random.
Collapse
Affiliation(s)
| | - Naama Wagner
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Oren Avram
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tal Pupko
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| |
Collapse
|
29
|
Le Guern R, Stabler S, Gosset P, Pichavant M, Grandjean T, Faure E, Karaca Y, Faure K, Kipnis E, Dessein R. Colonization resistance against multi-drug-resistant bacteria: a narrative review. J Hosp Infect 2021; 118:48-58. [PMID: 34492304 DOI: 10.1016/j.jhin.2021.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022]
Abstract
Colonization resistance by gut microbiota is a fundamental phenomenon in infection prevention and control. Hospitalized patients may be exposed to multi-drug-resistant bacteria when hand hygiene compliance among healthcare workers is not adequate. An additional layer of defence is provided by the healthy gut microbiota, which helps clear the exogenous bacteria and acts as a safety net when hand hygiene procedures are not followed. This narrative review focuses on the role of the gut microbiota in colonization resistance against multi-drug-resistant bacteria, and its implications for infection control. The review discusses the underlying mechanisms of colonization resistance (direct or indirect), the concept of resilience of the gut microbiota, the link between the antimicrobial spectrum and gut dysbiosis, and possible therapeutic strategies. Antimicrobial stewardship is crucial to maximize the effects of colonization resistance. Avoiding unnecessary antimicrobial therapy, shortening the antimicrobial duration as much as possible, and favouring antibiotics with low anti-anaerobe activity may decrease the acquisition and expansion of multi-drug-resistant bacteria. Even after antimicrobial therapy, the resilience of the gut microbiota often occurs spontaneously. Spontaneous resilience explains the existence of a window of opportunity for colonization of multi-drug-resistant bacteria during or just after antimicrobial therapy. Strategies favouring resilience of the gut microbiota, such as high-fibre diets or precision probiotics, should be evaluated.
Collapse
Affiliation(s)
- R Le Guern
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, Centre for Infection and Immunity of Lille, Lille, France; Laboratoire de Bactériologie-Hygiène, CHU Lille, Lille, France.
| | - S Stabler
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, Centre for Infection and Immunity of Lille, Lille, France; Service de Maladies Infectieuses, CHU Lille, Lille, France
| | - P Gosset
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, Centre for Infection and Immunity of Lille, Lille, France
| | - M Pichavant
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, Centre for Infection and Immunity of Lille, Lille, France
| | - T Grandjean
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, Centre for Infection and Immunity of Lille, Lille, France
| | - E Faure
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, Centre for Infection and Immunity of Lille, Lille, France; Service de Maladies Infectieuses, CHU Lille, Lille, France
| | - Y Karaca
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, Centre for Infection and Immunity of Lille, Lille, France
| | - K Faure
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, Centre for Infection and Immunity of Lille, Lille, France; Service de Maladies Infectieuses, CHU Lille, Lille, France
| | - E Kipnis
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, Centre for Infection and Immunity of Lille, Lille, France; Service de Réanimation Chirurgicale, CHU Lille, Lille, France
| | - R Dessein
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, Centre for Infection and Immunity of Lille, Lille, France; Laboratoire de Bactériologie-Hygiène, CHU Lille, Lille, France
| |
Collapse
|
30
|
Edwardsiella piscicida Interferes with Classical Endocytic Trafficking and Replicates in a Specialized Replication-Permissive Niche in Nonphagocytic Cells. J Bacteriol 2021; 203:e0050520. [PMID: 34060905 DOI: 10.1128/jb.00505-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Edwardsiella piscicida is an intracellular pathogen within a broad spectrum of hosts. Essential to E. piscicida's virulence is its ability to invade and replicate inside host cells, yet the survival mechanisms and the nature of the replicative compartment remain unknown. Here, we characterized its intracellular lifestyle in nonphagocytic cells and showed that the intracellular replication of E. piscicida in nonphagocytic cells is dependent on its type III secretion system (T3SS) but not its type VI secretion system. Following internalization, E. piscicida is contained in vacuoles that transiently mature into early endosomes but subsequently bypasses the classical endosome pathway and fusion with lysosomes, which depend on its T3SS. Following rapid escape from the degradative pathway, E. piscicida was found to create a specialized replication-permissive niche characterized by endoplasmic reticulum (ER) markers. Furthermore, we found that a T3SS effector, EseJ, is responsible for the intracellular replication of E. piscicida by preventing endosome/lysosome fusion. In vivo experiments also confirmed that EseJ is necessary for bacterial colonization by E. piscicida in the epithelial layer, followed by systemic dissemination in both zebrafish and mice. Thus, this work elucidates the tactics used by E. piscicida to survive and proliferate within host nonphagocytic cells. IMPORTANCE E. piscicida is a facultative intracellular bacterium associated with septicemia and fatal infections in many animals, including fish and humans. However, little is known about its intracellular life, which is important for successful invasion of the host. The present study is the first comprehensive characterization of E. piscicida's intracellular lifestyle in host cells. Upon internalization, E. piscicida is transiently contained in Rab5-positive vacuoles, but the pathogen prevents further endosome maturation and fusion with lysosomes by utilizing a T3SS effector, EseJ. In addition, the bacterium creates a specialized replication niche for rapid growth via an interaction with the ER. Our study provides new insights into the strategies used by E. piscicida to successfully establish an intracellular lifestyle that contributes to its survival and dissemination during infection.
Collapse
|
31
|
Nguyen VS, Spinelli S, Cascales É, Roussel A, Cambillau C, Leone P. Anchoring the T6SS to the cell wall: Crystal structure of the peptidoglycan binding domain of the TagL accessory protein. PLoS One 2021; 16:e0254232. [PMID: 34214145 PMCID: PMC8253398 DOI: 10.1371/journal.pone.0254232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/22/2021] [Indexed: 11/22/2022] Open
Abstract
The type VI secretion system (T6SS) is a widespread mechanism of protein delivery into target cells, present in more than a quarter of all sequenced Gram-negative bacteria. The T6SS constitutes an important virulence factor, as it is responsible for targeting effectors in both prokaryotic and eukaryotic cells. The T6SS comprises a tail structure tethered to the cell envelope via a trans-envelope complex. In most T6SS, the membrane complex is anchored to the cell wall by the TagL accessory protein. In this study, we report the first crystal structure of a peptidoglycan-binding domain of TagL. The fold is conserved with members of the OmpA/Pal/MotB family, and more importantly, the peptidoglycan binding site is conserved. This structure further exemplifies how proteins involved in anchoring to the cell wall for different cellular functions rely on an interaction network with peptidoglycan strictly conserved.
Collapse
Affiliation(s)
- Van Son Nguyen
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Marseille, France
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (UMR7257), Marseille, France
| | - Silvia Spinelli
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Marseille, France
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (UMR7257), Marseille, France
| | - Éric Cascales
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique (UMR7255), Aix-Marseille Université, Marseille, France
| | - Alain Roussel
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Marseille, France
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (UMR7257), Marseille, France
| | - Christian Cambillau
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Marseille, France
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (UMR7257), Marseille, France
| | - Philippe Leone
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Marseille, France
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (UMR7257), Marseille, France
- * E-mail:
| |
Collapse
|
32
|
Yadav SK, Magotra A, Ghosh S, Krishnan A, Pradhan A, Kumar R, Das J, Sharma M, Jha G. Immunity proteins of dual nuclease T6SS effectors function as transcriptional repressors. EMBO Rep 2021; 22:e51857. [PMID: 33786997 PMCID: PMC8183406 DOI: 10.15252/embr.202051857] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 12/31/2022] Open
Abstract
Bacteria utilize type VI secretion system (T6SS) to deliver antibacterial toxins to target co-habiting bacteria. Here, we report that Burkholderia gladioli strain NGJ1 deploys certain T6SS effectors (TseTBg), having both DNase and RNase activities to kill target bacteria. RNase activity is prominent on NGJ1 as well as other bacterial RNA while DNase activity is pertinent to only other bacteria. The associated immunity (TsiTBg) proteins harbor non-canonical helix-turn-helix motifs and demonstrate transcriptional repression activity, similar to the antitoxins of type II toxin-antitoxin (TA) systems. Genome analysis reveals that homologs of TseTBg are either encoded as TA or T6SS effectors in diverse bacteria. Our results indicate that a new ORF (encoding a hypothetical protein) has evolved as a result of operonic fusion of TA type TseTBg homolog with certain T6SS-related genes by the action of IS3 transposable elements. This has potentially led to the conversion of a TA into T6SS effector in Burkholderia. Our study exemplifies that bacteria can recruit toxins of TA systems as T6SS weapons to diversify its arsenal to dominate during inter-bacterial competitions.
Collapse
Affiliation(s)
- Sunil Kumar Yadav
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| | - Ankita Magotra
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| | - Srayan Ghosh
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| | - Aiswarya Krishnan
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| | - Amrita Pradhan
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| | - Rahul Kumar
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| | - Joyati Das
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| | - Mamta Sharma
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| | - Gopaljee Jha
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| |
Collapse
|
33
|
Wang M, Fan Y, Liu P, Liu Y, Zhang J, Jiang Y, Zhou C, Yang L, Wang C, Qian C, Yuan C, Zhang S, Zhang X, Yin Z, Mu H, Du Y. Genomic insights into evolution of pathogenicity and resistance of multidrug-resistant Raoultella ornithinolytica WM1. Ann N Y Acad Sci 2021; 1497:74-90. [PMID: 33786847 DOI: 10.1111/nyas.14595] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/20/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022]
Abstract
Raoultella ornithinolytica is a poorly understood opportunistic pathogen, and the underlying mechanisms of its multidrug resistance and pathogenicity have not yet been comprehensively investigated. The multidrug-resistant (MDR) strain WM1 was isolated from the blood of a male patient in Tianjin, China, in 2018. Here, we describe the complete genome and provide a genomic analysis of R. ornithinolytica WM1. The isolate was resistant to all tested antimicrobials except amikacin, tobramycin, and tigecycline. Two plasmids, pWM1-1 (IncHI5) and pWM1-2 (IncR), carried multidrug-resistance regions. A large antimicrobial resistance island region resided on pWM1-1 and exhibited mosaic structures resulting from the acquisition of complex integrations of variable regions, including genes conferring resistance to multiple classes of antimicrobials. Moreover, WM1 possessed virulence-related elements that encode several virulence factors, including type I fimbriae, Escherichia coli common pilus, type II and VI secretion systems, yersiniabactin, enterobactin, and surface polysaccharide, indicating pathogenic potential. Furthermore, the core genome phylogeny and pan-genome analyses revealed extensive genetic diversity. Our analysis indicates the need for stringent infection control, antimicrobial stewardship, periodic resistance monitoring, and rational medication to address potential threats posed by MDR R. ornithinolytica strains.
Collapse
Affiliation(s)
- Meng Wang
- Department of Clinical Laboratory, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Yu Fan
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300192, China
| | - Ping Liu
- Department of Clinical Laboratory, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Yehua Liu
- Department of Clinical Laboratory, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Jianlei Zhang
- Department of Clinical Laboratory, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Yan Jiang
- Department of Clinical Laboratory, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Chunlei Zhou
- Department of Clinical Laboratory, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Lei Yang
- Department of Clinical Laboratory, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Ce Wang
- Department of Clinical Laboratory, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Chengqian Qian
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300192, China
| | - Chao Yuan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Si Zhang
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300192, China
| | - Xiaohang Zhang
- Novo Nordisk (China) Pharmaceuticals Co. Ltd, Tianjin, China
| | - Zhiqiu Yin
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Hong Mu
- Department of Clinical Laboratory, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Yuhui Du
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
34
|
Santos LDO, de Lanna CA, Arcanjo ACDC, Bisch PM, von Krüger WMA. Genotypic Diversity and Pathogenic Potential of Clinical and Environmental Vibrio parahaemolyticus Isolates From Brazil. Front Microbiol 2021; 12:602653. [PMID: 33776949 PMCID: PMC7994283 DOI: 10.3389/fmicb.2021.602653] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/10/2021] [Indexed: 11/25/2022] Open
Abstract
Vibrio parahaemolyticus strains recovered from human diarrheal stools (one in 1975 and two in 2001) and environmental sources (four, between 2008 and 2010) were investigated for the presence of virulence genes (trh, tdh, and vpadF), pandemic markers (orf8, toxRSnew), and with respect to their pathogenic potential in two systemic infection models. Based only on the presence or absence of these genetic markers, they were classified as follows: the environmental strains were non-pathogenic, whereas among the clinical strains, the one isolated in 1975 was pathogenic (non-pandemic), and the other two were pathogenic (pandemic). The pathogenic potential of the strains was evaluated in mice and Galleria mellonella larvae infection models, and except for the clinical (pathogenic, non-pandemic) isolate, the others produced lethal infection in both organisms, regardless of their source, serotype, and genotype (tdh, orf8, toxRSnew, and vpadF). Based on mice and larval mortality rates, the strains were then grouped according to virulence (high, intermediate, and avirulent), and remarkably similar results were obtained by using these models: The clinical strain (pathogenic and non-pandemic) was classified as avirulent, and other strains (four non-pathogenic and two pandemic) were considered of high or intermediate virulence. In summary, these findings demonstrate that G. mellonella larvae can indeed be used as an alternative model to study the pathogenicity of V. parahaemolyticus. Moreover, they raise doubts about the use of traditional virulence markers to predict pathogenesis of the species and show that reliable models are indispensable to determine the pathogenic potential of environmental isolates considered non-pathogenic, based on the absence of the long-standing virulence indicators.
Collapse
Affiliation(s)
- Leandro de O Santos
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cristóvão A de Lanna
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anna Carolina da C Arcanjo
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo M Bisch
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wanda M A von Krüger
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
35
|
Martinez J, Razo-Gutierrez C, Le C, Courville R, Pimentel C, Liu C, Fung SE, Tuttobene MR, Phan K, Vila AJ, Shahrestani P, Jimenez V, Tolmasky ME, Becka SA, Papp-Wallace KM, Bonomo RA, Soler-Bistue A, Sieira R, Ramirez MS. Cerebrospinal fluid (CSF) augments metabolism and virulence expression factors in Acinetobacter baumannii. Sci Rep 2021; 11:4737. [PMID: 33637791 PMCID: PMC7910304 DOI: 10.1038/s41598-021-81714-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022] Open
Abstract
In a recent report by the Centers for Disease Control and Prevention (CDC), multidrug resistant (MDR) Acinetobacter baumannii is a pathogen described as an "urgent threat." Infection with this bacterium manifests as different diseases such as community and nosocomial pneumonia, bloodstream infections, endocarditis, infections of the urinary tract, wound infections, burn infections, skin and soft tissue infections, and meningitis. In particular, nosocomial meningitis, an unwelcome complication of neurosurgery caused by extensively-drug resistant (XDR) A. baumannii, is extremely challenging to manage. Therefore, understanding how A. baumannii adapts to different host environments, such as cerebrospinal fluid (CSF) that may trigger changes in expression of virulence factors that are associated with the successful establishment and progress of this infection is necessary. The present in-vitro work describes, the genetic changes that occur during A. baumannii infiltration into CSF and displays A. baumannii's expansive versatility to persist in a nutrient limited environment while enhancing several virulence factors to survive and persist. While a hypervirulent A. baumannii strain did not show changes in its transcriptome when incubated in the presence of CSF, a low-virulence isolate showed significant differences in gene expression and phenotypic traits. Exposure to 4% CSF caused increased expression of virulence factors such as fimbriae, pilins, and iron chelators, and other virulence determinants that was confirmed in various model systems. Furthermore, although CSF's presence did not enhance bacterial growth, an increase of expression of genes encoding transcription, translation, and the ATP synthesis machinery was observed. This work also explores A. baumannii's response to an essential component, human serum albumin (HSA), within CSF to trigger the differential expression of genes associated with its pathoadaptibility in this environment.
Collapse
Affiliation(s)
- Jasmine Martinez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Chelsea Razo-Gutierrez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Casin Le
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Robert Courville
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Camila Pimentel
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Christine Liu
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Sammie E Fung
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Marisel R Tuttobene
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Kimberly Phan
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Alejandro J Vila
- Instituto de Biología Molecular Y Celular de Rosario (IBR, CONICET-UNR), Rosario, Argentina
- Área Biofísica, Facultad de Ciencias Bioquímicas Y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Parvin Shahrestani
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Veronica Jimenez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Marcelo E Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Scott A Becka
- Research Service and GRECC, Department of Veterans Affairs Medical Center, Louis Stokes Cleveland, Cleveland, OH, USA
| | - Krisztina M Papp-Wallace
- Research Service and GRECC, Department of Veterans Affairs Medical Center, Louis Stokes Cleveland, Cleveland, OH, USA
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, USA
| | - Robert A Bonomo
- Research Service and GRECC, Department of Veterans Affairs Medical Center, Louis Stokes Cleveland, Cleveland, OH, USA
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, USA
| | - Alfonso Soler-Bistue
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín-Consejo Nacional de Investigaciones Científicas Y Técnicas, San Martín, Buenos Aires, Argentina
| | - Rodrigo Sieira
- Fundación Instituto Leloir - IIBBA CONICET, Buenos Aires, Argentina
| | - Maria Soledad Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA.
| |
Collapse
|
36
|
Moriel B, de Campos Prediger K, de Souza EM, Pedrosa FO, Fadel-Picheth CMT, Cruz LM. In silico comparative analysis of Aeromonas Type VI Secretion System. Braz J Microbiol 2021; 52:229-243. [PMID: 33410103 DOI: 10.1007/s42770-020-00405-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 11/12/2020] [Indexed: 12/29/2022] Open
Abstract
Aeromonas are bacteria broadly spread in the environment, particularly in aquatic habitats and can induce human infections. Several virulence factors have been described associated with bacterial pathogenicity, such as the Type VI Secretion System (T6SS). This system translocates effector proteins into target cells through a bacteriophage-like contractile structure encoded by tss genes. Here, a total of 446 Aeromonas genome sequences were screened for T6SS and the proteins subjected to in silico analysis. The T6SS-encoding locus was detected in 243 genomes and its genes are encoded in a cluster containing 13 core and 5 accessory genes, in highly conserved synteny. The amino acid residues identity of T6SS proteins ranges from 78 to 98.8%. In most strains, a pair of tssD and tssI is located upstream the cluster (tssD-2, tssI-2) and another pair was detected distant from the cluster (tssD-1, tssI-1). Significant variability was seen in TssI (VgrG) C-terminal region, which was sorted in four groups based on its sequence length and protein domains. TssI containing ADP-ribosyltransferase domain are associated exclusively with TssI-1, while genes coding proteins carrying DUF4123 (a conserved domain of unknown function) were observed downstream tssI-1 or tssI-2 and escort of possible effector proteins. Genes coding proteins containing DUF1910 and DUF1911 domains were located only downstream tssI-2 and might represent a pair of toxin/immunity proteins. Nearly all strains display downstream tssI-3, that codes for a lysozyme family domain protein. These data reveal that Aeromonas T6SS cluster synteny is conserved and the low identity observed for some genes might be due to species heterogeneity or its niche/functionality.
Collapse
Affiliation(s)
- Barbara Moriel
- Department of Clinical Analysis, Setor de Ciências da Saúde, Curitiba, Brazil
| | | | - Emanuel M de Souza
- Department of Biochemistry and Molecular Biology, Setor de Ciências Biológicas, Curitiba, PR, Brazil
| | - Fábio O Pedrosa
- Department of Biochemistry and Molecular Biology, Setor de Ciências Biológicas, Curitiba, PR, Brazil
| | | | - Leonardo M Cruz
- Department of Biochemistry and Molecular Biology, Setor de Ciências Biológicas, Curitiba, PR, Brazil.
| |
Collapse
|
37
|
Steinbach G, Crisan C, Ng SL, Hammer BK, Yunker PJ. Accumulation of dead cells from contact killing facilitates coexistence in bacterial biofilms. J R Soc Interface 2020; 17:20200486. [PMID: 33292099 PMCID: PMC7811593 DOI: 10.1098/rsif.2020.0486] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Bacterial communities are governed by a wide variety of social interactions, some of which are antagonistic with potential significance for bacterial warfare. Several antagonistic mechanisms, such as killing via the type VI secretion system (T6SS), require killer cells to directly contact target cells. The T6SS is hypothesized to be a highly potent weapon, capable of facilitating the invasion and defence of bacterial populations. However, we find that the efficacy of contact killing is severely limited by the material consequences of cell death. Through experiments with Vibrio cholerae strains that kill via the T6SS, we show that dead cell debris quickly accumulates at the interface that forms between competing strains, preventing physical contact and thus preventing killing. While previous experiments have shown that T6SS killing can reduce a population of target cells by as much as 106-fold, we find that, as a result of the formation of dead cell debris barriers, the impact of contact killing depends sensitively on the initial concentration of killer cells. Killer cells are incapable of invading or eliminating competitors on a community level. Instead, bacterial warfare itself can facilitate coexistence between nominally antagonistic strains. While a variety of defensive strategies against microbial warfare exist, the material consequences of cell death provide target cells with their first line of defence.
Collapse
Affiliation(s)
- Gabi Steinbach
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Cristian Crisan
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Siu Lung Ng
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Brian K. Hammer
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Peter J. Yunker
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
38
|
Yuan C, Wei Y, Zhang S, Cheng J, Cheng X, Qian C, Wang Y, Zhang Y, Yin Z, Chen H. Comparative Genomic Analysis Reveals Genetic Mechanisms of the Variety of Pathogenicity, Antibiotic Resistance, and Environmental Adaptation of Providencia Genus. Front Microbiol 2020; 11:572642. [PMID: 33193173 PMCID: PMC7652902 DOI: 10.3389/fmicb.2020.572642] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/17/2020] [Indexed: 12/25/2022] Open
Abstract
The bacterial genus Providencia is Gram-negative opportunistic pathogens, which have been isolated from a variety of environments and organisms, ranging from humans to animals. Providencia alcalifaciens, Providencia rettgeri, and Providencia stuartii are the most common clinical isolates, however, these three species differ in their pathogenicity, antibiotic resistance and environmental adaptation. Genomes of 91 isolates of the genus Providencia were investigated to clarify their genetic diversity, focusing on virulence factors, antibiotic resistance genes, and environmental adaptation genes. Our study revealed an open pan-genome for the genus Providencia containing 14,720 gene families. Species of the genus Providencia exhibited different functional constraints, with the core genes, accessory genes, and unique genes. A maximum-likelihood phylogeny reconstructed with concatenated single-copy core genes classified all Providencia isolates into 11 distant groups. Comprehensive and systematic comparative genomic analyses revealed that specific distributions of virulence genes, which were highly homologous to virulence genes of the genus Proteus, contributed to diversity in pathogenicity of Providencia alcalifaciens, Providencia rettgeri, and Providencia stuartii. Furthermore, multidrug resistance (MDR) phenotypes of isolates of Providencia rettgeri and Providencia stuartii were predominantly due to resistance genes from class 1 and 2 integrons. In addition, Providencia rettgeri and Providencia stuartii harbored more genes related to material transport and energy metabolism, which conferred a stronger ability to adapt to diverse environments. Overall, our study provided valuable insights into the genetic diversity and functional features of the genus Providencia, and revealed genetic mechanisms underlying diversity in pathogenicity, antibiotic resistance and environmental adaptation of members of this genus.
Collapse
Affiliation(s)
- Chao Yuan
- Department of Sanitary Toxicology and Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment Nutrition and Public Health, Tianjin Medical University, Tianjin, China.,Center for International Collaborative Research on Environment Nutrition and Public Health, Tianjin Medical University, Tianjin, China
| | - Yi Wei
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Tianjin, China.,Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Si Zhang
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Tianjin, China.,Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Juan Cheng
- Department of Dermatology, Tianjin Union Medical Center, Tianjin, China
| | - Xiaolei Cheng
- Department of Dermatology, Tianjin Union Medical Center, Tianjin, China
| | - Chengqian Qian
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Tianjin, China.,Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Yuhui Wang
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Tianjin, China.,Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Yang Zhang
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Tianjin, China.,Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Nankai University, Tianjin, China.,College of Life Science, Nankai University, Tianjin, China
| | - Zhiqiu Yin
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Tianjin, China.,Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Nankai University, Tianjin, China.,National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'an, China
| | - Hong Chen
- Department of Dermatology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
39
|
Contact-Dependent Growth Inhibition in Bacteria: Do Not Get Too Close! Int J Mol Sci 2020; 21:ijms21217990. [PMID: 33121148 PMCID: PMC7662968 DOI: 10.3390/ijms21217990] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 12/20/2022] Open
Abstract
Over millions of years of evolution, bacteria have developed complex strategies for intra-and interspecies interactions and competition for ecological niches and resources. Contact-dependent growth inhibition systems (CDI) are designed to realize a direct physical contact of one bacterial cell with other cells in proximity via receptor-mediated toxin delivery. These systems are found in many microorganisms including clinically important human pathogens. The main purpose of these systems is to provide competitive advantages for the growth of the population. In addition, non-competitive roles for CDI toxin delivery systems including interbacterial signal transduction and mediators of bacterial collaboration have been suggested. In this review, our goal was to systematize the recent findings on the structure, mechanisms, and purpose of CDI systems in bacterial populations and discuss the potential biological and evolutionary impact of CDI-mediated interbacterial competition and/or cooperation.
Collapse
|
40
|
Yuan S, Qi M, Peng Q, Huang G, Liu J, Xu Z, Gong X, Zhang G. Adaptive behaviors of planktonic Pseudomonas aeruginosa in response to the surface-deposited dead siblings. Colloids Surf B Biointerfaces 2020; 197:111408. [PMID: 33099147 DOI: 10.1016/j.colsurfb.2020.111408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/23/2020] [Accepted: 10/08/2020] [Indexed: 11/27/2022]
Abstract
In this study, the 3D motion behaviors and the underlying adaptation mechanism of planktonic Pseudomonas aeruginosa (PAO1) in response to the deposited dead siblings nearby were explored. Utilizing a real-time 3D tracking technique, digital holographic microscopy (DHM), we demonstrate that planktonic cells near the surface covered with dead siblings have a lower density and a reduced 3D velocity compared with those upon viable ones. As a sign of chemosensory responses, bacteria swimming near the dead siblings exhibit increase in frequency of the 'flick' motion. Transcriptomic analysis by RNA-seq reveals an upregulated expression of dgcM and dgcE inhibited the movement of PAO1, accompanied by increased transcriptional levels of the virulence factor-related genes hcp1, clpV1, and vgrG1. Moreover, the decrease in l-glutamate and the increase in succinic acid in the metabolites of the dead bacteria layer promote the dispersion of planktonic bacteria. As a result, the dead siblings on a surface inhibit the bacterial accumulation and activate the adaptive defensive responses of planktonic PAO1 in the vicinity.
Collapse
Affiliation(s)
- Shuo Yuan
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Meng Qi
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Qingmei Peng
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Gui Huang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Jun Liu
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Zhenbo Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Xiangjun Gong
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates (South China University of Technology), PR China.
| | - Guangzhao Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| |
Collapse
|
41
|
Smith WPJ, Brodmann M, Unterweger D, Davit Y, Comstock LE, Basler M, Foster KR. The evolution of tit-for-tat in bacteria via the type VI secretion system. Nat Commun 2020; 11:5395. [PMID: 33106492 PMCID: PMC7589516 DOI: 10.1038/s41467-020-19017-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
Tit-for-tat is a familiar principle from animal behavior: individuals respond in kind to being helped or harmed by others. Remarkably some bacteria appear to display tit-for-tat behavior, but how this evolved is not understood. Here we combine evolutionary game theory with agent-based modelling of bacterial tit-for-tat, whereby cells stab rivals with poisoned needles (the type VI secretion system) after being stabbed themselves. Our modelling shows tit-for-tat retaliation is a surprisingly poor evolutionary strategy, because tit-for-tat cells lack the first-strike advantage of preemptive attackers. However, if cells retaliate strongly and fire back multiple times, we find that reciprocation is highly effective. We test our predictions by competing Pseudomonas aeruginosa (a tit-for-tat species) with Vibrio cholerae (random-firing), revealing that P. aeruginosa does indeed fire multiple times per incoming attack. Our work suggests bacterial competition has led to a particular form of reciprocation, where the principle is that of strong retaliation, or 'tits-for-tat'.
Collapse
Affiliation(s)
- William P J Smith
- Department of Zoology, University of Oxford, Oxford, OX1 3SZ, UK.
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK.
| | - Maj Brodmann
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056, Basel, Switzerland
| | - Daniel Unterweger
- Institute for Experimental Medicine, Kiel University, 24105, Kiel, Germany
- Max-Planck Institute for Evolutionary Biology, 24306, Plön, Germany
| | - Yohan Davit
- Institut de Mécanique des Fluides de Toulouse, CNRS and Université de Toulouse, 31400, Toulouse, France
| | - Laurie E Comstock
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Marek Basler
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056, Basel, Switzerland
| | - Kevin R Foster
- Department of Zoology, University of Oxford, Oxford, OX1 3SZ, UK.
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK.
| |
Collapse
|
42
|
Qiu Y, Hu L, Yang W, Yin Z, Zhou D, Yang H, Zhang Y. The type VI secretion system 2 of Vibrio parahaemolyticus is regulated by QsvR. Microb Pathog 2020; 149:104579. [PMID: 33091577 DOI: 10.1016/j.micpath.2020.104579] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 01/13/2023]
Abstract
The type VI secretion system 2 (T6SS2) gene locus of Vibrio parahaemolyticus is comprised of three operons, VPA1027-1024, VPA1043-1028, and VPA1044-1046. QsvR is a virulence regulator of V. parahaemolyticus. In this study, the regulation of VPA1027, VPA1043 and VPA1044 by QsvR was investigated by primer extension, quantitative real-time PCR, LacZ fusion, electrophoretic mobility shift assay and DNase I footprinting. The results demonstrated that QsvR binds to the promoter-proximal DNA regions of each of these three operons, activating their transcription. T6SS2 was shown to predominately contribute to V. parahaemolyticus adhesion, with qsvR deletion significantly decreasing V. parahaemolyticus adhesion to HeLa cells. Thus, QsvR is not only a positive regulator of T6SS2 gene transcription but also a mediator of V. parahaemolyticus adhesion to host cells.
Collapse
Affiliation(s)
- Yue Qiu
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Lingfei Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Wenhui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Huiying Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| | - Yiquan Zhang
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China; Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
43
|
Horizontal Gene Transfer Clarifies Taxonomic Confusion and Promotes the Genetic Diversity and Pathogenicity of Plesiomonas shigelloides. mSystems 2020; 5:5/5/e00448-20. [PMID: 32934114 PMCID: PMC7498682 DOI: 10.1128/msystems.00448-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The taxonomic position of P. shigelloides has been the subject of debate for a long time, and until now, the evolutionary dynamics and pathogenesis of P. shigelloides were unclear. In this study, pan-genome analysis indicated extensive genetic diversity and the presence of large and variable gene repertoires. Our results revealed that horizontal gene transfer was the focal driving force for the genetic diversity of the P. shigelloides pan-genome and might have contributed to the emergence of novel properties. Vibrionaceae and Aeromonadaceae were found to be the predominant donor taxa for horizontal genes, which might have caused the taxonomic confusion historically. Comparative genomic analysis revealed the potential of P. shigelloides to cause intestinal and invasive diseases. Our results could advance the understanding of the evolution and pathogenesis of P. shigelloides, particularly in elucidating the role of horizontal gene transfer and investigating virulence-related elements. Plesiomonas shigelloides is an emerging pathogen that has been shown to be involved in gastrointestinal diseases and extraintestinal infections in humans. However, the taxonomic position, evolutionary dynamics, and pathogenesis of P. shigelloides remain unclear. We reported the draft genome sequences of 12 P. shigelloides strains representing different serogroups. We were able to determine a clear distinction between P. shigelloides and other members of Enterobacterales via core genome phylogeny, Neighbor-Net network, and average genome identity analysis. The pan-genome analysis of P. shigelloides revealed extensive genetic diversity and presented large flexible gene repertoires, while the core genome phylogeny exhibited a low level of clonality. The discordance between the core genome phylogeny and the pan-genome phylogeny indicated that flexible accessory genomes account for an important proportion of the evolution of P. shigelloides, which was subsequently characterized by determinations of hundreds of horizontally transferred genes (horizontal genes), massive gene expansions and contractions, and diverse mobile genetic elements (MGEs). The apparently high levels of horizontal gene transfer (HGT) in P. shigelloides were conferred from bacteria with novel properties from other taxa (mainly Vibrionaceae and Aeromonadaceae), which caused the historical taxonomic confusion and shaped the virulence gene pools. Furthermore, P. shigelloides genomes contain many macromolecular secretion system genes, virulence factor genes, and resistance genes, indicating its potential to cause intestinal and invasive infections. Collectively, our work provides insights into the phylogenetic position, evolutionary dynamic, and pathogenesis of P. shigelloides at the genomic level, which could facilitate the observation and research of this important pathogen. IMPORTANCE The taxonomic position of P. shigelloides has been the subject of debate for a long time, and until now, the evolutionary dynamics and pathogenesis of P. shigelloides were unclear. In this study, pan-genome analysis indicated extensive genetic diversity and the presence of large and variable gene repertoires. Our results revealed that horizontal gene transfer was the focal driving force for the genetic diversity of the P. shigelloides pan-genome and might have contributed to the emergence of novel properties. Vibrionaceae and Aeromonadaceae were found to be the predominant donor taxa for horizontal genes, which might have caused the taxonomic confusion historically. Comparative genomic analysis revealed the potential of P. shigelloides to cause intestinal and invasive diseases. Our results could advance the understanding of the evolution and pathogenesis of P. shigelloides, particularly in elucidating the role of horizontal gene transfer and investigating virulence-related elements.
Collapse
|
44
|
Kochanowsky RM, Bradshaw C, Forlastro I, Stock SP. Xenorhabdus bovienii strain jolietti uses a type 6 secretion system to kill closely related Xenorhabdus strains. FEMS Microbiol Ecol 2020; 96:fiaa073. [PMID: 32558899 PMCID: PMC7353953 DOI: 10.1093/femsec/fiaa073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/21/2020] [Indexed: 01/25/2023] Open
Abstract
Xenorhabdus bovienii strain jolietti (XBJ) is a Gram-negative bacterium that interacts with several organisms as a part of its life cycle. It is a beneficial symbiont of nematodes, a potent pathogen of a wide range of soil-dwelling insects and also has the ability to kill soil- and insect-associated microbes. Entomopathogenic Steinernema nematodes vector XBJ into insects, releasing the bacteria into the insect body cavity. There, XBJ produce a variety of insecticidal toxins and antimicrobials. XBJ's genome also encodes two separate Type Six Secretion Systems (T6SSs), structures that allow bacteria to inject specific proteins directly into other cells, but their roles in the XBJ life cycle are mostly unknown. To probe the function of these T6SSs, we generated mutant strains lacking the key structural protein Hcp from each T6SS and assessed phenotypes related to different parts of XBJ's life cycle. Here we demonstrate that one of the T6SSs is more highly expressed in in vitro growth conditions and has antibacterial activity against other Xenorhabdus strains, and that the two T6SSs have a redundant role in biofilm formation.
Collapse
Affiliation(s)
- Rebecca M Kochanowsky
- School of Animal and Comparative Biomedical Sciences, University of Arizona, 1117 E. Lowell St., Tucson, AZ 85721, USA
- Center for Insect Science, University of Arizona, 1007 E. Lowell St., Tucson, AZ 85721, USA
| | - Christine Bradshaw
- School of Animal and Comparative Biomedical Sciences, University of Arizona, 1117 E. Lowell St., Tucson, AZ 85721, USA
| | - Isabel Forlastro
- School of Animal and Comparative Biomedical Sciences, University of Arizona, 1117 E. Lowell St., Tucson, AZ 85721, USA
| | - S Patricia Stock
- School of Animal and Comparative Biomedical Sciences, University of Arizona, 1117 E. Lowell St., Tucson, AZ 85721, USA
| |
Collapse
|
45
|
The transcriptome of Listeria monocytogenes during co-cultivation with cheese rind bacteria suggests adaptation by induction of ethanolamine and 1,2-propanediol catabolism pathway genes. PLoS One 2020; 15:e0233945. [PMID: 32701964 PMCID: PMC7377500 DOI: 10.1371/journal.pone.0233945] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023] Open
Abstract
The survival of Listeria (L.) monocytogenes in foods and food production environments (FPE) is dependent on several genes that increase tolerance to stressors; this includes competing with intrinsic bacteria. We aimed to uncover genes that are differentially expressed (DE) in L. monocytogenes sequence type (ST) 121 strain 6179 when co-cultured with cheese rind bacteria. L. monocytogenes was cultivated in broth or on plates with either a Psychrobacter or Brevibacterium isolate from cheese rinds. RNA was extracted from co-cultures in broth after two or 12 hours and from plates after 24 and 72 hours. Broth co-cultivations with Brevibacterium or Psychrobacter yielded up to 392 and 601 DE genes, while plate co-cultivations significantly affected the expression of up to 190 and 485 L. monocytogenes genes, respectively. Notably, the transcription of virulence genes encoding the Listeria adhesion protein and Listeriolysin O were induced during plate and broth co-cultivations. The expression of several systems under the control of the global stress gene regulator, σB, increased during co-cultivation. A cobalamin-dependent gene cluster, responsible for the catabolism of ethanolamine and 1,2-propanediol, was upregulated in both broth and plate co-cultures conditions. Finally, a small non-coding (nc)RNA, Rli47, was induced after 72 hours of co-cultivation on plates and accounted for 50-90% of the total reads mapped to L. monocytogenes. A recent study has shown that Rli47 may contribute to L. monocytogenes stress survival by slowing growth during stress conditions through the suppression of branch-chained amino acid biosynthesis. We hypothesize that Rli47 may have an impactful role in the response of L. monocytogenes to co-cultivation by regulating a complex network of metabolic and virulence mechanisms.
Collapse
|
46
|
Bacterial-induced cell fusion is a danger signal triggering cGAS-STING pathway via micronuclei formation. Proc Natl Acad Sci U S A 2020; 117:15923-15934. [PMID: 32571920 PMCID: PMC7355030 DOI: 10.1073/pnas.2006908117] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Burkholderia pseudomallei is a bacterial pathogen that causes melioidosis, an infectious disease in the tropics with high morbidity and mortality. It has a unique property among bacteria: to fuse infected host cells. We found that our immune system detects bacterial- or chemical-induced host cell fusion as a danger signal. Abnormal cell fusion leads to genomic instability and formation of micronuclei. This triggers the host to activate a signaling pathway leading to a form of cell death known as autophagic death, which likely serves to limit abnormal cellular transformation. Burkholderia pseudomallei is the causative agent of melioidosis, an infectious disease in the tropics and subtropics with high morbidity and mortality. The facultative intracellular bacterium induces host cell fusion through its type VI secretion system 5 (T6SS5) as an important part of its pathogenesis in mammalian hosts. This allows it to spread intercellularly without encountering extracellular host defenses. We report that bacterial T6SS5-dependent cell fusion triggers type I IFN gene expression in the host and leads to activation of the cGAMP synthase–stimulator of IFN genes (cGAS–STING) pathway, independent of bacterial ligands. Aberrant and abortive mitotic events result in the formation of micronuclei colocalizing with cGAS, which is activated by double-stranded DNA. Surprisingly, cGAS–STING activation leads to type I IFN transcription but not its production. Instead, the activation of cGAS and STING results in autophagic cell death. We also observed type I IFN gene expression, micronuclei formation, and death of chemically induced cell fusions. Therefore, we propose that the cGAS–STING pathway senses unnatural cell fusion through micronuclei formation as a danger signal, and consequently limits aberrant cell division and potential cellular transformation through autophagic death induction.
Collapse
|
47
|
The evolution of the type VI secretion system as a disintegration weapon. PLoS Biol 2020; 18:e3000720. [PMID: 32453732 PMCID: PMC7274471 DOI: 10.1371/journal.pbio.3000720] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 06/05/2020] [Accepted: 04/30/2020] [Indexed: 12/22/2022] Open
Abstract
The type VI secretion system (T6SS) is a nanomachine used by many bacteria to drive a toxin-laden needle into other bacterial cells. Although the potential to influence bacterial competition is clear, the fitness impacts of wielding a T6SS are not well understood. Here we present a new agent-based model that enables detailed study of the evolutionary costs and benefits of T6SS weaponry during competition with other bacteria. Our model identifies a key problem with the T6SS. Because of its short range, T6SS activity becomes self-limiting, as dead cells accumulate in its way, forming “corpse barriers” that block further attacks. However, further exploration with the model presented a solution to this problem: if injected toxins can quickly lyse target cells in addition to killing them, the T6SS becomes a much more effective weapon. We tested this prediction with single-cell analysis of combat between T6SS-wielding Acinetobacter baylyi and T6SS-sensitive Escherichia coli. As predicted, delivery of lytic toxins is highly effective, whereas nonlytic toxins leave large patches of E. coli alive. We then analyzed hundreds of bacterial species using published genomic data, which suggest that the great majority of T6SS-wielding species do indeed use lytic toxins, indicative of a general principle underlying weapon evolution. Our work suggests that, in the T6SS, bacteria have evolved a disintegration weapon whose effectiveness often rests upon the ability to break up competitors. Understanding the evolutionary function of bacterial weapons can help in the design of probiotics that can both establish well and eliminate problem species. Bacteria attack each other with poison-tipped spears. This study combines theory and experiments to show that these spears (Type VI Secretion Systems) have evolved to break their targets apart with lytic toxins, as this then clears the way to rapidly stab new victims.
Collapse
|
48
|
Bouteiller M, Gallique M, Bourigault Y, Kosta A, Hardouin J, Massier S, Konto-Ghiorghi Y, Barbey C, Latour X, Chane A, Feuilloley M, Merieau A. Crosstalk between the Type VI Secretion System and the Expression of Class IV Flagellar Genes in the Pseudomonas fluorescens MFE01 Strain. Microorganisms 2020; 8:microorganisms8050622. [PMID: 32344878 PMCID: PMC7286023 DOI: 10.3390/microorganisms8050622] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/16/2020] [Accepted: 04/23/2020] [Indexed: 11/16/2022] Open
Abstract
Type VI secretion systems (T6SSs) are contractile bacterial multiprotein nanomachines that enable the injection of toxic effectors into prey cells. The Pseudomonas fluorescens MFE01 strain has T6SS antibacterial activity and can immobilise competitive bacteria through the T6SS. Hcp1 (hemolysin co-regulated protein 1), a constituent of the T6SS inner tube, is involved in such prey cell inhibition of motility. Paradoxically, disruption of the hcp1 or T6SS contractile tail tssC genes results in the loss of the mucoid and motile phenotypes in MFE01. Here, we focused on the relationship between T6SS and flagella-associated motility. Electron microscopy revealed the absence of flagellar filaments for MFE01Δhcp1 and MFE01ΔtssC mutants. Transcriptomic analysis showed a reduction in the transcription of class IV flagellar genes in these T6SS mutants. However, transcription of fliA, the gene encoding the class IV flagellar sigma factor, was unaffected. Over-expression of fliA restored the motile and mucoid phenotypes in both MFE01Δhcp1+fliA, and MFE01ΔtssC+fliA and a fliA mutant displayed the same phenotypes as MFE01Δhcp1 and MFE01ΔtssC. Moreover, the FliA anti-sigma factor FlgM was not secreted in the T6SS mutants, and flgM over-expression reduced both motility and mucoidy. This study provides arguments to unravel the crosstalk between T6SS and motility.
Collapse
Affiliation(s)
- Mathilde Bouteiller
- LMSM, Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Normandy University, Université de Rouen, 27000 Evreux, France; (M.B.); (M.G.); (Y.B.); (Y.K.-G.); (C.B.); (X.L.); (A.C.); (M.F.)
- SFR NORVEGE, Structure Fédérative de Recherche Normandie Végétale, FED 4277, F-76821 Mont-Saint-Aignan, France
| | - Mathias Gallique
- LMSM, Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Normandy University, Université de Rouen, 27000 Evreux, France; (M.B.); (M.G.); (Y.B.); (Y.K.-G.); (C.B.); (X.L.); (A.C.); (M.F.)
- Meakins-Christie laboratories, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Chemical Engineering, McGill University, Montreal, QC H3A 0C5, Canada
| | - Yvann Bourigault
- LMSM, Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Normandy University, Université de Rouen, 27000 Evreux, France; (M.B.); (M.G.); (Y.B.); (Y.K.-G.); (C.B.); (X.L.); (A.C.); (M.F.)
- SFR NORVEGE, Structure Fédérative de Recherche Normandie Végétale, FED 4277, F-76821 Mont-Saint-Aignan, France
| | - Artemis Kosta
- Plateforme de Microscopie de l’Institut de Microbiologie de la Méditerranée, IMM, Institut de Microbiologie, FR3479, Campus CNRS, 13402 Marseille cedex 20, France;
| | - Julie Hardouin
- Polymers, Biopolymers, Surface Laboratory, UMR 6270 CNRS, University of Rouen, F-76821 Mont-Saint-Aignan cedex, France; (J.H.); (S.M.)
- PISSARO Proteomics Facility, Université de Rouen, F-76821 Mont-Saint-Aignan, France
| | - Sebastien Massier
- Polymers, Biopolymers, Surface Laboratory, UMR 6270 CNRS, University of Rouen, F-76821 Mont-Saint-Aignan cedex, France; (J.H.); (S.M.)
- PISSARO Proteomics Facility, Université de Rouen, F-76821 Mont-Saint-Aignan, France
| | - Yoan Konto-Ghiorghi
- LMSM, Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Normandy University, Université de Rouen, 27000 Evreux, France; (M.B.); (M.G.); (Y.B.); (Y.K.-G.); (C.B.); (X.L.); (A.C.); (M.F.)
| | - Corinne Barbey
- LMSM, Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Normandy University, Université de Rouen, 27000 Evreux, France; (M.B.); (M.G.); (Y.B.); (Y.K.-G.); (C.B.); (X.L.); (A.C.); (M.F.)
- SFR NORVEGE, Structure Fédérative de Recherche Normandie Végétale, FED 4277, F-76821 Mont-Saint-Aignan, France
| | - Xavier Latour
- LMSM, Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Normandy University, Université de Rouen, 27000 Evreux, France; (M.B.); (M.G.); (Y.B.); (Y.K.-G.); (C.B.); (X.L.); (A.C.); (M.F.)
- SFR NORVEGE, Structure Fédérative de Recherche Normandie Végétale, FED 4277, F-76821 Mont-Saint-Aignan, France
| | - Andréa Chane
- LMSM, Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Normandy University, Université de Rouen, 27000 Evreux, France; (M.B.); (M.G.); (Y.B.); (Y.K.-G.); (C.B.); (X.L.); (A.C.); (M.F.)
- SFR NORVEGE, Structure Fédérative de Recherche Normandie Végétale, FED 4277, F-76821 Mont-Saint-Aignan, France
| | - Marc Feuilloley
- LMSM, Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Normandy University, Université de Rouen, 27000 Evreux, France; (M.B.); (M.G.); (Y.B.); (Y.K.-G.); (C.B.); (X.L.); (A.C.); (M.F.)
| | - Annabelle Merieau
- LMSM, Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Normandy University, Université de Rouen, 27000 Evreux, France; (M.B.); (M.G.); (Y.B.); (Y.K.-G.); (C.B.); (X.L.); (A.C.); (M.F.)
- SFR NORVEGE, Structure Fédérative de Recherche Normandie Végétale, FED 4277, F-76821 Mont-Saint-Aignan, France
- Correspondence:
| |
Collapse
|
49
|
Sah PP, Bhattacharya S, Banerjee A, Ray S. Identification of novel therapeutic target and epitopes through proteome mining from essential hypothetical proteins in Salmonella strains: An In silico approach towards antivirulence therapy and vaccine development. INFECTION GENETICS AND EVOLUTION 2020; 83:104315. [PMID: 32276082 DOI: 10.1016/j.meegid.2020.104315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/29/2020] [Accepted: 04/02/2020] [Indexed: 10/24/2022]
Abstract
Salmonella strains are responsible for a huge mortality rate through foodborne ailment in the world that necessitated the discovery of novel drugs and vaccines. Essential hypothetical proteins (EHPs), whose structures and functions were previously unknown, could serve as potential therapeutic and vaccine targets. Antivirulence therapy shall emerge as a superior therapeutic approach that uses virulence factors as drug targets. This study annotated the biological functions of 96 out of total 106 essential hypothetical proteins in five strains of Salmonella and classified into nine important protein categories. 34 virulence factors were predicted among the EHPs, out of which, 11 were identified to be pathogen specific potential drug targets for antivirulence therapy. These targets were non-homologous to both human and gut microbiota proteome to avoid cross-reactivity with them. Seven identified targets had druggable property, while the rest four targets were novel targets. Four identified targets (DEG10320148, DEG10110027, DEG10110040 and DEG10110142) had antigenic properties and were further classified as: two membrane-bound Lipid-binding transmembrane proteins, a Zinc-binding membrane protein and an extracellular glycosylase. These targets could be potentially used for the development of subunit vaccines. The study further identified 11 highly conserved and exposed epitope sequences from these 4 vaccine targets. The three-dimensional structures of the vaccine targets were also elucidated along with highlighting the conformation of the epitopes. This study identified potential therapeutic targets for antivirulence therapy against Salmonella. It would therefore instigate in novel drug designing as well as provide important leads to new Salmonella vaccine development.
Collapse
Affiliation(s)
| | | | - Arundhati Banerjee
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, Nadia, India
| | - Sujay Ray
- Amity Institute of Biotechnology, Amity University, Kolkata, India.
| |
Collapse
|
50
|
Kesavan D, Vasudevan A, Wu L, Chen J, Su Z, Wang S, Xu H. Integrative analysis of outer membrane vesicles proteomics and whole-cell transcriptome analysis of eravacycline induced Acinetobacter baumannii strains. BMC Microbiol 2020; 20:31. [PMID: 32046644 PMCID: PMC7014627 DOI: 10.1186/s12866-020-1722-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/06/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Acinetobacter baumannii is a multidrug-resistant (MDR) hazardous bacterium with very high antimicrobial resistance profiles. Outer membrane vesicles (OMVs) help directly and/or indirectly towards antibiotic resistance in these organisms. The present study aims to look on the proteomic profile of OMV as well as on the bacterial transcriptome upon exposure and induction with eravacycline, a new synthetic fluorocycline. RNA sequencing analysis of whole-cell and LC-MS/MS proteomic profiling of OMV proteome abundance were done to identify the differential expression among the eravacycline-induced A. baumannii ATCC 19606 and A. baumannii clinical strain JU0126. RESULTS The differentially expressed genes from the RNA sequencing were analysed using R package and bioinformatics software and tools. Genes encoding drug efflux and membrane transport were upregulated among the DEGs from both ATCC 19606 and JU0126 strains. As evident with the induction of eravacycline resistance, ribosomal proteins were upregulated in both the strains in the transcriptome profiles and also resistance pumps, such as MFS, RND, MATE and ABC transporters. High expression of stress and survival proteins were predominant in the OMVs proteome with ribosomal proteins, chaperons, OMPs OmpA, Omp38 upregulated in ATCC 19606 strain and ribosomal proteins, toluene tolerance protein, siderophore receptor and peptidases in the JU0126 strain. The induction of resistance to eravacycline was supported by the presence of upregulation of ribosomal proteins, resistance-conferring factors and stress proteins in both the strains of A. baumannii ATCC 19606 and JU0126, with the whole-cell gene transcriptome towards both resistance and stress genes while the OMVs proteome enriched more with survival proteins. CONCLUSION The induction of resistance to eravacycline in the strains were evident with the increased expression of ribosomal and transcription related genes/proteins. Apart from this resistance-conferring efflux pumps, outer membrane proteins and stress-related proteins were also an essential part of the upregulated DEGs. However, the expression profiles of OMVs proteome in the study was independent with respect to the whole-cell RNA expression profiles with low to no correlation. This indicates the possible role of OMVs to be more of back-up additional protection to the existing bacterial cell defence during the antibacterial stress.
Collapse
Affiliation(s)
- DineshKumar Kesavan
- International Genomics Research Centre (IGRC), Jiangsu University, Zhenjiang, 212013, China.,Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Aparna Vasudevan
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Liang Wu
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Jianguo Chen
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212001, China
| | - Zhaoliang Su
- International Genomics Research Centre (IGRC), Jiangsu University, Zhenjiang, 212013, China.,Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Shengjun Wang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Huaxi Xu
- International Genomics Research Centre (IGRC), Jiangsu University, Zhenjiang, 212013, China. .,Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|