1
|
Blanco-Romero E, Garrido-Sanz D, Durán D, Rybtke M, Tolker-Nielsen T, Redondo-Nieto M, Rivilla R, Martín M. Role of extracellular matrix components in biofilm formation and adaptation of Pseudomonas ogarae F113 to the rhizosphere environment. Front Microbiol 2024; 15:1341728. [PMID: 38333580 PMCID: PMC10850567 DOI: 10.3389/fmicb.2024.1341728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/11/2024] [Indexed: 02/10/2024] Open
Abstract
Regulating the transition of bacteria from motile to sessile lifestyles is crucial for their ability to compete effectively in the rhizosphere environment. Pseudomonas are known to rely on extracellular matrix (ECM) components for microcolony and biofilm formation, allowing them to adapt to a sessile lifestyle. Pseudomonas ogarae F113 possesses eight gene clusters responsible for the production of ECM components. These gene clusters are tightly regulated by AmrZ, a major transcriptional regulator that influences the cellular levels of c-di-GMP. The AmrZ-mediated transcriptional regulation of ECM components is primarily mediated by the signaling molecule c-di-GMP and the flagella master regulator FleQ. To investigate the functional role of these ECM components in P. ogarae F113, we performed phenotypic analyses using mutants in genes encoding these ECM components. These analyses included assessments of colony morphology, dye-staining, static attachment to abiotic surfaces, dynamic biofilm formation on abiotic surfaces, swimming motility, and competitive colonization assays of the rhizosphere. Our results revealed that alginate and PNAG polysaccharides, along with PsmE and the fimbrial low molecular weight protein/tight adherence (Flp/Tad) pilus, are the major ECM components contributing to biofilm formation. Additionally, we found that the majority of these components and MapA are needed for a competitive colonization of the rhizosphere in P. ogarae F113.
Collapse
Affiliation(s)
- Esther Blanco-Romero
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Daniel Garrido-Sanz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - David Durán
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Morten Rybtke
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Tim Tolker-Nielsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Miguel Redondo-Nieto
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Rafael Rivilla
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta Martín
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
2
|
Costa-Gutierrez SB, Raimondo EE, Vincent PA, de Cristóbal RE. Importance of biofilm formation for promoting plant growth under salt stress in Pseudomonas putida KT2440. J Basic Microbiol 2023; 63:1219-1232. [PMID: 37537345 DOI: 10.1002/jobm.202300215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/20/2023] [Accepted: 07/12/2023] [Indexed: 08/05/2023]
Abstract
An underutilized experimental design was employed to isolate adapted mutants of the model bacterium Pseudomonas putida KT2440. The design involved subjecting a random pool of mini-Tn5 mutants of P. putida KT2440 to multiple rounds of selection in the rhizosphere of soybean plants irrigated with a NaCl solution. The isolated adapted mutants, referred to as MutAd, exhibited a mutation in the gene responsible for encoding the membrane-binding protein LapA, which plays a role in the initial stages of biofilm formation on abiotic surfaces. Two MutAd bacteria, MutAd160 and MutAd185, along with a lapA deletion mutant, were selected for further investigation to examine the impact of this gene on salt tolerance, rhizosphere fitness, production of extracellular polymeric substances (EPS), and promotion of plant growth. Despite the mutants' inability to form biofilms, they were able to attach to soybean seeds and roots. The MutAd bacteria demonstrated an elevated production of EPS when cultivated under saline conditions, which likely compensated for the absence of biofilm formation. MutAd185 bacteria exhibited enhanced root attachment and promoted the growth of soybean plants in slightly saline soils. The proposed experimental design holds promise for expediting bacterial adaptation to the rhizosphere of plants under specific environmental conditions, identifying genetic mutations that enhance bacterial fitness in those conditions, and thereby increasing their capacity to promote plant growth.
Collapse
Affiliation(s)
- Stefanie Bernardette Costa-Gutierrez
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) e Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Tucumán, Argentina
| | - Enzo Emanuel Raimondo
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, San Miguel de Tucumán, Tucumán, Argentina
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Tucumán, Argentina
| | - Paula Andrea Vincent
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) e Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Tucumán, Argentina
| | - Ricardo Ezequiel de Cristóbal
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) e Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Tucumán, Argentina
| |
Collapse
|
3
|
Espinosa-Urgel M, Ramos-González MI. Becoming settlers: Elements and mechanisms for surface colonization by Pseudomonas putida. Environ Microbiol 2023; 25:1575-1593. [PMID: 37045787 DOI: 10.1111/1462-2920.16385] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023]
Abstract
Pseudomonads are considered to be among the most widespread culturable bacteria in mesophilic environments. The evolutive success of Pseudomonas species can be attributed to their metabolic versatility, in combination with a set of additional functions that enhance their ability to colonize different niches. These include the production of secondary metabolites involved in iron acquisition or having a detrimental effect on potential competitors, different types of motility, and the capacity to establish and persist within biofilms. Although biofilm formation has been extensively studied using the opportunistic pathogen Pseudomonas aeruginosa as a model organism, a significant body of knowledge is also becoming available for non-pathogenic Pseudomonas. In this review, we focus on the mechanisms that allow Pseudomonas putida to colonize biotic and abiotic surfaces and adapt to sessile life, as a relevant persistence strategy in the environment. This species is of particular interest because it includes plant-beneficial strains, in which colonization of plant surfaces may be relevant, and strains used for environmental and biotechnological applications, where the design and functionality of biofilm-based bioreactors, for example, also have to take into account the efficiency of bacterial colonization of solid surfaces. This work reviews the current knowledge of mechanistic and regulatory aspects of biofilm formation by P. putida and pinpoints the prospects in this field.
Collapse
Affiliation(s)
- Manuel Espinosa-Urgel
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Granada, Spain
| | | |
Collapse
|
4
|
Zboralski A, Filion M. Pseudomonas spp. can help plants face climate change. Front Microbiol 2023; 14:1198131. [PMID: 37426009 PMCID: PMC10326438 DOI: 10.3389/fmicb.2023.1198131] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023] Open
Abstract
Climate change is increasingly affecting agriculture through droughts, high salinity in soils, heatwaves, and floodings, which put intense pressure on crops. This results in yield losses, leading to food insecurity in the most affected regions. Multiple plant-beneficial bacteria belonging to the genus Pseudomonas have been shown to improve plant tolerance to these stresses. Various mechanisms are involved, including alteration of the plant ethylene levels, direct phytohormone production, emission of volatile organic compounds, reinforcement of the root apoplast barriers, and exopolysaccharide biosynthesis. In this review, we summarize the effects of climate change-induced stresses on plants and detail the mechanisms used by plant-beneficial Pseudomonas strains to alleviate them. Recommendations are made to promote targeted research on the stress-alleviating potential of these bacteria.
Collapse
|
5
|
Bhattacharyya A, Mavrodi O, Bhowmik N, Weller D, Thomashow L, Mavrodi D. Bacterial biofilms as an essential component of rhizosphere plant-microbe interactions. METHODS IN MICROBIOLOGY 2023; 53:3-48. [PMID: 38415193 PMCID: PMC10898258 DOI: 10.1016/bs.mim.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Affiliation(s)
- Ankita Bhattacharyya
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Olga Mavrodi
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Niladri Bhowmik
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - David Weller
- USDA-ARS Wheat Health, Genetics and Quality Research Unit, Pullman, WA, United States
| | - Linda Thomashow
- USDA-ARS Wheat Health, Genetics and Quality Research Unit, Pullman, WA, United States
| | - Dmitri Mavrodi
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| |
Collapse
|
6
|
Santamaría‐Hernando S, De Bruyne L, Höfte M, Ramos‐González M. Improvement of fitness and biocontrol properties of
Pseudomonas putida
via an extracellular heme peroxidase. Microb Biotechnol 2022; 15:2652-2666. [PMID: 35986900 PMCID: PMC9518985 DOI: 10.1111/1751-7915.14123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/18/2022] [Indexed: 11/27/2022] Open
Abstract
The extracellular 373‐kDa PehA heme peroxidase of Pseudomonas putida KT2440 has two enzymatic domains which depend on heme cofactor for their peroxidase activity. A null pehA mutant was generated to examine the impact of PehA in rhizosphere colonization competence and the induction of plant systemic resistance (ISR). This mutant was not markedly hampered in colonization efficiency. However, increase in pehA dosage enhanced colonization fitness about 30 fold in the root and 900 fold in the root apex. In vitro assays with purified His‐tagged enzymatic domains of PehA indicated that heme‐dependent peroxidase activity was required for the enhancement of root tip colonization. Evaluation of live/dead cells confirmed that overexpression of pehA had a positive effect on bacterial cell viability. Following root colonization of rice plants by KT2440 strain, the incidence of rice blast caused by Magnaporthe oryzae was reduced by 65% and the severity of this disease was also diminished in comparison to non‐treated plants. An increase in the pehA dosage was also beneficial for the control of rice blast as compared with gene inactivation. The results suggest that PehA helps P. putida to cope with the plant‐imposed oxidative stress leading to enhanced colonization ability and concomitant ISR‐elicitation.
Collapse
Affiliation(s)
- Saray Santamaría‐Hernando
- Department of Environmental Protection Estación Experimental de Zaidín‐Consejo Superior de Investigaciones Científicas (CSIC) Granada Spain
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering Ghent University Ghent Belgium
| | - Lieselotte De Bruyne
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering Ghent University Ghent Belgium
| | - Monica Höfte
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering Ghent University Ghent Belgium
| | - María‐Isabel Ramos‐González
- Department of Environmental Protection Estación Experimental de Zaidín‐Consejo Superior de Investigaciones Científicas (CSIC) Granada Spain
| |
Collapse
|
7
|
Zhang W, Mi X, Zhang C, Cheng Y, Wang S, Ji J, Yuan Y, Wang L, Liu W, Jiang Y. Meat-derived Escherichia coli and Pseudomonas fragi manage to co-exist in dual-species biofilms by adjusting gene-regulated competitive strength. Food Microbiol 2022; 109:104122. [DOI: 10.1016/j.fm.2022.104122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 10/15/2022]
|
8
|
Costa-Gutierrez SB, Adler C, Espinosa-Urgel M, de Cristóbal RE. Pseudomonas putida and its close relatives: mixing and mastering the perfect tune for plants. Appl Microbiol Biotechnol 2022; 106:3351-3367. [PMID: 35488932 PMCID: PMC9151500 DOI: 10.1007/s00253-022-11881-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022]
Abstract
Abstract Plant growth–promoting rhizobacteria (PGPR) are a group of microorganisms of utmost interest in agricultural biotechnology for their stimulatory and protective effects on plants. Among the various PGPR species, some Pseudomonas putida strains combine outstanding traits such as phytohormone synthesis, nutrient solubilization, adaptation to different stress conditions, and excellent root colonization ability. In this review, we summarize the state of the art and the most relevant findings related to P. putida and its close relatives as PGPR, and we have compiled a detailed list of P. putida sensu stricto, sensu lato, and close relative strains that have been studied for their plant growth–promoting characteristics. However, the mere in vitro analysis of these characteristics does not guarantee correct plant performance under in vivo or field conditions. Therefore, the importance of studying adhesion and survival in the rhizosphere, as well as responses to environmental factors, is emphasized. Although numerous strains of this species have shown good performance in field trials, their use in commercial products is still very limited. Thus, we also analyze the opportunities and challenges related to the formulation and application of bioproducts based on these bacteria. Key points •The mini-review updates the knowledge on Pseudomonas putida as a PGPR. • Some rhizosphere strains are able to improve plant growth under stress conditions. • The metabolic versatility of this species encourages the development of a bioproduct.
Collapse
Affiliation(s)
- Stefanie Bernardette Costa-Gutierrez
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano Y Pasaje Caseros, 4000, San Miguel de Tucumán, Tucumán, Argentina
| | - Conrado Adler
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) E Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, 461, 4000 San Miguel de Tucumán, Chacabuco, Tucumán, Argentina
| | - Manuel Espinosa-Urgel
- Department of Environmental Protection, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain
| | - Ricardo Ezequiel de Cristóbal
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) E Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, 461, 4000 San Miguel de Tucumán, Chacabuco, Tucumán, Argentina.
| |
Collapse
|
9
|
Role of the Transcriptional Regulator ArgR in the Connection between Arginine Metabolism and c-di-GMP Signaling in Pseudomonas putida. Appl Environ Microbiol 2022; 88:e0006422. [PMID: 35254100 DOI: 10.1128/aem.00064-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The second messenger cyclic di-GMP (c-di-GMP) is a key molecule that controls different physiological and behavioral processes in many bacteria, including motile-to-sessile lifestyle transitions. Although the external stimuli that modulate cellular c-di-GMP contents are not fully characterized, there is growing evidence that certain amino acids act as environmental cues for c-di-GMP turnover. In the plant-beneficial bacterium Pseudomonas putida KT2440, both arginine biosynthesis and uptake influence second messenger contents and the associated phenotypes. To further understand this connection, we have analyzed the role of ArgR, which in different bacteria is the master transcriptional regulator of arginine metabolism but had not been characterized in P. putida. The results show that ArgR controls arginine biosynthesis and transport, and an argR-null mutant grows poorly with arginine as the sole carbon or nitrogen source and also displays increased biofilm formation and reduced surface motility. Modulation of c-di-GMP levels by exogenous arginine requires ArgR. The expression of certain biofilm matrix components, namely, the adhesin LapF and the exopolysaccharide Pea, as well as the diguanylate cyclase CfcR is influenced by ArgR, likely through the alternative sigma factor RpoS. Our data indicate the existence of a regulatory feedback loop between ArgR and c-di-GMP mediated by FleQ. IMPORTANCE Identifying the molecular mechanisms by which metabolic and environmental signals influence the turnover of the second messenger c-di-GMP is key to understanding the regulation of bacterial lifestyles. The results presented here point at the transcriptional regulator ArgR as a central node linking arginine metabolism and c-di-GMP signaling and indicate the existence of a complex balancing mechanism that connects cellular arginine contents and second messenger levels, ultimately controlling the lifestyles of Pseudomonas putida.
Collapse
|
10
|
Ruiz A, Herráez M, Costa-Gutierrez SB, Molina-Henares MA, Martínez MJ, Espinosa-Urgel M, Barriuso J. The architecture of a mixed fungal-bacterial biofilm is modulated by quorum-sensing signals. Environ Microbiol 2021; 23:2433-2447. [PMID: 33615654 DOI: 10.1111/1462-2920.15444] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/16/2021] [Accepted: 02/20/2021] [Indexed: 11/26/2022]
Abstract
Interkingdom communication is of particular relevance in polymicrobial biofilms. In this work, the ability of the fungus Ophiostoma piceae to form biofilms individually and in consortium with the bacterium Pseudomonas putida, as well as the effect of fungal and bacterial signal molecules on the architecture of the biofilms was evaluated. Pseudomonas putida KT2440 is able to form biofilms through the secretion of exopolysaccharides and two large extracellular adhesion proteins, LapA and LapF. It has two intercellular signalling systems, one mediated by dodecanoic acid and an orphan LuxR receptor that could participate in the response to AHL-type quorum sensing molecules (QSMs). Furthermore, the dimorphic fungus O. piceae uses farnesol as QSM to control its yeast to hyphae morphological transition. Results show for the first time the ability of this fungus to form biofilms alone and in mixed cultures with the bacterium. Biofilms were induced by bacterial and fungal QSMs. The essential role of LapA-LapF proteins in the architecture of biofilms was corroborated, LapA was induced by farnesol and dodecanol, while LapF by 3-oxo-C6-HSL and 3-oxo-C12-HSL. Our results indicate that fungal signals can induce a transient rise in the levels of the secondary messenger c-di-GMP, which control biofilm formation and architecture.
Collapse
Affiliation(s)
- Alberto Ruiz
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), C/Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Marta Herráez
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), C/Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Stefanie B Costa-Gutierrez
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (EEZ-CSIC), C/Profesor Albareda 1, Granada, 18008, Spain
| | - María Antonia Molina-Henares
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (EEZ-CSIC), C/Profesor Albareda 1, Granada, 18008, Spain
| | - María Jesús Martínez
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), C/Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Manuel Espinosa-Urgel
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (EEZ-CSIC), C/Profesor Albareda 1, Granada, 18008, Spain
| | - Jorge Barriuso
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), C/Ramiro de Maeztu 9, Madrid, 28040, Spain
| |
Collapse
|
11
|
Fatima T, Arora NK. Pseudomonas entomophila PE3 and its exopolysaccharides as biostimulants for enhancing growth, yield and tolerance responses of sunflower under saline conditions. Microbiol Res 2020; 244:126671. [PMID: 33360750 DOI: 10.1016/j.micres.2020.126671] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/29/2020] [Accepted: 12/11/2020] [Indexed: 01/09/2023]
Abstract
Evaluation of plant growth promoting bacteria and the associated metabolites under saline conditions can be a potential eco-friendly remediation and productivity enhancement strategy. Salt-tolerant Pseudomonas entomophila PE3 was isolated from saline soil and screened for plant growth promoting (PGP) traits. The isolate produced indole acetic acid (IAA), gibberellic acid (GA), exopolysaccharides (EPS) and siderophore along with the potential to solubilize potassium (K), zinc (Zn) and phosphorus (P). Maximum stimulation of PGP attributes was recorded at 2% NaCl concentration. To determine the role of EPS, their composition was analyzed (at different salt concentrations) and comparison was done to determine the changes upon exposure to salinity. EPS was found to be rich in carbohydrates, proteins and phenolic compounds. The extracted EPS were also found to possess salt-tolerance properties including antioxidant, hydroxyl scavenging activity, reducing power, emulsification and flocculation potential, and Na+ accumulation ability. Interestingly, the salt tolerance properties of EPS were enhanced upon exposure to salinity (2% NaCl). Finally, EPS based bioformulation of isolate PE3 was checked through field assay in saline soil. With promising results on growth promotion and improved salinity tolerance attributes of inoculated sunflower plants, the bioformulation of PE3 amended with EPS can be a breakthrough for remediation of saline-agroecosystems.
Collapse
Affiliation(s)
- Tahmish Fatima
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, UP, India
| | - Naveen Kumar Arora
- Department of Environmental Science, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, UP, India.
| |
Collapse
|
12
|
Lami MJ, Adler C, Caram-Di Santo MC, Zenoff AM, de Cristóbal RE, Espinosa-Urgel M, Vincent PA. Pseudomonas stutzeri MJL19, a rhizosphere-colonizing bacterium that promotes plant growth under saline stress. J Appl Microbiol 2020; 129:1321-1336. [PMID: 32367524 DOI: 10.1111/jam.14692] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 01/21/2023]
Abstract
AIMS The aim of this study was to find and use rhizobacteria able to confer plants advantages to deal with saline conditions. METHODS AND RESULTS We isolated 24 different bacterial species from the rhizosphere of halophyte plants growing in Santiago del Estero, Argentina salt flat. Four strains were selected upon their ability to grow in salinity and their biochemical traits associated with plant growth promotion. Next, we tested the adhesion on soybean seeds surface and root colonization with the four selected isolates. Isolate 19 stood out from the rest and was selected for further experiments. This strain showed positive chemotaxis towards soybean root exudates and a remarkable ability to form biofilm both in vitro conditions and on soybean roots. Interestingly, this trait was enhanced in high saline conditions, indicating the extremely adapted nature of the bacterium to high salinity. In addition, this strain positively impacted on seed germination, plant growth and general plant health status also under saline stress. CONCLUSIONS A bacterium isolate with outstanding ability to promote seed germination and plant growth under saline conditions was found. SIGNIFICANCE AND IMPACT OF THE STUDY The experimental approach allowed us to find a suitable bacterial candidate for a biofertilizer intended to alleviate saline stress on crops. This would allow the use of soil now considered inadequate for agriculture and thus prevent further advancement of agriculture frontiers into areas of environmental value.
Collapse
Affiliation(s)
- M J Lami
- Instituto Superior de Investigaciones Biológicas (INSIBIO-CONICET-UNT), Instituto de Química Biológica 'Dr. Bernabé Bloj', Tucumán, Argentina
- Department of Environmental Protection, Estación Experimental Del Zaidín, CSIC, Granada, Spain
| | - C Adler
- Instituto Superior de Investigaciones Biológicas (INSIBIO-CONICET-UNT), Instituto de Química Biológica 'Dr. Bernabé Bloj', Tucumán, Argentina
| | - M C Caram-Di Santo
- Instituto Superior de Investigaciones Biológicas (INSIBIO-CONICET-UNT), Instituto de Química Biológica 'Dr. Bernabé Bloj', Tucumán, Argentina
| | - A M Zenoff
- Instituto Superior de Investigaciones Biológicas (INSIBIO-CONICET-UNT), Instituto de Química Biológica 'Dr. Bernabé Bloj', Tucumán, Argentina
| | - R E de Cristóbal
- Instituto Superior de Investigaciones Biológicas (INSIBIO-CONICET-UNT), Instituto de Química Biológica 'Dr. Bernabé Bloj', Tucumán, Argentina
| | - M Espinosa-Urgel
- Department of Environmental Protection, Estación Experimental Del Zaidín, CSIC, Granada, Spain
| | - P A Vincent
- Instituto Superior de Investigaciones Biológicas (INSIBIO-CONICET-UNT), Instituto de Química Biológica 'Dr. Bernabé Bloj', Tucumán, Argentina
| |
Collapse
|
13
|
MapA, a Second Large RTX Adhesin Conserved across the Pseudomonads, Contributes to Biofilm Formation by Pseudomonas fluorescens. J Bacteriol 2020; 202:JB.00277-20. [PMID: 32631946 DOI: 10.1128/jb.00277-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/29/2020] [Indexed: 01/21/2023] Open
Abstract
Mechanisms by which cells attach to a surface and form a biofilm are diverse and differ greatly among organisms. The Gram-negative gammaproteobacterium Pseudomonas fluorescens attaches to a surface through the localization of the large type 1-secreted RTX adhesin LapA to the outer surface of the cell. LapA localization to the cell surface is controlled by the activities of a periplasmic protease, LapG, and an inner membrane-spanning cyclic di-GMP-responsive effector protein, LapD. A previous study identified a second, LapA-like protein encoded in the P. fluorescens Pf0-1 genome: Pfl01_1463. Here, we identified specific growth conditions under which Pfl01_1463, here called MapA (medium adhesion protein A) is a functional adhesin contributing to biofilm formation. This adhesin, like LapA, appears to be secreted through a Lap-related type 1 secretion machinery, and its localization is controlled by LapD and LapG. However, differing roles of LapA and MapA in biofilm formation are achieved, at least in part, through the differences in the sequences of the two adhesins and different distributions of the expression of the lapA and mapA genes within a biofilm. LapA-like proteins are broadly distributed throughout the Proteobacteria, and furthermore, LapA and MapA are well conserved among other Pseudomonas species. Together, our data indicate that the mechanisms by which a cell forms a biofilm and the components of a biofilm matrix can differ depending on growth conditions and the matrix protein(s) expressed.IMPORTANCE Adhesins are critical for the formation and maturation of bacterial biofilms. We identify a second adhesin in P. fluorescens, called MapA, which appears to play a role in biofilm maturation and whose regulation is distinct from the previously reported LapA adhesin, which is critical for biofilm initiation. Analysis of bacterial adhesins shows that LapA-like and MapA-like adhesins are found broadly in pseudomonads and related organisms, indicating that the utilization of different suites of adhesins may be broadly important in the Gammaproteobacteria.
Collapse
|
14
|
Arginine as an environmental and metabolic cue for cyclic diguanylate signalling and biofilm formation in Pseudomonas putida. Sci Rep 2020; 10:13623. [PMID: 32788689 PMCID: PMC7423604 DOI: 10.1038/s41598-020-70675-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/03/2020] [Indexed: 12/21/2022] Open
Abstract
Cyclic diguanylate (c-di-GMP) is a broadly conserved intracellular second messenger that influences different bacterial processes, including virulence, stress tolerance or social behaviours and biofilm development. Although in most cases the environmental cue that initiates the signal transduction cascade leading to changes in cellular c-di-GMP levels remains unknown, certain l- and d-amino acids have been described to modulate c-di-GMP turnover in some bacteria. In this work, we have analysed the influence of l-amino acids on c-di-GMP levels in the plant-beneficial bacterium Pseudomonas putida KT2440, identifying l-arginine as the main one causing a significant increase in c-di-GMP. Both exogenous (environmental) and endogenous (biosynthetic) l-arginine influence biofilm formation by P. putida through changes in c-di-GMP content and altered expression of structural elements of the biofilm extracellular matrix. The contribution of periplasmic binding proteins forming part of amino acid transport systems to the response to environmental l-arginine was also studied. Contrary to what has been described in other bacteria, in P. putida these proteins seem not to be directly responsible for signal transduction. Rather, their contribution to global l-arginine pools appears to determine changes in c-di-GMP turnover. We propose that arginine plays a connecting role between cellular metabolism and c-di-GMP signalling in P. putida.
Collapse
|
15
|
Collins AJ, Smith TJ, Sondermann H, O'Toole GA. From Input to Output: The Lap/c-di-GMP Biofilm Regulatory Circuit. Annu Rev Microbiol 2020; 74:607-631. [PMID: 32689917 DOI: 10.1146/annurev-micro-011520-094214] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Biofilms are the dominant bacterial lifestyle. The regulation of the formation and dispersal of bacterial biofilms has been the subject of study in many organisms. Over the last two decades, the mechanisms of Pseudomonas fluorescens biofilm formation and regulation have emerged as among the best understood of any bacterial biofilm system. Biofilm formation by P. fluorescens occurs through the localization of an adhesin, LapA, to the outer membrane via a variant of the classical type I secretion system. The decision between biofilm formation and dispersal is mediated by LapD, a c-di-GMP receptor, and LapG, a periplasmic protease, which together control whether LapA is retained or released from the cell surface. LapA localization is also controlled by a complex network of c-di-GMP-metabolizing enzymes. This review describes the current understanding of LapA-mediated biofilm formation by P. fluorescens and discusses several emerging models for the regulation and function of this adhesin.
Collapse
Affiliation(s)
- Alan J Collins
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.,Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, USA;
| | - T Jarrod Smith
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, USA; .,Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA
| | | | - George A O'Toole
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, USA;
| |
Collapse
|
16
|
Costa-Gutierrez SB, Lami MJ, Santo MCCD, Zenoff AM, Vincent PA, Molina-Henares MA, Espinosa-Urgel M, de Cristóbal RE. Plant growth promotion by Pseudomonas putida KT2440 under saline stress: role of eptA. Appl Microbiol Biotechnol 2020; 104:4577-4592. [PMID: 32221691 DOI: 10.1007/s00253-020-10516-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/11/2020] [Accepted: 03/01/2020] [Indexed: 01/22/2023]
Abstract
New strategies to improve crop yield include the incorporation of plant growth-promoting bacteria in agricultural practices. The non-pathogenic bacterium Pseudomonas putida KT2440 is an excellent root colonizer of crops of agronomical importance and has been shown to activate the induced systemic resistance of plants in response to certain foliar pathogens. In this work, we have analyzed additional plant growth promotion features of this strain. We show it can tolerate high NaCl concentrations and determine how salinity influences traits such as the production of indole compounds, siderophore synthesis, and phosphate solubilization. Inoculation with P. putida KT2440 significantly improved seed germination and root and stem length of soybean and corn plants under saline conditions compared to uninoculated plants, whereas the effects were minor under non-saline conditions. Also, random transposon mutagenesis was used for preliminary identification of KT2440 genes involved in bacterial tolerance to saline stress. One of the obtained mutants was analyzed in detail. The disrupted gene encodes a predicted phosphoethanolamine-lipid A transferase (EptA), an enzyme described to be involved in the modification of lipid A during lipopolysaccharide (LPS) biosynthesis. This mutant showed changes in exopolysaccharide (EPS) production, low salinity tolerance, and reduced competitive fitness in the rhizosphere.
Collapse
Affiliation(s)
- Stefanie B Costa-Gutierrez
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, T4000ILI, San Miguel de Tucumán, Tucumán, Argentina
| | - María Jesús Lami
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, T4000ILI, San Miguel de Tucumán, Tucumán, Argentina
| | - María Carolina Caram-Di Santo
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, T4000ILI, San Miguel de Tucumán, Tucumán, Argentina
| | - Ana M Zenoff
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, T4000ILI, San Miguel de Tucumán, Tucumán, Argentina
| | - Paula A Vincent
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, T4000ILI, San Miguel de Tucumán, Tucumán, Argentina
| | | | - Manuel Espinosa-Urgel
- Department of Environmental Protection, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Ricardo E de Cristóbal
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, T4000ILI, San Miguel de Tucumán, Tucumán, Argentina.
| |
Collapse
|
17
|
Abstract
Pseudomonas putidais a fast-growing bacterium found mostly in temperate soil and water habitats. The metabolic versatility ofP. putidamakes this organism attractive for biotechnological applications such as biodegradation of environmental pollutants and synthesis of added-value chemicals (biocatalysis). This organism has been extensively studied in respect to various stress responses, mechanisms of genetic plasticity and transcriptional regulation of catabolic genes.P. putidais able to colonize the surface of living organisms, but is generally considered to be of low virulence. A number ofP. putidastrains are able to promote plant growth. The aim of this review is to give historical overview of the discovery of the speciesP. putidaand isolation and characterization ofP. putidastrains displaying potential for biotechnological applications. This review also discusses some major findings inP. putidaresearch encompassing regulation of catabolic operons, stress-tolerance mechanisms and mechanisms affecting evolvability of bacteria under conditions of environmental stress.
Collapse
|
18
|
Marín P, Martirani‐Von Abercron SM, Urbina L, Pacheco‐Sánchez D, Castañeda‐Cataña MA, Retegi A, Eceiza A, Marqués S. Bacterial nanocellulose production from naphthalene. Microb Biotechnol 2019; 12:662-676. [PMID: 31087504 PMCID: PMC6559018 DOI: 10.1111/1751-7915.13399] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/18/2019] [Accepted: 02/21/2019] [Indexed: 11/29/2022] Open
Abstract
Polycyclic aromatic compounds (PAHs) are toxic compounds that are released in the environment as a consequence of industrial activities. The restoration of PAH-polluted sites considers the use of bacteria capable of degrading aromatic compounds to carbon dioxide and water. Here we characterize a new Xanthobacteraceae strain, Starkeya sp. strain N1B, previously isolated during enrichment under microaerophilic conditions, which is capable of using naphthalene crystals as the sole carbon source. The strain produced a structured biofilm when grown on naphthalene crystals, which had the shape of a half-sphere organized over the crystal. Scanning electron microscopy (SEM) and GC-MS analysis indicated that the biofilm was essentially made of cellulose, composed of several micron-long nanofibrils of 60 nm diameter. A cellulosic biofilm was also formed when the cells grew with glucose as the carbon source. Fourier transformed infrared spectroscopy (FTIR) confirmed that the polymer was type I cellulose in both cases, although the crystallinity of the material greatly depended on the carbon source used for growth. Using genome mining and mutant analysis, we identified the genetic complements required for the transformation of naphthalene into cellulose, which seemed to have been successively acquired through horizontal gene transfer. The capacity to develop the biofilm around the crystal was found to be dispensable for growth when naphthalene was used as the carbon source, suggesting that the function of this structure is more intricate than initially thought. This is the first example of the use of toxic aromatic hydrocarbons as the carbon source for bacterial cellulose production. Application of this capacity would allow the remediation of a PAH into such a value-added polymer with multiple biotechnological usages.
Collapse
Affiliation(s)
- Patricia Marín
- Estación Experimental del ZaidínDepartment of Environmental ProtectionConsejo Superior de Investigaciones CientíficasCalle Profesor Albareda, 1Granada18008Spain
| | - Sophie Marie Martirani‐Von Abercron
- Estación Experimental del ZaidínDepartment of Environmental ProtectionConsejo Superior de Investigaciones CientíficasCalle Profesor Albareda, 1Granada18008Spain
| | - Leire Urbina
- Materials + Technologies Research Group (GMT)Department of Chemical and Environmental EngineeringFaculty of Engineering of GipuzkoaUniversity of the Basque CountryPza Europa 1Donostia‐San Sebastian20018Spain
| | - Daniel Pacheco‐Sánchez
- Estación Experimental del ZaidínDepartment of Environmental ProtectionConsejo Superior de Investigaciones CientíficasCalle Profesor Albareda, 1Granada18008Spain
| | - Mayra Alejandra Castañeda‐Cataña
- Estación Experimental del ZaidínDepartment of Environmental ProtectionConsejo Superior de Investigaciones CientíficasCalle Profesor Albareda, 1Granada18008Spain
| | - Aloña Retegi
- Materials + Technologies Research Group (GMT)Department of Chemical and Environmental EngineeringFaculty of Engineering of GipuzkoaUniversity of the Basque CountryPza Europa 1Donostia‐San Sebastian20018Spain
| | - Arantxa Eceiza
- Materials + Technologies Research Group (GMT)Department of Chemical and Environmental EngineeringFaculty of Engineering of GipuzkoaUniversity of the Basque CountryPza Europa 1Donostia‐San Sebastian20018Spain
| | - Silvia Marqués
- Estación Experimental del ZaidínDepartment of Environmental ProtectionConsejo Superior de Investigaciones CientíficasCalle Profesor Albareda, 1Granada18008Spain
| |
Collapse
|
19
|
Glycosyltransferase-Mediated Biofilm Matrix Dynamics and Virulence of Streptococcus mutans. Appl Environ Microbiol 2019; 85:AEM.02247-18. [PMID: 30578260 DOI: 10.1128/aem.02247-18] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/07/2018] [Indexed: 12/18/2022] Open
Abstract
Streptococcus mutans is a key cariogenic bacterium responsible for the initiation of tooth decay. Biofilm formation is a crucial virulence property. We discovered a putative glycosyltransferase, SMU_833, in S. mutans capable of modulating dynamic interactions between two key biofilm matrix components, glucan and extracellular DNA (eDNA). The deletion of smu_833 decreases glucan and increases eDNA but maintains the overall biofilm biomass. The decrease in glucan is caused by a reduction in GtfB and GtfC, two key enzymes responsible for the synthesis of glucan. The increase in eDNA was accompanied by an elevated production of membrane vesicles, suggesting that SMU_833 modulates the release of eDNA via the membrane vesicles, thereby altering biofilm matrix constituents. Furthermore, glucan and eDNA were colocalized. The complete deletion of gtfBC from the smu_833 mutant significantly reduced the biofilm biomass despite the elevated eDNA, suggesting the requirement of minimal glucans as a binding substrate for eDNA within the biofilm. Despite no changes in overall biofilm biomass, the mutant biofilm was altered in biofilm architecture and was less acidic in vitro Concurrently, the mutant was less virulent in an in vivo rat model of dental caries, demonstrating that SMU_833 is a new virulence factor. Taken together, we conclude that SMU_833 is required for optimal biofilm development and virulence of S. mutans by modulating extracellular matrix components. Our study of SMU_833-modulated biofilm matrix dynamics uncovered a new target that can be used to develop potential therapeutics that prevent and treat dental caries.IMPORTANCE Tooth decay, a costly and painful disease affecting the vast majority of people worldwide, is caused by the bacterium Streptococcus mutans The bacteria utilize dietary sugars to build and strengthen biofilms, trapping acids onto the tooth's surface and causing demineralization and decay of teeth. As knowledge of our body's microbiomes increases, the need for developing therapeutics targeted to disease-causing bacteria has arisen. The significance of our research is in studying and identifying a novel therapeutic target, a dynamic biofilm matrix that is mediated by a new virulence factor and membrane vesicles. The study increases our understanding of S. mutans virulence and also offers a new opportunity to develop effective therapeutics targeting S. mutans In addition, the mechanisms of membrane vesicle-mediated biofilm matrix dynamics are also applicable to other biofilm-driven infectious diseases.
Collapse
|
20
|
Volke DC, Nikel PI. Getting Bacteria in Shape: Synthetic Morphology Approaches for the Design of Efficient Microbial Cell Factories. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201800111] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Daniel C. Volke
- The Novo Nordisk Foundation Center for Biosustainability; Technical University of Denmark; Kemitorvet 2800 Kgs. Lyngby Denmark
| | - Pablo I. Nikel
- The Novo Nordisk Foundation Center for Biosustainability; Technical University of Denmark; Kemitorvet 2800 Kgs. Lyngby Denmark
| |
Collapse
|
21
|
Thuptimdang P, Limpiyakorn T, Khan E. Dependence of toxicity of silver nanoparticles on Pseudomonas putida biofilm structure. CHEMOSPHERE 2017; 188:199-207. [PMID: 28886554 DOI: 10.1016/j.chemosphere.2017.08.147] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 08/27/2017] [Accepted: 08/28/2017] [Indexed: 06/07/2023]
Abstract
Susceptibility of biofilms with different physical structures to silver nanoparticles (AgNPs) was studied. Biofilms of Pseudomonas putida KT2440 were formed in batch conditions under different carbon sources (glucose, glutamic acid, and citrate), glucose concentrations (5 and 50 mM), and incubation temperatures (25 and 30 °C). The biofilms were observed using confocal laser scanning microscopy for their physical characteristics (biomass amount, thickness, biomass volume, surface to volume ratio, and roughness coefficient). The biofilms forming under different growth conditions exhibited different physical structures. The biofilm thickness and the roughness coefficient were found negatively and positively correlated with the biofilm susceptibility to AgNPs, respectively. The effect of AgNPs on biofilms was low (1-log reduction of cell number) when the biofilms had high biomass amount, high thickness, high biomass volume, low surface to volume ratio, and low roughness coefficient. Furthermore, the extracellular polymeric substance (EPS) stripping process was applied to confirm the dependence of susceptibility to AgNPs on the structure of biofilm. After the EPS stripping process, the biofilms forming under different conditions showed reduction in thickness and biomass volume, and increases in surface to volume ratio and roughness coefficient, which led to more biofilm susceptibility to AgNPs. The results of this study suggest that controlling the growth conditions to alter the biofilm physical structure is a possible approach to reduce the impact of AgNPs on biofilms in engineered and natural systems.
Collapse
Affiliation(s)
- Pumis Thuptimdang
- International Program in Hazardous Substance and Environmental Management, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence on Hazardous Substance Management (HSM), Bangkok, 10330, Thailand.
| | - Tawan Limpiyakorn
- Department of Environmental Engineering, Chulalongkorn University, Bangkok, 10330, Thailand; Research Program in Hazardous Substance Management in Agricultural Industry, Center of Excellence on Hazardous Substance Management (HSM), Bangkok, 10330, Thailand; Research Unit Control of Emerging Micropollutants in Environment, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Eakalak Khan
- Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND, 58108, USA.
| |
Collapse
|
22
|
Nie H, Xiao Y, Liu H, He J, Chen W, Huang Q. FleN and FleQ play a synergistic role in regulating lapA and bcs operons in Pseudomonas putida KT2440. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:571-580. [PMID: 28517238 DOI: 10.1111/1758-2229.12547] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/02/2017] [Accepted: 05/05/2017] [Indexed: 06/07/2023]
Abstract
FleN generally functions as an antagonist of FleQ in regulating flagellar genes and biofilm matrix related genes in Pseudomonas aeruginosa. Here, we found that in Pseudomonas putida KT2440, FleN and FleQ play a synergistic role in regulating two biofilm matrix coding operons, lapA and bcs. FleN deletion decreased the transcription of lapA and increased the transcription of bcs operon, and the same trend was observed in fleQ deletion mutant before. In vitro experiments showed that FleN promoted the binding of FleQ to the lapA/bcs promoter DNA especially in the presence of ATP. Both phenotype observation and transcription analysis showed that, similar to fleQ deletion, fleN deletion significantly weaken the effect of high c-di-GMP level on biofilm formation, surface winkle phenotype and expression of lapA and bcs operons. Mutagenesis of the putative ATP binding motif in FleNK21Q revealed that FleN ATPase activity played an essential role in the regulation of flagellar number and swimming motility but was not critical for biofilm formation. Our results revealed that FleN was not an antagonist of FleQ but a synergistic factor of FleQ in regulating the two biofilm matrix coding operons in P. putida KT2440.
Collapse
Affiliation(s)
- Hailing Nie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yujie Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Huizhong Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jinzhi He
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| |
Collapse
|
23
|
Velmourougane K, Prasanna R, Saxena AK. Agriculturally important microbial biofilms: Present status and future prospects. J Basic Microbiol 2017; 57:548-573. [PMID: 28407275 DOI: 10.1002/jobm.201700046] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/17/2017] [Accepted: 03/19/2017] [Indexed: 11/07/2022]
Abstract
Microbial biofilms are a fascinating subject, due to their significant roles in the environment, industry, and health. Advances in biochemical and molecular techniques have helped in enhancing our understanding of biofilm structure and development. In the past, research on biofilms primarily focussed on health and industrial sectors; however, lately, biofilms in agriculture are gaining attention due to their immense potential in crop production, protection, and improvement. Biofilms play an important role in colonization of surfaces - soil, roots, or shoots of plants and enable proliferation in the desired niche, besides enhancing soil fertility. Although reports are available on microbial biofilms in general; scanty information is published on biofilm formation by agriculturally important microorganisms (bacteria, fungi, bacterial-fungal) and their interactions in the ecosystem. Better understanding of agriculturally important bacterial-fungal communities and their interactions can have several implications on climate change, soil quality, plant nutrition, plant protection, bioremediation, etc. Understanding the factors and genes involved in biofilm formation will help to develop more effective strategies for sustainable and environment-friendly agriculture. The present review brings together fundamental aspects of biofilms, in relation to their formation, regulatory mechanisms, genes involved, and their application in different fields, with special emphasis on agriculturally important microbial biofilms.
Collapse
Affiliation(s)
| | - Radha Prasanna
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Anil Kumar Saxena
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau Nath Bhanjan, Uttar Pradesh, India
| |
Collapse
|
24
|
Espinosa-Urgel M, Marqués S. New insights in the early extracellular events in hydrocarbon and lipid biodegradation. Environ Microbiol 2017; 19:15-18. [PMID: 27871137 DOI: 10.1111/1462-2920.13608] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Manuel Espinosa-Urgel
- Estación Experimental del Zaidín, Department of Environmental Protection, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Silvia Marqués
- Estación Experimental del Zaidín, Department of Environmental Protection, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| |
Collapse
|
25
|
Molina-Henares MA, Ramos-González MI, Daddaoua A, Fernández-Escamilla AM, Espinosa-Urgel M. FleQ of Pseudomonas putida KT2440 is a multimeric cyclic diguanylate binding protein that differentially regulates expression of biofilm matrix components. Res Microbiol 2016; 168:36-45. [PMID: 27503246 DOI: 10.1016/j.resmic.2016.07.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/15/2016] [Accepted: 07/18/2016] [Indexed: 01/06/2023]
Abstract
The intracellular signal molecule cyclic di-GMP (c-di-GMP) is an important element in regulation of biofilm formation by bacteria. In Pseudomonas aeruginosa, FleQ functions as a c-di-GMP-dependent transcriptional regulator of expression of flagellar genes and the exopolysaccharide (EPS) Pel, a component of the biofilm extracellular matrix. In the plant-beneficial bacterium Pseudomonas putida KT2440, a mutation in fleQ reduces biofilm formation and colonization of plant surfaces. Using isothermal titration calorimetry and electrophoretic mobility shift assays, we show in this work that FleQ of P. putida interacts with c-di-GMP and directly binds the promoter regions of flagellar and EPS genes. Data obtained by analytical gel filtration and ultracentrifugation indicate that FleQ is in multiple oligomeric states in solution (dimers, tetramers and hexamers), which do not show altered equilibrium in the presence of c-di-GMP. DNA binding is independent of c-diGMP, although it is favored by the second messenger in the case of the promoter of the operon responsible for synthesis of the species-specific EPS Pea. Analysis of expression using transcriptional fusions showed an influence of FleQ upon two of the four EPS operons under regular growth conditions. Finally, a consensus sequence for promoter recognition by FleQ in P. putida is also proposed.
Collapse
Affiliation(s)
- María Antonia Molina-Henares
- Department of Environmental Protection, Estación Experimental del Zaidín, CSIC, Profesor Albareda, 1, Granada 18008, Spain.
| | - María Isabel Ramos-González
- Department of Environmental Protection, Estación Experimental del Zaidín, CSIC, Profesor Albareda, 1, Granada 18008, Spain.
| | - Abdelali Daddaoua
- Department of Environmental Protection, Estación Experimental del Zaidín, CSIC, Profesor Albareda, 1, Granada 18008, Spain.
| | - Ana María Fernández-Escamilla
- Department of Environmental Protection, Estación Experimental del Zaidín, CSIC, Profesor Albareda, 1, Granada 18008, Spain.
| | - Manuel Espinosa-Urgel
- Department of Environmental Protection, Estación Experimental del Zaidín, CSIC, Profesor Albareda, 1, Granada 18008, Spain.
| |
Collapse
|
26
|
Abstract
During the first step of biofilm formation, initial attachment is dictated by physicochemical and electrostatic interactions between the surface and the bacterial envelope. Depending on the nature of these interactions, attachment can be transient or permanent. To achieve irreversible attachment, bacterial cells have developed a series of surface adhesins promoting specific or nonspecific adhesion under various environmental conditions. This article reviews the recent advances in our understanding of the secretion, assembly, and regulation of the bacterial adhesins during biofilm formation, with a particular emphasis on the fimbrial, nonfimbrial, and discrete polysaccharide adhesins in Gram-negative bacteria.
Collapse
|
27
|
Corral-Lugo A, De la Torre J, Matilla MA, Fernández M, Morel B, Espinosa-Urgel M, Krell T. Assessment of the contribution of chemoreceptor-based signalling to biofilm formation. Environ Microbiol 2016; 18:3355-3372. [PMID: 26662997 DOI: 10.1111/1462-2920.13170] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 11/30/2015] [Indexed: 12/01/2022]
Abstract
Although it is well established that one- and two-component regulatory systems participate in regulating biofilm formation, there also exists evidence suggesting that chemosensory pathways are also involved. However, little information exists about which chemoreceptors and signals modulate this process. Here we report the generation of the complete set of chemoreceptor mutants of Pseudomonas putida KT2440 and the identification of four mutants with significantly altered biofilm phenotypes. These receptors are a WspA homologue of Pseudomonas aeruginosa, previously identified to control biofilm formation by regulating c-di-GMP levels, and three uncharacterized chemoreceptors. One of these receptors, named McpU, was found to mediate chemotaxis towards different polyamines. The functional annotation of McpU was initiated by high-throughput thermal shift assays of the receptor ligand binding domain (LBD). Isothermal titration calorimetry showed that McpU-LBD specifically binds putrescine, cadaverine and spermidine, indicating that McpU represents a novel chemoreceptor type. Another uncharacterized receptor, named McpA, specifically binds 12 different proteinogenic amino acids and mediates chemotaxis towards these compounds. We also show that mutants in McpU and WspA-Pp have a significantly reduced ability to colonize plant roots. Data agree with other reports showing that polyamines are signal molecules involved in the regulation of bacteria-plant communication and biofilm formation.
Collapse
Affiliation(s)
- Andrés Corral-Lugo
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Prof. Albareda 1, 18008, Granada, Spain
| | - Jesús De la Torre
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Prof. Albareda 1, 18008, Granada, Spain
| | - Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Prof. Albareda 1, 18008, Granada, Spain
| | - Matilde Fernández
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Prof. Albareda 1, 18008, Granada, Spain
| | - Bertrand Morel
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Prof. Albareda 1, 18008, Granada, Spain
| | - Manuel Espinosa-Urgel
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Prof. Albareda 1, 18008, Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Prof. Albareda 1, 18008, Granada, Spain.
| |
Collapse
|
28
|
Thuptimdang P, Limpiyakorn T, McEvoy J, Prüß BM, Khan E. Effect of silver nanoparticles on Pseudomonas putida biofilms at different stages of maturity. JOURNAL OF HAZARDOUS MATERIALS 2015; 290:127-133. [PMID: 25756827 DOI: 10.1016/j.jhazmat.2015.02.073] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/25/2015] [Accepted: 02/26/2015] [Indexed: 06/04/2023]
Abstract
This study determined the effect of silver nanoparticles (AgNPs) on Pseudomonas putida KT2440 biofilms at different stages of maturity. Three biofilm stages (1-3, representing early to late stages of development) were identified from bacterial adenosine triphosphate (ATP) activity under static (96-well plate) and dynamic conditions (Center for Disease Control and Prevention biofilm reactor). Extracellular polymeric substance (EPS) levels, measured using crystal violet and total carbohydrate assays, and expression of the EPS-associated genes, csgA and alg8, supported the conclusion that biofilms at later stages were older than those at earlier stages. More mature biofilms (stages 2 and 3) showed little to no reduction in ATP activity following exposure to AgNPs. In contrast, the same treatment reduced ATP activity by more than 90% in the less mature stage 1 biofilms. Regardless of maturity, biofilms with EPS stripped off were more susceptible to AgNPs than controls with intact EPS, demonstrating that EPS is critical for biofilm tolerance of AgNPs. The findings from this study show that stage of maturity is an important factor to consider when studying effect of AgNPs on biofilms.
Collapse
Affiliation(s)
- Pumis Thuptimdang
- International Program in Hazardous Substance and Environmental Management, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence on Hazardous Substance Management, Bangkok 10330, Thailand.
| | - Tawan Limpiyakorn
- Center of Excellence on Hazardous Substance Management, Bangkok 10330, Thailand; Department of Environmental Engineering, Chulalongkorn University, Bangkok 10330, Thailand; Research Unit Control of Emerging Micropollutants in Environment, Chulalongkorn University, Bangkok 10330, Thailand.
| | - John McEvoy
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA.
| | - Birgit M Prüß
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA.
| | - Eakalak Khan
- Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND 58108, USA.
| |
Collapse
|
29
|
Caro-Astorga J, Pérez-García A, de Vicente A, Romero D. A genomic region involved in the formation of adhesin fibers in Bacillus cereus biofilms. Front Microbiol 2015; 5:745. [PMID: 25628606 PMCID: PMC4292775 DOI: 10.3389/fmicb.2014.00745] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 12/09/2014] [Indexed: 01/09/2023] Open
Abstract
Bacillus cereus is a bacterial pathogen that is responsible for many recurrent disease outbreaks due to food contamination. Spores and biofilms are considered the most important reservoirs of B. cereus in contaminated fresh vegetables and fruits. Biofilms are bacterial communities that are difficult to eradicate from biotic and abiotic surfaces because of their stable and extremely strong extracellular matrix. These extracellular matrixes contain exopolysaccharides, proteins, extracellular DNA, and other minor components. Although B. cereus can form biofilms, the bacterial features governing assembly of the protective extracellular matrix are not known. Using the well-studied bacterium B. subtilis as a model, we identified two genomic loci in B. cereus, which encodes two orthologs of the amyloid-like protein TasA of B. subtilis and a SipW signal peptidase. Deletion of this genomic region in B. cereus inhibited biofilm assembly; notably, mutation of the putative signal peptidase SipW caused the same phenotype. However, mutations in tasA or calY did not completely prevent biofilm formation; strains that were mutated for either of these genes formed phenotypically different surface attached biofilms. Electron microscopy studies revealed that TasA polymerizes to form long and abundant fibers on cell surfaces, whereas CalY does not aggregate similarly. Heterologous expression of this amyloid-like cassette in a B. subtilis strain lacking the factors required for the assembly of TasA amyloid-like fibers revealed (i) the involvement of this B. cereus genomic region in formation of the air-liquid interphase pellicles and (ii) the intrinsic ability of TasA to form fibers similar to the amyloid-like fibers produced by its B. subtilis ortholog.
Collapse
Affiliation(s)
- Joaquín Caro-Astorga
- Departamento de Microbiología, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Universidad de Málaga Málaga, Spain
| | - Alejandro Pérez-García
- Departamento de Microbiología, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Universidad de Málaga Málaga, Spain
| | - Antonio de Vicente
- Departamento de Microbiología, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Universidad de Málaga Málaga, Spain
| | - Diego Romero
- Departamento de Microbiología, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Universidad de Málaga Málaga, Spain
| |
Collapse
|
30
|
Moor H, Teppo A, Lahesaare A, Kivisaar M, Teras R. Fis overexpression enhances Pseudomonas putida biofilm formation by regulating the ratio of LapA and LapF. MICROBIOLOGY-SGM 2014; 160:2681-2693. [PMID: 25253613 DOI: 10.1099/mic.0.082503-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bacteria form biofilm as a response to a number of environmental signals that are mediated by global transcription regulators and alarmones. Here we report the involvement of the global transcription regulator Fis in Pseudomonas putida biofilm formation through regulation of lapA and lapF genes. The major component of P. putida biofilm is proteinaceous and two large adhesive proteins, LapA and LapF, are known to play a key role in its formation. We have previously shown that Fis overexpression enhances P. putida biofilm formation. In this study, we used mini-Tn5 transposon mutagenesis to select potential Fis-regulated genes involved in biofilm formation. A total of 90 % of the studied transposon mutants carried insertions in the lap genes. Since our experiments showed that Fis-enhanced biofilm is mostly proteinaceous, the amounts of LapA and LapF from P. putida cells lysates were quantified using SDS-PAGE. Fis overexpression increases the quantity of LapA 1.6 times and decreases the amount of LapF at least 4 times compared to the wild-type cells. The increased LapA expression caused by Fis overexpression was confirmed by FACS analysis measuring the amount of LapA-GFP fusion protein. Our results suggest that the profusion of LapA in the Fis-overexpressed cells causes enhanced biofilm formation in mature stages of P. putida biofilm and LapF has a minor role in P. putida biofilm formation.
Collapse
Affiliation(s)
- Hanna Moor
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Annika Teppo
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Andrio Lahesaare
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Maia Kivisaar
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Riho Teras
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| |
Collapse
|
31
|
Roles of cyclic Di-GMP and the Gac system in transcriptional control of the genes coding for the Pseudomonas putida adhesins LapA and LapF. J Bacteriol 2014; 196:1484-95. [PMID: 24488315 DOI: 10.1128/jb.01287-13] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
LapA and LapF are large extracellular proteins that play a relevant role in biofilm formation by Pseudomonas putida. Current evidence favors a sequential model in which LapA is first required for the initial adhesion of individual bacteria to a surface, while LapF participates in later stages of biofilm development. In agreement with this model, lapF transcription was previously shown to take place at late times of growth and to respond to the stationary-phase sigma factor RpoS. We have now analyzed the transcription pattern of lapA and other regulatory elements that influence expression of both genes. The lapA promoter shows a transient peak of activation early during growth, with a second increase in stationary phase that is independent of RpoS. The same pattern is observed in biofilms although expression is not uniform in the population. Both lapA and lapF are under the control of the two-component regulatory system GacS/GacA, and their transcription also responds to the intracellular levels of the second messenger cyclic diguanylate (c-di-GMP), although in surprisingly reverse ways. Whereas expression from the lapA promoter increases with high levels of c-di-GMP, the opposite is true for lapF. The transcriptional regulator FleQ is required for the modulation of lapA expression by c-di-GMP but has a minor influence on lapF. This work represents a further step in our understanding of the regulatory interactions controlling biofilm formation in P. putida.
Collapse
|