1
|
Petrova O, Semenova E, Parfirova O, Tsers I, Gogoleva N, Gogolev Y, Nikolaichik Y, Gorshkov V. RpoS-Regulated Genes and Phenotypes in the Phytopathogenic Bacterium Pectobacterium atrosepticum. Int J Mol Sci 2023; 24:17348. [PMID: 38139177 PMCID: PMC10743746 DOI: 10.3390/ijms242417348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The alternative sigma factor RpoS is considered to be one of the major regulators providing stress resistance and cross-protection in bacteria. In phytopathogenic bacteria, the effects of RpoS have not been analyzed with regard to cross-protection, and genes whose expression is directly or indirectly controlled by RpoS have not been determined at the whole-transcriptome level. Our study aimed to determine RpoS-regulated genes and phenotypes in the phytopathogenic bacterium Pectobacterium atrosepticum. Knockout of the rpoS gene in P. atrosepticum affected the long-term starvation response, cross-protection, and virulence toward plants with enhanced immune status. The whole-transcriptome profiles of the wild-type P. atrosepticum strain and its ΔrpoS mutant were compared under different experimental conditions, and functional gene groups whose expression was affected by RpoS were determined. The RpoS promoter motif was inferred within the promoter regions of the genes affected by rpoS deletion, and the P. atrosepticum RpoS regulon was predicted. Based on RpoS-controlled phenotypes, transcriptome profiles, and RpoS regulon composition, the regulatory role of RpoS in P. atrosepticum is discussed.
Collapse
Affiliation(s)
- Olga Petrova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia; (O.P.); (E.S.); (O.P.); (I.T.); (N.G.); (Y.G.)
| | - Elizaveta Semenova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia; (O.P.); (E.S.); (O.P.); (I.T.); (N.G.); (Y.G.)
| | - Olga Parfirova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia; (O.P.); (E.S.); (O.P.); (I.T.); (N.G.); (Y.G.)
| | - Ivan Tsers
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia; (O.P.); (E.S.); (O.P.); (I.T.); (N.G.); (Y.G.)
| | - Natalia Gogoleva
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia; (O.P.); (E.S.); (O.P.); (I.T.); (N.G.); (Y.G.)
| | - Yuri Gogolev
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia; (O.P.); (E.S.); (O.P.); (I.T.); (N.G.); (Y.G.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Yevgeny Nikolaichik
- Department of Molecular Biology, Belarusian State University, 220030 Minsk, Belarus;
| | - Vladimir Gorshkov
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia; (O.P.); (E.S.); (O.P.); (I.T.); (N.G.); (Y.G.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
2
|
Petrova O, Parfirova O, Gogoleva N, Vorob'ev V, Gogolev Y, Gorshkov V. The Role of Intercellular Signaling in the Regulation of Bacterial Adaptive Proliferation. Int J Mol Sci 2023; 24:ijms24087266. [PMID: 37108429 PMCID: PMC10138535 DOI: 10.3390/ijms24087266] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Bacterial adaptation is regulated at the population level with the involvement of intercellular communication (quorum sensing). When the population density is insufficient for adaptation under starvation, bacteria can adjust it to a quorum level through cell divisions at the expense of endogenous resources. This phenomenon has been described for the phytopathogenic bacterium Pectobacterium atrosepticum (Pba), and it is called, in our study, adaptive proliferation. An important attribute of adaptive proliferation is its timely termination, which is necessary to prevent the waste of endogenous resources when the required level of population density is achieved. However, metabolites that provide the termination of adaptive proliferation remained unidentified. We tested the hypothesis of whether quorum sensing-related autoinducers prime the termination of adaptive proliferation and assessed whether adaptive proliferation is a common phenomenon in the bacterial world. We showed that both known Pba quorum sensing-related autoinducers act synergistically and mutually compensatory to provide the timely termination of adaptive proliferation and formation of cross-protection. We also demonstrated that adaptive proliferation is implemented by bacteria of many genera and that bacteria with similar quorum sensing-related autoinducers have similar signaling backgrounds that prime the termination of adaptive proliferation, enabling the collaborative regulation of this adaptive program in multispecies communities.
Collapse
Affiliation(s)
- Olga Petrova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", 420111 Kazan, Tatarstan, Russia
| | - Olga Parfirova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", 420111 Kazan, Tatarstan, Russia
| | - Natalia Gogoleva
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", 420111 Kazan, Tatarstan, Russia
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Tatarstan, Russia
| | - Vladimir Vorob'ev
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", 420111 Kazan, Tatarstan, Russia
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Tatarstan, Russia
| | - Yuri Gogolev
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", 420111 Kazan, Tatarstan, Russia
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Tatarstan, Russia
| | - Vladimir Gorshkov
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", 420111 Kazan, Tatarstan, Russia
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Tatarstan, Russia
| |
Collapse
|
3
|
Host plant physiological transformation and microbial population heterogeneity as important determinants of the Soft Rot Pectobacteriaceae-plant interactions. Semin Cell Dev Biol 2023; 148-149:33-41. [PMID: 36621443 DOI: 10.1016/j.semcdb.2023.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Pectobacterium and Dickeya species belonging to the Soft Rot Pectobacteriaceae (SRP) are one of the most devastating phytopathogens. They degrade plant tissues by producing an arsenal of plant cell wall degrading enzymes. However, SRP-plant interactions are not restricted to the production of these "brute force" weapons. Additionally, these bacteria apply stealth behavior related to (1) manipulation of the host plant via induction of susceptible responses and (2) formation of heterogeneous populations with functionally specialized cells. Our review aims to summarize current knowledge on SRP-induced plant susceptible responses and on the heterogeneity of SRP populations. The review shows that SRP are capable of adjusting the host's hormonal balance, inducing host-mediated plant cell wall modification, promoting iron assimilation by the host, stimulating the accumulation of reactive oxygen species and host cell death, and activating the synthesis of secondary metabolites that are ineffective in limiting disease progression. By this means, SRP facilitate host plant susceptibility. During host colonization, SRP populations produce various functionally specialized cells adapted for enhanced virulence, increased resistance, motility, vegetative growth, or colonization of the vascular system. This enables SRP to perform self-contradictory tasks, which benefits a population's overall fitness in various environments, including host plants. Such stealthy tactical actions facilitate plant-SRP interactions and disease progression.
Collapse
|
4
|
Petrova O, Parfirova O, Gogolev Y, Gorshkov V. Stringent Response in Bacteria and Plants with Infection. PHYTOPATHOLOGY 2021; 111:1811-1817. [PMID: 34296953 DOI: 10.1094/phyto-11-20-0510-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Stringent response (SR), a primary stress reaction in bacteria and plant chloroplasts, is a molecular switch that provides operational stress-induced reprogramming of transcription under conditions of abiotic and biotic stress. Because the infection is a stressful situation for both partners (the host plant and the pathogen), we analyzed the expression of bacterial and plastid SR-related genes during plant-microbial interaction. In the phytopathogenic bacterium Pectobacterium atrosepticum, SpoT-dependent SR was induced after contact with potato or tobacco plants. In plants, two different scenarios of molecular events developed under bacterial infection. Plastid SR was not induced in the host plant potato Solanum tuberosum, which co-evolved with the pathogen for a long time. In this case, the salicylic acid defense pathway was activated and plants were more resistant to bacterial infection. SR was activated in the tobacco Nicotiana tabacum (experimental host) along with activation of jasmonic acid-related genes, resulting in plant death. These results are important to more fully understand the evolutionary interactions between plants and symbionts/pathogens.
Collapse
Affiliation(s)
- Olga Petrova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center, Kazan Scientific Center of Russian Academy of Sciences, Kazan 420111, Russian Federation
| | - Olga Parfirova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center, Kazan Scientific Center of Russian Academy of Sciences, Kazan 420111, Russian Federation
| | - Yuri Gogolev
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center, Kazan Scientific Center of Russian Academy of Sciences, Kazan 420111, Russian Federation
| | - Vladimir Gorshkov
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center, Kazan Scientific Center of Russian Academy of Sciences, Kazan 420111, Russian Federation
| |
Collapse
|
5
|
Wright KM, Holden NJ. Quantification and colonisation dynamics of Escherichia coli O157:H7 inoculation of microgreens species and plant growth substrates. Int J Food Microbiol 2018; 273:1-10. [DOI: 10.1016/j.ijfoodmicro.2018.02.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/23/2018] [Accepted: 02/27/2018] [Indexed: 02/02/2023]
|
6
|
Wasai S, Kanno N, Matsuura K, Haruta S. Increase of Salt Tolerance in Carbon-Starved Cells of Rhodopseudomonas palustris Depending on Photosynthesis or Respiration. Microorganisms 2018; 6:microorganisms6010004. [PMID: 29316629 PMCID: PMC5874618 DOI: 10.3390/microorganisms6010004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/22/2017] [Accepted: 01/03/2018] [Indexed: 12/26/2022] Open
Abstract
Bacteria in natural environments are frequently exposed to nutrient starvation and survive against environmental stresses under non-growing conditions. In order to determine the energetic influence on survivability during starvation, changes in salt tolerance were investigated using the purple photosynthetic bacterium Rhodopseudomonas palustris after carbon starvation under photosynthetic conditions in comparison with anaerobic and aerobic dark conditions. Tolerance to a treatment with high concentration of salt (2.5 M NaCl for 1 h) was largely increased after starvation under anaerobically light and aerobically dark conditions. The starved cells under the conditions of photosynthesis or aerobic respiration contained high levels of cellular ATP, but starvation under the anaerobic dark conditions resulted in a decrease of cellular ATP contents. To observe the large increase of the salt tolerance, incubation of starved cells for more than 18 h under illumination was needed. These results suggest that the ATP-dependent rearrangement of cells induced salt tolerance.
Collapse
Affiliation(s)
- Sawa Wasai
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan.
| | - Nanako Kanno
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan.
| | - Katsumi Matsuura
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan.
| | - Shin Haruta
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan.
| |
Collapse
|
7
|
Gorshkov V, Tarasova N, Gogoleva N, Osipova E, Petrova O, Kovtunov E, Gogolev Y. Polyphenol oxidase from Pectobacterium atrosepticum: identification and cloning of gene and characteristics of the enzyme. J Basic Microbiol 2017; 57:998-1009. [PMID: 29067700 DOI: 10.1002/jobm.201700413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 07/20/2017] [Accepted: 09/28/2017] [Indexed: 01/07/2023]
Abstract
In the present study, we attempted to elucidate if the harmful phytopathogenic bacteria of Pectobacterium genus (P. atrosepticum) possess the enzymes for oxidation of phenolic compounds. Polyphenol oxidase (laccase) activity was revealed in P. atrosepticum cell lysates. Using bioinformatic analysis, an ORF encoding a putative copper-containing polyphenol oxidase of 241 amino acids with a predicted molecular mass of 25.9 kDa was found. This protein (named Pal1) shares significant level of identity with laccases of a new type described for several bacterial species. Cloning and expression of the pal1 gene and the analysis of corresponding recombinant protein confirmed that Pal1 possessed laccase activity. The recombinant Pal1 protein was characterized in terms of substrate specificity, kinetic parameters, pH and temperature optimum, sensitivity to inhibitors and metal content. Pal1 demonstrated alkali- and thermo-tolerance. The kinetic parameters Km and kcat for 2,6-dimethoxyphenol were 0.353 ± 0.062 mM and 98.79 ± 4.9 s-1 , respectively. The protein displayed high tolerance to sodium azide, sodium fluoride, NaCl, SDS and cinnamic acid. The transcript level of the pal1 gene in P. atrosepticum was shown to be induced by plant-derived phenolic compound (ferulic acid) and copper sulfate.
Collapse
Affiliation(s)
- Vladimir Gorshkov
- Kazan Institute of Biochemistry and Biophysics, Kazan Science Centre, Russian Academy of Sciences, Kazan, Russia.,Kazan Federal University, Kazan, Russia
| | - Nadezhda Tarasova
- Kazan Institute of Biochemistry and Biophysics, Kazan Science Centre, Russian Academy of Sciences, Kazan, Russia.,Kazan Federal University, Kazan, Russia
| | - Natalia Gogoleva
- Kazan Institute of Biochemistry and Biophysics, Kazan Science Centre, Russian Academy of Sciences, Kazan, Russia.,Kazan Federal University, Kazan, Russia
| | - Elena Osipova
- Kazan Institute of Biochemistry and Biophysics, Kazan Science Centre, Russian Academy of Sciences, Kazan, Russia
| | - Olga Petrova
- Kazan Institute of Biochemistry and Biophysics, Kazan Science Centre, Russian Academy of Sciences, Kazan, Russia
| | - Evgeny Kovtunov
- Kazan Institute of Biochemistry and Biophysics, Kazan Science Centre, Russian Academy of Sciences, Kazan, Russia.,Kazan Federal University, Kazan, Russia
| | - Yuri Gogolev
- Kazan Institute of Biochemistry and Biophysics, Kazan Science Centre, Russian Academy of Sciences, Kazan, Russia
| |
Collapse
|
8
|
Gorshkov V, Islamov B, Mikshina P, Petrova O, Burygin G, Sigida E, Shashkov A, Daminova A, Ageeva M, Idiyatullin B, Salnikov V, Zuev Y, Gorshkova T, Gogolev Y. Pectobacterium atrosepticum exopolysaccharides: identification, molecular structure, formation under stress and in planta conditions. Glycobiology 2017; 27:1016-1026. [DOI: 10.1093/glycob/cwx069] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 07/28/2017] [Indexed: 01/19/2023] Open
Affiliation(s)
- Vladimir Gorshkov
- Kazan Institute of Biochemistry and Biophysics, Kazan Science Centre, Russian Academy of Sciences, Lobachevsky Str. 2/31, P.O. Box 30, 420111 Kazan, Russia
- Kazan Federal University, Kremlyovskaya Street,18, 420008 Kazan, Russia
| | - Bakhtiyar Islamov
- Kazan Institute of Biochemistry and Biophysics, Kazan Science Centre, Russian Academy of Sciences, Lobachevsky Str. 2/31, P.O. Box 30, 420111 Kazan, Russia
- Kazan Federal University, Kremlyovskaya Street,18, 420008 Kazan, Russia
| | - Polina Mikshina
- Kazan Institute of Biochemistry and Biophysics, Kazan Science Centre, Russian Academy of Sciences, Lobachevsky Str. 2/31, P.O. Box 30, 420111 Kazan, Russia
| | - Olga Petrova
- Kazan Institute of Biochemistry and Biophysics, Kazan Science Centre, Russian Academy of Sciences, Lobachevsky Str. 2/31, P.O. Box 30, 420111 Kazan, Russia
| | - Gennady Burygin
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prospekt Entuziastov, 13, 410049 Saratov, Russia
| | - Elena Sigida
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prospekt Entuziastov, 13, 410049 Saratov, Russia
| | - Alexander Shashkov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Pr., 47, 119991 Moscow, Russia
| | - Amina Daminova
- Kazan Institute of Biochemistry and Biophysics, Kazan Science Centre, Russian Academy of Sciences, Lobachevsky Str. 2/31, P.O. Box 30, 420111 Kazan, Russia
| | - Marina Ageeva
- Kazan Institute of Biochemistry and Biophysics, Kazan Science Centre, Russian Academy of Sciences, Lobachevsky Str. 2/31, P.O. Box 30, 420111 Kazan, Russia
| | - Bulat Idiyatullin
- Kazan Institute of Biochemistry and Biophysics, Kazan Science Centre, Russian Academy of Sciences, Lobachevsky Str. 2/31, P.O. Box 30, 420111 Kazan, Russia
| | - Vadim Salnikov
- Kazan Institute of Biochemistry and Biophysics, Kazan Science Centre, Russian Academy of Sciences, Lobachevsky Str. 2/31, P.O. Box 30, 420111 Kazan, Russia
- Kazan Federal University, Kremlyovskaya Street,18, 420008 Kazan, Russia
| | - Yuriy Zuev
- Kazan Institute of Biochemistry and Biophysics, Kazan Science Centre, Russian Academy of Sciences, Lobachevsky Str. 2/31, P.O. Box 30, 420111 Kazan, Russia
- Kazan Federal University, Kremlyovskaya Street,18, 420008 Kazan, Russia
| | - Tatyana Gorshkova
- Kazan Institute of Biochemistry and Biophysics, Kazan Science Centre, Russian Academy of Sciences, Lobachevsky Str. 2/31, P.O. Box 30, 420111 Kazan, Russia
| | - Yuri Gogolev
- Kazan Institute of Biochemistry and Biophysics, Kazan Science Centre, Russian Academy of Sciences, Lobachevsky Str. 2/31, P.O. Box 30, 420111 Kazan, Russia
- Kazan Federal University, Kremlyovskaya Street,18, 420008 Kazan, Russia
| |
Collapse
|
9
|
Gorshkov V, Kwenda S, Petrova O, Osipova E, Gogolev Y, Moleleki LN. Global Gene Expression Analysis of Cross-Protected Phenotype of Pectobacterium atrosepticum. PLoS One 2017; 12:e0169536. [PMID: 28081189 PMCID: PMC5230779 DOI: 10.1371/journal.pone.0169536] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 12/19/2016] [Indexed: 12/25/2022] Open
Abstract
The ability to adapt to adverse conditions permits many bacterial species to be virtually ubiquitous and survive in a variety of ecological niches. This ability is of particular importance for many plant pathogenic bacteria that should be able to exist, except for their host plants, in different environments e.g. soil, water, insect-vectors etc. Under some of these conditions, bacteria encounter absence of nutrients and persist, acquiring new properties related to resistance to a variety of stress factors (cross-protection). Although many studies describe the phenomenon of cross-protection and several regulatory components that induce the formation of resistant cells were elucidated, the global comparison of the physiology of cross-protected phenotype and growing cells has not been performed. In our study, we took advantage of RNA-Seq technology to gain better insights into the physiology of cross-protected cells on the example of a harmful phytopathogen, Pectobacterium atrosepticum (Pba) that causes crop losses all over the world. The success of this bacterium in plant colonization is related to both its virulence potential and ability to persist effectively under various stress conditions (including nutrient deprivation) retaining the ability to infect plants afterwards. In our previous studies, we showed Pba to be advanced in applying different adaptive strategies that led to manifestation of cell resistance to multiple stress factors. In the present study, we determined the period necessary for the formation of cross-protected Pba phenotype under starvation conditions, and compare the transcriptome profiles of non-adapted growing cells and of adapted cells after the cross-protective effect has reached the maximal level. The obtained data were verified using qRT-PCR. Genes that were expressed differentially (DEGs) in two cell types were classified into functional groups and categories using different approaches. As a result, we portrayed physiological features that distinguish cross-protected phenotype from the growing cells.
Collapse
Affiliation(s)
- Vladimir Gorshkov
- Kazan Institute of Biochemistry and Biophysics of Kazan Science Centre of Russian Academy of Sciences, Kazan, Russia
- Department of Biochemistry and Biotechnology, Kazan Federal University, Kazan, Russia
| | - Stanford Kwenda
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Olga Petrova
- Kazan Institute of Biochemistry and Biophysics of Kazan Science Centre of Russian Academy of Sciences, Kazan, Russia
| | - Elena Osipova
- Kazan Institute of Biochemistry and Biophysics of Kazan Science Centre of Russian Academy of Sciences, Kazan, Russia
| | - Yuri Gogolev
- Kazan Institute of Biochemistry and Biophysics of Kazan Science Centre of Russian Academy of Sciences, Kazan, Russia
- Department of Biochemistry and Biotechnology, Kazan Federal University, Kazan, Russia
| | - Lucy N. Moleleki
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
10
|
Petrova O, Gorshkov V, Sergeeva I, Daminova A, Ageeva M, Gogolev Y. Alternative scenarios of starvation-induced adaptation in Pectobacterium atrosepticum. Res Microbiol 2016; 167:254-261. [DOI: 10.1016/j.resmic.2016.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/29/2016] [Accepted: 01/29/2016] [Indexed: 12/01/2022]
|
11
|
Kwenda S, Gorshkov V, Ramesh AM, Naidoo S, Rubagotti E, Birch PRJ, Moleleki LN. Discovery and profiling of small RNAs responsive to stress conditions in the plant pathogen Pectobacterium atrosepticum. BMC Genomics 2016; 17:47. [PMID: 26753530 PMCID: PMC4710047 DOI: 10.1186/s12864-016-2376-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 01/06/2016] [Indexed: 12/15/2022] Open
Abstract
Background Small RNAs (sRNAs) have emerged as important regulatory molecules and have been studied in several bacteria. However, to date, there have been no whole-transcriptome studies on sRNAs in any of the Soft Rot Enterobacteriaceae (SRE) group of pathogens. Although the main ecological niches for these pathogens are plants, a significant part of their life cycle is undertaken outside their host within adverse soil environment. However, the mechanisms of SRE adaptation to this harsh nutrient-deficient environment are poorly understood. Results In the study reported herein, by using strand-specific RNA-seq analysis and in silico sRNA predictions, we describe the sRNA pool of Pectobacterium atrosepticum and reveal numerous sRNA candidates, including those that are induced during starvation-activated stress responses. Consequently, strand-specific RNA-seq enabled detection of 137 sRNAs and sRNA candidates under starvation conditions; 25 of these sRNAs were predicted for this bacterium in silico. Functional annotations were computationally assigned to 68 sRNAs. The expression of sRNAs in P. atrosepticum was compared under growth-promoting and starvation conditions: 68 sRNAs were differentially expressed with 47 sRNAs up-regulated under nutrient-deficient conditions. Conservation analysis using BLAST showed that most of the identified sRNAs are conserved within the SRE. Subsequently, we identified 9 novel sRNAs within the P. atrosepticum genome. Conclusions Since many of the identified sRNAs are starvation-induced, the results of our study suggests that sRNAs play key roles in bacterial adaptive response. Finally, this work provides a basis for future experimental characterization and validation of sRNAs in plant pathogens. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2376-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stanford Kwenda
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.
| | - Vladimir Gorshkov
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russia. .,Department of Botany and Plant Physiology, Kazan Federal University, Kazan, Russia.
| | - Aadi Moolam Ramesh
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.
| | - Sanushka Naidoo
- Department of Genetics, Forestry and Agricultural Biotechnology (FABI), University of Pretoria, Pretoria, South Africa.
| | - Enrico Rubagotti
- Genomics Research Institute, Centre for Microbial Ecology and Genomics (CMEG), University of Pretoria, Pretoria, South Africa.
| | - Paul R J Birch
- Division of Plant Sciences, College of Life Sciences, University of Dundee (at The James Hutton Institute), Errol Road, Invergowrie, Dundee, DD25DA, Scotland, UK.
| | - Lucy N Moleleki
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.
| |
Collapse
|