1
|
Dorison L, Béchon N, Martin-Gallausiaux C, Chamorro-Rodriguez S, Vitrenko Y, Ouazahrou R, Villa R, Deschamps J, Briandet R, Gribaldo S, Ghigo JM, Beloin C. Identification of Veillonella parvula and Streptococcus gordonii adhesins mediating co-aggregation and its impact on physiology and mixed biofilm structure. mBio 2024:e0217124. [PMID: 39526776 DOI: 10.1128/mbio.02171-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
The dental plaque is a polymicrobial community where biofilm formation and co-aggregation, the ability to bind to other bacteria, play a major role in the construction of an organized consortium. One of its prominent members is the anaerobic diderm Veillonella parvula, considered a bridging species, which growth depends on lactate produced by oral streptococci. Understanding how V. parvula co-aggregates and the impact of aggregation has long been hampered due to the lack of appropriate genetic tools. Here we studied co-aggregation of the naturally competent strain V. parvula SKV38 with various oral bacteria and its effect on cell physiology. We show that V. parvula requires different trimeric autotransporters of the type V secretion system to adhere to oral streptococci and actinomyces. In addition, we describe a novel adhesin of Streptococcus gordonii, VisA (SGO_2004), as the protein responsible for co-aggregation with V. parvula. Finally, we show that co-aggregation does not impact cell-cell communication, which is mainly driven by environmental sensing, but plays an important role in the architecture and species distribution within the biofilm. IMPORTANCE Our research explores the mechanisms of bacterial adhesion within the dental plaque, focusing on Veillonella parvula, a key player in the oral microbiome. Dependent on lactate from streptococci, V. parvula plays a crucial bridging role in the formation of dental biofilms by co-aggregating with other bacteria. Despite its importance, the understanding of the underlying mechanisms of co-aggregation remains limited. Our study shows that V. parvula uses different trimeric autotransporters to adhere to oral Streptococci and Actinomyces. We additionally identify a novel adhesin from S. gordonii, VisA (SGO_2004) facilitating this interaction. We found that although co-aggregation does not affect cell-cell communication, it is critical for biofilm structure and species distribution. This research opens up new avenues for exploring microbial interactions in dental health and diseases.
Collapse
Affiliation(s)
- Louis Dorison
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Genetics of Biofilms Laboratory, Paris, France
| | - Nathalie Béchon
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Genetics of Biofilms Laboratory, Paris, France
| | - Camille Martin-Gallausiaux
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Evolutionary Biology of the Microbial Cell Laboratory, Paris, France
| | - Susan Chamorro-Rodriguez
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Genetics of Biofilms Laboratory, Paris, France
| | - Yakov Vitrenko
- Institut Pasteur, Université Paris Cité, C2RT, Biomics Technology Platform, Paris, France
| | - Rania Ouazahrou
- Institut Pasteur, Université Paris Cité, C2RT, Biomics Technology Platform, Paris, France
| | - Romain Villa
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Evolutionary Biology of the Microbial Cell Laboratory, Paris, France
| | - Julien Deschamps
- Université Paris-Saclay, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Romain Briandet
- Université Paris-Saclay, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Simonetta Gribaldo
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Evolutionary Biology of the Microbial Cell Laboratory, Paris, France
| | - Jean-Marc Ghigo
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Genetics of Biofilms Laboratory, Paris, France
| | - Christophe Beloin
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Genetics of Biofilms Laboratory, Paris, France
| |
Collapse
|
2
|
Teh WK, Ding Y, Gubellini F, Filloux A, Poyart C, Givskov M, Dramsi S. Characterization of TelE, a T7SS LXG Effector Exhibiting a Conserved C-Terminal Glycine Zipper Motif Required for Toxicity. Microbiol Spectr 2023; 11:e0148123. [PMID: 37432124 PMCID: PMC10434224 DOI: 10.1128/spectrum.01481-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/22/2023] [Indexed: 07/12/2023] Open
Abstract
Streptococcus gallolyticus subsp. gallolyticus (SGG) is an opportunistic bacterial pathogen strongly associated with colorectal cancer. Here, through comparative genomics analysis, we demonstrated that the genetic locus encoding the type VIIb secretion system (T7SSb) machinery is uniquely present in SGG in two different arrangements. SGG UCN34 carrying the most prevalent T7SSb genetic arrangement was chosen as the reference strain. To identify the effectors secreted by this secretion system, we inactivated the essC gene encoding the motor of this machinery. A comparison of the proteins secreted by UCN34 wild type and its isogenic ΔessC mutant revealed six T7SSb effector proteins, including the expected WXG effector EsxA and three LXG-containing proteins. In this work, we characterized an LXG-family toxin named herein TelE promoting the loss of membrane integrity. Seven homologs of TelE harboring a conserved glycine zipper motif at the C terminus were identified in different SGG isolates. Scanning mutagenesis of this motif showed that the glycine residue at position 470 was crucial for TelE membrane destabilization activity. TelE activity was antagonized by a small protein TipE belonging to the DUF5085 family. Overall, we report herein a unique SGG T7SSb effector exhibiting a toxic activity against nonimmune bacteria. IMPORTANCE In this study, 38 clinical isolates of Streptococcus gallolyticus subsp. gallolyticus (SGG) were sequenced and a genetic locus encoding the type VIIb secretion system (T7SSb) was found conserved and absent from 16 genomes of the closely related S. gallolyticus subsp. pasteurianus (SGP). The T7SSb is a bona fide pathogenicity island. Here, we report that the model organism SGG strain UCN34 secretes six T7SSb effectors. One of the six effectors named TelE displayed a strong toxicity when overexpressed in Escherichia coli. Our results indicate that TelE is probably a pore-forming toxin whose activity can be antagonized by a specific immunity protein named TipE. Overall, we report a unique toxin-immunity protein pair and our data expand the range of effectors secreted through T7SSb.
Collapse
Affiliation(s)
- Wooi Keong Teh
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Yichen Ding
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | | | - Alain Filloux
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Claire Poyart
- Université de Paris, Assistance Publique Hôpitaux de Paris, Service de Bactériologie, Centre National de Référence des Streptocoques, Groupe Hospitalier Paris Centre site Cochin, Paris, France
| | - Michael Givskov
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- Costerton Biofilm Centre, Department of Immunology and Microbiology, University of Copenhagen, Denmark
| | - Shaynoor Dramsi
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Biology of Gram-positive Pathogens Unit, Paris, France
- Centre National de la Recherche Scientifique (CNRS) UMR2001, Paris, France
| |
Collapse
|
3
|
Taylor JC, Kumar R, Xu J, Xu Y. A pathogenicity locus of Streptococcus gallolyticus subspecies gallolyticus. Sci Rep 2023; 13:6291. [PMID: 37072463 PMCID: PMC10113328 DOI: 10.1038/s41598-023-33178-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 04/08/2023] [Indexed: 05/03/2023] Open
Abstract
Streptococcus gallolyticus subspecies gallolyticus (Sgg) is known to be strongly associated with colorectal cancer (CRC). Recent functional studies further demonstrated that Sgg actively stimulates CRC cell proliferation and promotes the development of colon tumors. However, the Sgg factors important for the pro-proliferative and pro-tumor activities of Sgg remain unclear. Here, we identified a chromosomal locus in Sgg strain TX20005. Deletion of this locus significantly reduced Sgg adherence to CRC cells and abrogated the ability of Sgg to stimulate CRC cell proliferation. Thus, we designate this locus as the Sgg pathogenicity-associated region (SPAR). More importantly, we found that SPAR is important for Sgg pathogenicity in vivo. In a gut colonization model, mice exposed to the SPAR deletion mutant showed significantly reduced Sgg load in the colonic tissues and fecal materials, suggesting that SPAR contributes to the colonization capacity of Sgg. In a mouse model of CRC, deletion of SPAR abolished the ability of Sgg to promote the development of colon tumors growth. Taken together, these results highlight SPAR as a critical pathogenicity determinant of Sgg.
Collapse
Affiliation(s)
- John Culver Taylor
- Center for Infectious and Inflammatory Diseases, Texas A&M Health Science Center Institute of Biosciences of Technology, Houston, TX, USA
| | - Ritesh Kumar
- Center for Infectious and Inflammatory Diseases, Texas A&M Health Science Center Institute of Biosciences of Technology, Houston, TX, USA
- IFF Health and Biosciences, Madison, USA
| | - Juan Xu
- Center for Infectious and Inflammatory Diseases, Texas A&M Health Science Center Institute of Biosciences of Technology, Houston, TX, USA
| | - Yi Xu
- Center for Infectious and Inflammatory Diseases, Texas A&M Health Science Center Institute of Biosciences of Technology, Houston, TX, USA.
- Department of Microbiology and Molecular Genetics, McGovern Medical School, UT Health, Houston, TX, USA.
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Texas, USA.
| |
Collapse
|
4
|
Proutière A, du Merle L, Garcia-Lopez M, Léger C, Voegele A, Chenal A, Harrington A, Tal-Gan Y, Cokelaer T, Trieu-Cuot P, Dramsi S. Gallocin A, an Atypical Two-Peptide Bacteriocin with Intramolecular Disulfide Bonds Required for Activity. Microbiol Spectr 2023; 11:e0508522. [PMID: 36951576 PMCID: PMC10100652 DOI: 10.1128/spectrum.05085-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/16/2023] [Indexed: 03/24/2023] Open
Abstract
Streptococcus gallolyticus subsp. gallolyticus (SGG) is an opportunistic gut pathogen associated with colorectal cancer. We previously showed that colonization of the murine colon by SGG in tumoral conditions was strongly enhanced by the production of gallocin A, a two-peptide bacteriocin. Here, we aimed to characterize the mechanisms of its action and resistance. Using a genetic approach, we demonstrated that gallocin A is composed of two peptides, GllA1 and GllA2, which are inactive alone and act together to kill "target" bacteria. We showed that gallocin A can kill phylogenetically close relatives of the pathogen. Importantly, we demonstrated that gallocin A peptides can insert themselves into membranes and permeabilize lipid bilayer vesicles. Next, we showed that the third gene of the gallocin A operon, gip, is necessary and sufficient to confer immunity to gallocin A. Structural modeling of GllA1 and GllA2 mature peptides suggested that both peptides form alpha-helical hairpins stabilized by intramolecular disulfide bridges. The presence of a disulfide bond in GllA1 and GllA2 was confirmed experimentally. Addition of disulfide-reducing agents abrogated gallocin A activity. Likewise, deletion of a gene encoding a surface protein with a thioredoxin-like domain impaired the ability of gallocin A to kill Enterococcus faecalis. Structural modeling of GIP revealed a hairpin-like structure strongly resembling those of the GllA1 and GllA2 mature peptides, suggesting a mechanism of immunity by competition with GllA1/2. Finally, identification of other class IIb bacteriocins exhibiting a similar alpha-helical hairpin fold stabilized with an intramolecular disulfide bridge suggests the existence of a new subclass of class IIb bacteriocins. IMPORTANCE Streptococcus gallolyticus subsp. gallolyticus (SGG), previously named Streptococcus bovis biotype I, is an opportunistic pathogen responsible for invasive infections (septicemia, endocarditis) in elderly people and is often associated with colon tumors. SGG is one of the first bacteria to be associated with the occurrence of colorectal cancer in humans. Previously, we showed that tumor-associated conditions in the colon provide SGG with an ideal environment to proliferate at the expense of phylogenetically and metabolically closely related commensal bacteria such as enterococci (1). SGG takes advantage of CRC-associated conditions to outcompete and substitute commensal members of the gut microbiota using a specific bacteriocin named gallocin, recently renamed gallocin A following the discovery of gallocin D in a peculiar SGG isolate. Here, we showed that gallocin A is a two-peptide bacteriocin and that both GllA1 and GllA2 peptides are required for antimicrobial activity. Gallocin A was shown to permeabilize bacterial membranes and kill phylogenetically closely related bacteria such as most streptococci, lactococci, and enterococci, probably through membrane pore formation. GllA1 and GllA2 secreted peptides are unusually long (42 and 60 amino acids long) and have very few charged amino acids compared to well-known class IIb bacteriocins. In silico modeling revealed that both GllA1 and GllA2 exhibit a similar hairpin-like conformation stabilized by an intramolecular disulfide bond. We also showed that the GIP immunity peptide forms a hairpin-like structure similar to GllA1/GllA2. Thus, we hypothesize that GIP blocks the formation of the GllA1/GllA2 complex by interacting with GllA1 or GllA2. Gallocin A may constitute the first class IIb bacteriocin which displays disulfide bridges important for its structure and activity and might be the founding member of a subtype of class IIb bacteriocins.
Collapse
Affiliation(s)
- Alexis Proutière
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Biology of Gram-Positive Pathogens Unit, Paris, France
| | - Laurence du Merle
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Biology of Gram-Positive Pathogens Unit, Paris, France
| | - Marta Garcia-Lopez
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Biology of Gram-Positive Pathogens Unit, Paris, France
| | - Corentin Léger
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Biochemistry of Macromolecular Interactions Unit, Paris, France
| | - Alexis Voegele
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Biochemistry of Macromolecular Interactions Unit, Paris, France
| | - Alexandre Chenal
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Biochemistry of Macromolecular Interactions Unit, Paris, France
| | - Antony Harrington
- Department of Chemistry, University of Nevada, Reno, Reno Nevada, USA
| | - Yftah Tal-Gan
- Department of Chemistry, University of Nevada, Reno, Reno Nevada, USA
| | - Thomas Cokelaer
- Institut Pasteur, Université Paris Cité, Plateforme Technologique Biomics, Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Patrick Trieu-Cuot
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Biology of Gram-Positive Pathogens Unit, Paris, France
| | - Shaynoor Dramsi
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Biology of Gram-Positive Pathogens Unit, Paris, France
| |
Collapse
|
5
|
Pandey SD, Biswas I. Clp ATPases differentially affect natural competence development in Streptococcus mutans. Microbiologyopen 2022; 11:e1288. [PMID: 35765180 PMCID: PMC9108599 DOI: 10.1002/mbo3.1288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/27/2022] [Indexed: 11/25/2022] Open
Abstract
In naturally competent bacteria, DNA transformation through horizontal gene transfer is an evolutionary mechanism to receive extracellular DNA. Bacteria need to maintain a state of competence to accept foreign DNA, and this is an energy-driven phenomenon that is tightly controlled. In Streptococcus, competence development is a complex process that is not fully understood. In this study, we used Streptococcus mutans, an oral bacterium, to determine how cell density affects competence development. We found that in S. mutans the transformation efficiency is maximum when the transforming DNA was added at low cell density and incubated for 2.5 h before selecting for transformants. We also found that S. mutans cells remain competent until the mid-logarithmic phase, after which the competence decreases drastically. Surprisingly, we observed that individual components of Clp proteolytic complexes differentially regulate competence. If the transformation is carried out at the early growth phase, both ClpP protease and ClpX ATPase are needed for competence. In contrast, we found that both ClpC and ClpE negatively affect competence. We also found that if the transformation is carried out at the mid-logarithmic growth phase ClpX is still required for competence, but ClpP negatively affects competence. While the exact reason for this differential effect of ClpP and ClpX on transformation is currently unknown, we found that both ClpC and ClpE have a negative effect on transformation, which was not reported before.
Collapse
Affiliation(s)
- Satya D. Pandey
- Department of MicrobiologyUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Indranil Biswas
- Department of MicrobiologyUniversity of Kansas Medical CenterKansas CityKansasUSA
| |
Collapse
|
6
|
Pugalenthi LS, Ahmad M, Reddy S, Barkhane Z, Elmadi J, Satish Kumar L. Malignancy and Endocarditis: Divulging Into the Intertwined Association. Cureus 2022; 14:e24089. [PMID: 35573527 PMCID: PMC9098766 DOI: 10.7759/cureus.24089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2022] [Indexed: 12/02/2022] Open
Abstract
Cancer is an immunosuppressive disorder with characteristic features of unchecked cell growth, invasion, and sometimes thromboembolism leading to multiple systemic sequelae, including infective endocarditis. This article has compiled some of the crucial mechanisms by which infective endocarditis occurs in cancer patients, its risk factors, and the existing treatment interventions. It has focused on the necessity of being aware that these multiple pathogeneses are involved in the development of infective endocarditis (IE) in cancer patients, which would help delineate the risk factors associated with the condition and help physicians screen better for specific red flags. Identifying these risk factors and patient-oriented therapy, targeting the necessary elements such as causative organism, patient immune status, type of cancer, choosing evidence-based treatment modalities, and to improve the outcome of the disease in an already exasperating condition called cancer.
Collapse
|
7
|
Taylor JC, Gao X, Xu J, Holder M, Petrosino J, Kumar R, Liu W, Höök M, Mackenzie C, Hillhouse A, Brashear W, Nunez MP, Xu Y. A type VII secretion system of Streptococcus gallolyticus subsp. gallolyticus contributes to gut colonization and the development of colon tumors. PLoS Pathog 2021; 17:e1009182. [PMID: 33406160 PMCID: PMC7815207 DOI: 10.1371/journal.ppat.1009182] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/19/2021] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Streptococcus gallolyticus subspecies gallolyticus (Sgg) has a strong clinical association with colorectal cancer (CRC) and actively promotes the development of colon tumors. However, the molecular determinants involved in Sgg pathogenicity in the gut are unknown. Bacterial type VII secretion systems (T7SS) mediate pathogen interactions with their host and are important for virulence in pathogenic mycobacteria and Staphylococcus aureus. Through genome analysis, we identified a locus in Sgg strain TX20005 that encodes a putative type VII secretion system (designated as SggT7SST05). We showed that core genes within the SggT7SST05 locus are expressed in vitro and in the colon of mice. Western blot analysis showed that SggEsxA, a protein predicted to be a T7SS secretion substrate, is detected in the bacterial culture supernatant, indicating that this SggT7SST05 is functional. Deletion of SggT7SST05 (TX20005Δesx) resulted in impaired bacterial adherence to HT29 cells and abolished the ability of Sgg to stimulate HT29 cell proliferation. Analysis of bacterial culture supernatants suggest that SggT7SST05-secreted factors are responsible for the pro-proliferative activity of Sgg, whereas Sgg adherence to host cells requires both SggT7SST05-secreted and bacterial surface-associated factors. In a murine gut colonization model, TX20005Δesx showed significantly reduced colonization compared to the parent strain. Furthermore, in a mouse model of CRC, mice exposed to TX20005 had a significantly higher tumor burden compared to saline-treated mice, whereas those exposed to TX20005Δesx did not. Examination of the Sgg load in the colon in the CRC model suggests that SggT7SST05-mediated activities are directly involved in the promotion of colon tumors. Taken together, these results reveal SggT7SST05 as a previously unrecognized pathogenicity determinant for Sgg colonization of the colon and promotion of colon tumors. Colorectal cancer (CRC) is a leading cause of cancer-related death. The development of CRC can be strongly influenced by specific gut microbes. Understanding how gut microbes modulate CRC is critical to developing novel strategies to improve clinical diagnosis and treatment of this disease. S. gallolyticus subsp. gallolyticus (Sgg) has a strong clinical association with CRC and actively promotes the development of colon tumors. However, the specific Sgg molecules that mediate its pro-tumor activity are unknown. Here we report the first characterization of a type VII secretion system (T7SS) in Sgg, designated as SggT7SST05. We further demonstrate that SggT7SST05-mediated activities are important for Sgg to colonize the colon and to promote the development of colon tumors. These findings reveal SggT7SST05 as a novel pathogenicity determinant of Sgg and provide a critical breakthrough in our efforts to understand how Sgg influences the development of CRC. Future investigations of the biological activities of specific effectors of SggT7SST05 will likely lead to the discovery of Sgg molecules that can be used as diagnostic markers and intervention targets aimed at mitigating the harmful effect of Sgg.
Collapse
Affiliation(s)
- John Culver Taylor
- Center for Infectious and Inflammatory Diseases, Texas A&M Health Science Center Institute of Biosciences of Technology, Houston, Texas, United States of America
| | - Xinsheng Gao
- Center for Infectious and Inflammatory Diseases, Texas A&M Health Science Center Institute of Biosciences of Technology, Houston, Texas, United States of America
| | - Juan Xu
- Center for Infectious and Inflammatory Diseases, Texas A&M Health Science Center Institute of Biosciences of Technology, Houston, Texas, United States of America
| | - Michael Holder
- Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, United States of America
| | - Joseph Petrosino
- Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ritesh Kumar
- Center for Infectious and Inflammatory Diseases, Texas A&M Health Science Center Institute of Biosciences of Technology, Houston, Texas, United States of America
| | - Wen Liu
- Center for Infectious and Inflammatory Diseases, Texas A&M Health Science Center Institute of Biosciences of Technology, Houston, Texas, United States of America
| | - Magnus Höök
- Center for Infectious and Inflammatory Diseases, Texas A&M Health Science Center Institute of Biosciences of Technology, Houston, Texas, United States of America
| | - Chris Mackenzie
- Department of Microbiology and Molecular Genetics, McGovern Medical School, UT Health, Houston, Texas, United States of America
| | - Andrew Hillhouse
- Texas A&M Institute for Genome Sciences and Society, Texas A&M, Texas, United States of America
| | - Wesley Brashear
- Texas A&M Institute for Genome Sciences and Society, Texas A&M, Texas, United States of America
| | - Maria Patricia Nunez
- Center for Infectious and Inflammatory Diseases, Texas A&M Health Science Center Institute of Biosciences of Technology, Houston, Texas, United States of America
| | - Yi Xu
- Center for Infectious and Inflammatory Diseases, Texas A&M Health Science Center Institute of Biosciences of Technology, Houston, Texas, United States of America
- Department of Microbiology and Molecular Genetics, McGovern Medical School, UT Health, Houston, Texas, United States of America
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Texas, United States of America
- * E-mail:
| |
Collapse
|
8
|
Secretion, Maturation, and Activity of a Quorum Sensing Peptide (GSP) Inducing Bacteriocin Transcription in Streptococcus gallolyticus. mBio 2021; 12:mBio.03189-20. [PMID: 33402540 PMCID: PMC8545107 DOI: 10.1128/mbio.03189-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus gallolyticus subsp. gallolyticus is an emerging opportunistic pathogen responsible for septicemia and endocarditis in the elderly. Invasive infections by S. gallolyticus subsp. gallolyticus are strongly linked to the occurrence of colorectal cancer (CRC). It was previously shown that increased secondary bile salts under CRC conditions enhance the bactericidal activity of gallocin, a bacteriocin produced by S. gallolyticus subsp. gallolyticus, enabling it to colonize the mouse colon by outcompeting resident enterococci (L. Aymeric, F. Donnadieu, C. Mulet, L. du Merle, et al., Proc Natl Acad Sci U S A 115:E283-E291, 2018, https://doi.org/10.1073/pnas.1715112115). In a separate study, we showed that S. gallolyticus subsp. gallolyticus produces and secretes a 21-mer peptide that activates bacteriocin production (A. Proutière, L. du Merle, B. Périchon, H. Varet, et al., mBio 11:e03187-20, 2020, https://doi.org/10.1128/mBio.03187-20). This peptide was named CSP because of its sequence similarity with competence-stimulating peptides found in other streptococci. Here, we demonstrate that CSP is a bona fide quorum sensing peptide involved in activation of gallocin gene transcription. We therefore refer to CSP as GSP (gallocin-stimulating peptide). GSP displays some unique features, since its N-terminal amino acid lies three residues after the double glycine leader sequence. Here, we set out to investigate the processing and export pathway that leads to mature GSP. Heterologous expression in Lactococcus lactis of the genes encoding GSP and the BlpAB transporter is sufficient to produce the 21-mer form of GSP in the supernatant, indicating that S. gallolyticus subsp. gallolyticus BlpAB displays an atypical cleavage site. We also conducted the first comprehensive structure-activity relationship (SAR) analysis of S. gallolyticus subsp. gallolyticus GSP to identify its key structural features and found that unlike many other similar streptococci signaling peptides (such as CSPs), nearly half of the mature GSP sequence can be removed (residues 1 to 9) without significantly impacting the peptide activity.IMPORTANCE Streptococcus gallolyticus subsp. gallolyticus is an opportunistic pathogen associated with colorectal cancer (CRC) and endocarditis. S. gallolyticus subsp. gallolyticus utilizes quorum sensing (QS) to regulate the production of a bacteriocin (gallocin) and gain a selective advantage in colonizing the colon. In this article, we report (i) the first structure-activity relationship study of the S. gallolyticus subsp. gallolyticus QS pheromone that regulates gallocin production, (ii) evidence that the active QS pheromone is processed to its mature form by a unique ABC transporter and not processed by an extracellular protease, and (iii) supporting evidence of interspecies interactions between streptococcal pheromones. Our results revealed the minimal pheromone scaffold needed for gallocin activation and uncovered unique interactions between two streptococcal QS signals that warrant further study.
Collapse
|
9
|
Characterization of a Four-Component Regulatory System Controlling Bacteriocin Production in Streptococcus gallolyticus. mBio 2021; 12:mBio.03187-20. [PMID: 33402539 PMCID: PMC8545106 DOI: 10.1128/mbio.03187-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Bacteriocins are natural antimicrobial peptides produced by bacteria to kill closely related competitors. The opportunistic pathogen Streptococcus gallolyticus subsp. gallolyticus was recently shown to outcompete commensal enterococci of the murine microbiota under tumoral conditions thanks to the production of a two-peptide bacteriocin named gallocin. Here, we identified four genes involved in the regulatory control of gallocin in S. gallolyticus subsp. gallolyticus UCN34 that encode a histidine kinase/response regulator two-component system (BlpH/BlpR), a secreted peptide (GSP [gallocin-stimulating peptide]), and a putative regulator of unknown function (BlpS). While BlpR is a typical 243-amino-acid (aa) response regulator possessing a phospho-receiver domain and a LytTR DNA-binding domain, BlpS is a 108-aa protein containing only a LytTR domain. Our results showed that the secreted peptide GSP activates the dedicated two-component system BlpH/BlpR to induce gallocin transcription. A genome-wide transcriptome analysis indicates that this regulatory system (GSP-BlpH/BlpR) is specific for bacteriocin production. Importantly, as opposed to BlpR, BlpS was shown to repress gallocin gene transcription. A conserved operator DNA sequence of 30 bp was found in all promoter regions regulated by BlpR and BlpS. Electrophoretic mobility shift assays (EMSA) and footprint assays showed direct and specific binding of BlpS and BlpR to various regulated promoter regions in a dose-dependent manner on this conserved sequence. Gallocin expression appears to be tightly controlled in S. gallolyticus subsp. gallolyticus by quorum sensing and antagonistic activity of 2 LytTR-containing proteins. Competition experiments in gut microbiota medium and 5% CO2 to mimic intestinal conditions demonstrate that gallocin is functional under these in vivo-like conditions.IMPORTANCE Streptococcus gallolyticus subsp. gallolyticus, formerly known as Streptococcus bovis biotype I, is an opportunistic pathogen causing septicemia and endocarditis in the elderly often associated with asymptomatic colonic neoplasia. Recent studies indicate that S. gallolyticus subsp. gallolyticus is both a driver and a passenger of colorectal cancer. We previously showed that S. gallolyticus subsp. gallolyticus produces a bacteriocin, termed gallocin, enabling colonization of the colon under tumoral conditions by outcompeting commensal members of the murine microbiota such as Enterococcus faecalis Here, we identified and extensively characterized a four-component system that regulates gallocin production. Gallocin gene transcription is activated by a secreted peptide pheromone (GSP) and a two-component signal transduction system composed of a transmembrane histidine kinase receptor (BlpH) and a cytosolic response regulator (BlpR). Finally, a DNA-binding protein (BlpS) was found to repress gallocin genes transcription, likely by antagonizing BlpR. Understanding gallocin regulation is crucial to prevent S. gallolyticus subsp. gallolyticus colon colonization under tumoral conditions.
Collapse
|
10
|
Mistiaen WP, Gebruers N. How to manage patients in whom malignancy and infective endocarditis are associated: a review. SCAND CARDIOVASC J 2020; 54:70-76. [PMID: 32233824 DOI: 10.1080/14017431.2019.1698762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Objective. Infective endocarditis (IE) is a potentially short-term lethal condition. An association with malignancy could complicate diagnostic and therapeutic decisions. The questions to be answered are: (1) which type of malignancies are encountered; (2) how often has the association between malignancy and IE been described, and (3) what are thus far the diagnostic and treatment strategies for patients with both conditions. Methods. A literature search from 2010 to 2018 has been performed with the focus on IE and cancer/malignancy/neoplasm, as well as with risk factors for adverse outcome, when cancer was included in the analysis. Results. An association between digestive, respiratory and hematologic malignancy with IE has been observed in four large databases. The most important mechanisms for this association are a "port of entry" and immune suppression. Sixteen studies dealt with the effect of short and mid-term cancer on the outcome of surgery of IE in these patients. No uniform management strategy could be identified. It seems that a malignancy does not alter the short-term outcome for IE, although referral to a tertiary cardiac center and surgical treatment are less common for patients with known malignancy. Conclusions. Although there is an association between malignancy and IE, no treatment strategy has yet been developed for these patients. Short-term outcome of IE is unaltered by cancer. In most papers, the effect of cancer on mid-term survival is only significant in a univariate analysis, without being a predictor. The results indicate that cardiac surgery for IE should not be withheld in patients in whom a treatable malignancy has been found.
Collapse
Affiliation(s)
- Wilhelm P Mistiaen
- Department of Healthcare Sciences and Wellbeing, Artesis-Plantijn University of Applied Sciences, Antwerp, Belgium.,Faculty of Medicine and Health Sciences, Department of rehabilitation sciences and physiotherapy (REVAKI - MOVANT), University of Antwerp, Antwerp, Belgium
| | - Nick Gebruers
- Faculty of Medicine and Health Sciences, Department of rehabilitation sciences and physiotherapy (REVAKI - MOVANT), University of Antwerp, Antwerp, Belgium.,Multidisciplinary Edema Clinic, Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
11
|
Increased Intracellular Cyclic di-AMP Levels Sensitize Streptococcus gallolyticus subsp. gallolyticus to Osmotic Stress and Reduce Biofilm Formation and Adherence on Intestinal Cells. J Bacteriol 2019; 201:JB.00597-18. [PMID: 30617242 PMCID: PMC6398277 DOI: 10.1128/jb.00597-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/20/2018] [Indexed: 12/31/2022] Open
Abstract
Streptococcus gallolyticus is an opportunistic pathogen responsible for septicemia and endocarditis in the elderly and is also strongly associated with colorectal cancer. S. gallolyticus can form biofilms, express specific pili to colonize the host tissues, and produce a specific bacteriocin allowing killing of commensal bacteria in the murine colon. Nevertheless, how the expression of these colonization factors is regulated remains largely unknown. Here, we show that c-di-AMP plays pleiotropic roles in S. gallolyticus, controlling the tolerance to osmotic stress, cell size, biofilm formation on abiotic surfaces, adherence and cell aggregation on human intestinal cells, expression of Pil3 pilus, and production of bacteriocin. This study indicates that c-di-AMP may constitute a key regulatory molecule for S. gallolyticus host colonization and pathogenesis. Cyclic di-AMP is a recently identified second messenger exploited by a number of Gram-positive bacteria to regulate important biological processes. Here, we studied the phenotypic alterations induced by the increased intracellular c-di-AMP levels in Streptococcus gallolyticus, an opportunistic pathogen responsible for septicemia and endocarditis in the elderly. We report that an S. gallolyticus c-di-AMP phosphodiesterase gdpP knockout mutant, which displays a 1.5-fold higher intracellular c-di-AMP levels than the parental strain UCN34, is more sensitive to osmotic stress and is morphologically smaller than the parental strain. Unexpectedly, we found that a higher level of c-di-AMP reduced biofilm formation of S. gallolyticus on abiotic surfaces and reduced adherence and cell aggregation on human intestinal cells. A genome-wide transcriptomic analysis indicated that c-di-AMP regulates many biological processes in S. gallolyticus, including the expression of various ABC transporters and disease-associated genes encoding bacteriocin and Pil3 pilus. Complementation of the gdpP in-frame deletion mutant with a plasmid carrying gdpP in trans from its native promoter restored bacterial morphology, tolerance to osmotic stress, biofilm formation, adherence to intestinal cells, bacteriocin production, and Pil3 pilus expression. Our results indicate that c-di-AMP is a pleiotropic signaling molecule in S. gallolyticus that may be important for S. gallolyticus pathogenesis. IMPORTANCEStreptococcus gallolyticus is an opportunistic pathogen responsible for septicemia and endocarditis in the elderly and is also strongly associated with colorectal cancer. S. gallolyticus can form biofilms, express specific pili to colonize the host tissues, and produce a specific bacteriocin allowing killing of commensal bacteria in the murine colon. Nevertheless, how the expression of these colonization factors is regulated remains largely unknown. Here, we show that c-di-AMP plays pleiotropic roles in S. gallolyticus, controlling the tolerance to osmotic stress, cell size, biofilm formation on abiotic surfaces, adherence and cell aggregation on human intestinal cells, expression of Pil3 pilus, and production of bacteriocin. This study indicates that c-di-AMP may constitute a key regulatory molecule for S. gallolyticus host colonization and pathogenesis.
Collapse
|
12
|
Pasquereau-Kotula E, Martins M, Aymeric L, Dramsi S. Significance of Streptococcus gallolyticus subsp. gallolyticus Association With Colorectal Cancer. Front Microbiol 2018; 9:614. [PMID: 29666615 PMCID: PMC5891635 DOI: 10.3389/fmicb.2018.00614] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/16/2018] [Indexed: 12/22/2022] Open
Abstract
Streptococcus gallolyticus subsp. gallolyticus Sgg (formerly known as S. bovis type I) is the main causative agent of septicemia and infective endocarditis (IE) in elderly and immunocompromised persons. It belongs to the few opportunistic bacteria, which have been strongly associated to colorectal cancer (CRC). A literature survey covering a period of 40 years (1970–2010) revealed that 65% of patients diagnosed with an invasive Sgg infection had a concomitant colorectal neoplasia. Sgg is associated mainly with early adenomas and may thus constitute an early marker for CRC screening. Sgg has been described as a normal inhabitant of the rumen of herbivores and in the digestive tract of birds. It is more rarely detected in human intestinal tract (2.5–15%). Recent molecular analyses indicate possible zoonotic transmission of Sgg. Thanks to the development of a genetic toolbox and to comparative genomics, a number of factors that are important for Sgg pathogenicity have been identified. This review will highlight the role of Sgg pili in host colonization and how their phase-variable expression contributes to mitigate the host immune responses and finally their use as serological diagnostic tool. We will then present experimental data addressing the core question whether Sgg is a cause or consequence of CRC. We will discuss a few recent studies examining the etiological versus non-etiological participation of Sgg in colorectal cancer with the underlying mechanisms.
Collapse
Affiliation(s)
- Ewa Pasquereau-Kotula
- Unité de Biologie des Bactéries Pathogènes à Gram-Positif, Institut Pasteur, Paris, France
| | - Mariana Martins
- Unité de Biologie des Bactéries Pathogènes à Gram-Positif, Institut Pasteur, Paris, France
| | - Laetitia Aymeric
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
| | - Shaynoor Dramsi
- Unité de Biologie des Bactéries Pathogènes à Gram-Positif, Institut Pasteur, Paris, France
| |
Collapse
|
13
|
Isenring J, Köhler J, Nakata M, Frank M, Jans C, Renault P, Danne C, Dramsi S, Kreikemeyer B, Oehmcke-Hecht S. Streptococcus gallolyticus subsp. gallolyticus endocarditis isolate interferes with coagulation and activates the contact system. Virulence 2017; 9:248-261. [PMID: 29072555 PMCID: PMC5955193 DOI: 10.1080/21505594.2017.1393600] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Streptococcus gallolyticus subsp. gallolyticus, formerly classified as S. bovis biotype I, is an increasing cause of bacteremia and infective endocarditis in the elderly. The physiopathology of infective endocarditis is poorly understood and involves immune and coagulation systems. In this study, we found that S. gallolyticus subsp. gallolyticus activates the human contact system, which in turn has two consequences: cleavage of high-molecular-weight kininogen (HK) resulting in release of the potent pro-inflammatory peptide bradykinin, and initiation of the intrinsic pathway of coagulation. S. gallolyticus subsp. gallolyticus was found to bind and activate factors of the human contact system at its surface, leading to a significant prolongation of the intrinsic coagulation time and to the release of bradykinin. High-affinity binding of factor XII to the bacterial Pil1 collagen binding protein was demonstrated with a KD of 13 nM. Of note, Pil1 expression was exclusively found in S. gallolyticus subsp. gallolyticus, further supporting an essential contribution of this pilus in virulence.
Collapse
Affiliation(s)
- Julia Isenring
- a Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center , Rostock , Germany.,b Nutrition and Health, Laboratory of Food Biotechnology, Institute of Food, ETH Zürich , Zürich , Switzerland
| | - Juliane Köhler
- a Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center , Rostock , Germany
| | - Masanobu Nakata
- a Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center , Rostock , Germany.,c Department of Oral and Molecular Microbiology , Osaka University Graduate School of Dentistry , Suita , Osaka , Japan
| | - Marcus Frank
- d Medical Biology and Electron Microscopy Centre, Rostock University Medical Center , Rostock , Germany
| | - Christoph Jans
- b Nutrition and Health, Laboratory of Food Biotechnology, Institute of Food, ETH Zürich , Zürich , Switzerland
| | - Pierre Renault
- e Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay , Jouy-en-Josas , France
| | - Camille Danne
- f Unité de Biologie des Bactéries Pathogènes à Gram-positif, Institut Pasteur , Paris , France , Centre National de la Recherche Scientifique (CNRS) ERL3526
| | - Shaynoor Dramsi
- f Unité de Biologie des Bactéries Pathogènes à Gram-positif, Institut Pasteur , Paris , France , Centre National de la Recherche Scientifique (CNRS) ERL3526
| | - Bernd Kreikemeyer
- a Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center , Rostock , Germany
| | - Sonja Oehmcke-Hecht
- a Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center , Rostock , Germany
| |
Collapse
|
14
|
Martins M, Aymeric L, du Merle L, Danne C, Robbe-Masselot C, Trieu-Cuot P, Sansonetti P, Dramsi S. Streptococcus gallolyticusPil3 Pilus Is Required for Adhesion to Colonic Mucus and for Colonization of Mouse Distal Colon. J Infect Dis 2015; 212:1646-55. [DOI: 10.1093/infdis/jiv307] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/13/2015] [Indexed: 12/24/2022] Open
|
15
|
Buscetta M, Papasergi S, Firon A, Pietrocola G, Biondo C, Mancuso G, Midiri A, Romeo L, Teti G, Speziale P, Trieu-Cuot P, Beninati C. FbsC, a novel fibrinogen-binding protein, promotes Streptococcus agalactiae-host cell interactions. J Biol Chem 2015; 289:21003-21015. [PMID: 24904056 DOI: 10.1074/jbc.m114.553073] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Streptococcus agalactiae (group B Streptococcus or GBS) is a common cause of invasive infections in newborn infants and adults. The ability of GBS to bind human fibrinogen is of crucial importance in promoting colonization and invasion of host barriers. We characterized here a novel fibrinogen-binding protein of GBS, designated FbsC (Gbs0791), which is encoded by the prototype GBS strain NEM316. FbsC, which bears two bacterial immunoglobulin-like tandem repeat domains and a C-terminal cell wall-anchoring motif (LPXTG), was found to be covalently linked to the cell wall by the housekeeping sortase A. Studies using recombinant FbsC indicated that it binds fibrinogen in a dose-dependent and saturable manner, and with moderate affinity. Expression of FbsC was detected in all clinical GBS isolates, except those belonging to the hypervirulent lineage ST17. Deletion of fbsC decreases NEM316 abilities to adhere to and invade human epithelial and endothelial cells, and to form biofilm in vitro. Notably, bacterial adhesion to fibrinogen and fibrinogen binding to bacterial cells were abolished following fbsC deletion in NEM316. Moreover, the virulence of the fbsC deletion mutant and its ability to colonize the brain were impaired in murine models of infection. Finally, immunization with recombinant FbsC significantly protected mice from lethal GBS challenge. In conclusion, FbsC is a novel fibrinogen-binding protein expressed by most GBS isolates that functions as a virulence factor by promoting invasion of epithelial and endothelial barriers. In addition, the protein has significant immunoprotective activity and may be a useful component of an anti-GBS vaccine.
Collapse
|
16
|
Role of Toll-like receptor 13 in innate immune recognition of group B streptococci. Infect Immun 2014; 82:5013-22. [PMID: 25225249 DOI: 10.1128/iai.02282-14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Murine Toll-like receptor 13 (TLR13), an endosomal receptor that is not present in humans, is activated by an unmethylated motif present in the large ribosomal subunit of bacterial RNA (23S rRNA). Little is known, however, of the impact of TLR13 on antibacterial host defenses. Here we examined the role of this receptor in the context of infection induced by the model pathogen group B streptococcus (GBS). To this end, we used bacterial strains masked from TLR13 recognition by virtue of constitutive expression of the ErmC methyltransferase, which results in dimethylation of the 23S rRNA motif at a critical adenine residue. We found that TLR13-mediated rRNA recognition was required for optimal induction of tumor necrosis factor alpha and nitrous oxide in dendritic cell and macrophage cultures stimulated with heat-killed bacteria or purified bacterial RNA. However, TLR13-dependent recognition was redundant when live bacteria were used as a stimulus. Moreover, masking bacterial rRNA from TLR13 recognition did not increase the ability of GBS to avoid host defenses and replicate in vivo. In contrast, increased susceptibility to infection was observed under conditions in which signaling by all endosomal TLRs was abolished, i.e., in mice with a loss-of-function mutation in the chaperone protein UNC93B1. Our data lend support to the conclusion that TLR13 participates in GBS recognition, although blockade of the function of this receptor can be compensated for by other endosomal TLRs. Lack of selective pressure by bacterial infections might explain the evolutionary loss of TLR13 in humans. However, further studies using different bacterial species are needed to prove this hypothesis.
Collapse
|
17
|
Fléchard M, Gilot P. Physiological impact of transposable elements encoding DDE transposases in the environmental adaptation of Streptococcus agalactiae. Microbiology (Reading) 2014; 160:1298-1315. [DOI: 10.1099/mic.0.077628-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We have referenced and described Streptococcus agalactiae transposable elements encoding DDE transposases. These elements belonged to nine families of insertion sequences (ISs) and to a family of conjugative transposons (TnGBSs). An overview of the physiological impact of the insertion of all these elements is provided. DDE-transposable elements affect S. agalactiae in a number of aspects of its capability to adapt to various environments and modulate the expression of several virulence genes, the scpB–lmB genomic region and the genes involved in capsule expression and haemolysin transport being the targets of several different mobile elements. The referenced mobile elements modify S. agalactiae behaviour by transferring new gene(s) to its genome, by modifying the expression of neighbouring genes at the integration site or by promoting genomic rearrangements. Transposition of some of these elements occurs in vivo, suggesting that by dynamically regulating some adaptation and/or virulence genes, they improve the ability of S. agalactiae to reach different niches within its host and ensure the ‘success’ of the infectious process.
Collapse
Affiliation(s)
- Maud Fléchard
- Biochimie et Génétique Moléculaire Bactérienne, Institut des Sciences de la Vie, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Philippe Gilot
- INRA, UMR1282 Infectiologie et Santé Publique, F-37380 Nouzilly, France
- Université de Tours, UMR1282 Infectiologie et Santé Publique, Bactéries et Risque Materno-Foetal, F-37032 Tours, France
| |
Collapse
|