1
|
Espinosa-Ortiz EJ, Gerlach R, Peyton BM, Roberson L, Yeh DH. Biofilm reactors for the treatment of used water in space:potential, challenges, and future perspectives. Biofilm 2023; 6:100140. [PMID: 38078057 PMCID: PMC10704334 DOI: 10.1016/j.bioflm.2023.100140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 02/29/2024] Open
Abstract
Water is not only essential to sustain life on Earth, but also is a crucial resource for long-duration deep space exploration and habitation. Current systems in space rely on the resupply of water from Earth, however, as missions get longer and move farther away from Earth, resupply will no longer be a sustainable option. Thus, the development of regenerative reclamation water systems through which useable water can be recovered from "waste streams" (i.e., used waters) is sorely needed to further close the loop in space life support systems. This review presents the origin and characteristics of different used waters generated in space and discusses the intrinsic challenges of developing suitable technologies to treat such streams given the unique constrains of space exploration and habitation (e.g., different gravity conditions, size and weight limitations, compatibility with other systems, etc.). In this review, we discuss the potential use of biological systems, particularly biofilms, as possible alternatives or additions to current technologies for water reclamation and waste treatment in space. The fundamentals of biofilm reactors, their advantages and disadvantages, as well as different reactor configurations and their potential for use and challenges to be incorporated in self-sustaining and regenerative life support systems in long-duration space missions are also discussed. Furthermore, we discuss the possibility to recover value-added products (e.g., biomass, nutrients, water) from used waters and the opportunity to recycle and reuse such products as resources in other life support subsystems (e.g., habitation, waste, air, etc.).
Collapse
Affiliation(s)
- Erika J. Espinosa-Ortiz
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, 59717, USA
| | - Robin Gerlach
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, 59717, USA
| | - Brent M. Peyton
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, 59717, USA
| | - Luke Roberson
- Exploration Research and Technology Directorate, NASA, Kennedy Space Center, 32899, USA
| | - Daniel H. Yeh
- Department of Civil & Environmental Engineering, University of South Florida, Tampa, FL, 33620, USA
| |
Collapse
|
2
|
Marra D, Karapantsios T, Caserta S, Secchi E, Holynska M, Labarthe S, Polizzi B, Ortega S, Kostoglou M, Lasseur C, Karapanagiotis I, Lecuyer S, Bridier A, Noirot-Gros MF, Briandet R. Migration of surface-associated microbial communities in spaceflight habitats. Biofilm 2023; 5:100109. [PMID: 36909662 PMCID: PMC9999172 DOI: 10.1016/j.bioflm.2023.100109] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/05/2023] [Accepted: 02/17/2023] [Indexed: 02/26/2023] Open
Abstract
Astronauts are spending longer periods locked up in ships or stations for scientific and exploration spatial missions. The International Space Station (ISS) has been inhabited continuously for more than 20 years and the duration of space stays by crews could lengthen with the objectives of human presence on the moon and Mars. If the environment of these space habitats is designed for the comfort of astronauts, it is also conducive to other forms of life such as embarked microorganisms. The latter, most often associated with surfaces in the form of biofilm, have been implicated in significant degradation of the functionality of pieces of equipment in space habitats. The most recent research suggests that microgravity could increase the persistence, resistance and virulence of pathogenic microorganisms detected in these communities, endangering the health of astronauts and potentially jeopardizing long-duration manned missions. In this review, we describe the mechanisms and dynamics of installation and propagation of these microbial communities associated with surfaces (spatial migration), as well as long-term processes of adaptation and evolution in these extreme environments (phenotypic and genetic migration), with special reference to human health. We also discuss the means of control envisaged to allow a lasting cohabitation between these vibrant microscopic passengers and the astronauts.
Collapse
Affiliation(s)
- Daniele Marra
- Department of Chemical, Materials and Industrial Production Engineering (DICMaPi), University of Naples, Federico II, Piazzale Tecchio 80, 80125, Naples, Italy
- CEINGE, Advanced Biotechnologies, Via Gaetano Salvatore, 486, 80145, Naples, Italy
| | - Thodoris Karapantsios
- Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 541 24, Thessaloniki, Greece
| | - Sergio Caserta
- Department of Chemical, Materials and Industrial Production Engineering (DICMaPi), University of Naples, Federico II, Piazzale Tecchio 80, 80125, Naples, Italy
- CEINGE, Advanced Biotechnologies, Via Gaetano Salvatore, 486, 80145, Naples, Italy
| | - Eleonora Secchi
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, 8093, Zurich, Switzerland
| | | | - Simon Labarthe
- University of Bordeaux, IMB, UMR 5251, CNRS, IMB, Memphis Team, INRIA, Talence, France
| | - Bastien Polizzi
- Laboratoire de Mathématiques de Besançon, Université Bourgogne Franche-Comté, CNRS UMR-6623, Besançon, France
| | | | - Margaritis Kostoglou
- Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 541 24, Thessaloniki, Greece
| | | | - Ioannis Karapanagiotis
- Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 541 24, Thessaloniki, Greece
| | | | - Arnaud Bridier
- Fougères Laboratory, Antibiotics, Biocides, Residues and Resistance Unit, ANSES, Fougères, France
| | | | - Romain Briandet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
3
|
Lombini M, Schreiber L, Albertini R, Alessi EM, Attinà P, Bianco A, Cascone E, Colucci ME, Cortecchia F, De Caprio V, Diolaiti E, Fiorini M, Lessio L, Macchi A, Malaguti G, Mongelluzzo G, Pareschi G, Pelizzo MG, Pasquarella C. Solar ultraviolet light collector for germicidal irradiation on the moon. Sci Rep 2023; 13:8326. [PMID: 37221252 PMCID: PMC10204019 DOI: 10.1038/s41598-023-35438-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/18/2023] [Indexed: 05/25/2023] Open
Abstract
Prolonged human-crewed missions on the Moon are foreseen as a gateway for Mars and asteroid colonisation in the next decades. Health risks related to long-time permanence in space have been partially investigated. Hazards due to airborne biological contaminants represent a relevant problem in space missions. A possible way to perform pathogens' inactivation is by employing the shortest wavelength range of Solar ultraviolet radiation, the so-called germicidal range. On Earth, it is totally absorbed by the atmosphere and does not reach the surface. In space, such Ultraviolet solar component is present and effective germicidal irradiation for airborne pathogens' inactivation can be achieved inside habitable outposts through a combination of highly reflective internal coating and optimised geometry of the air ducts. The Solar Ultraviolet Light Collector for Germicidal Irradiation on the Moon is a project whose aim is to collect Ultraviolet solar radiation and use it as a source to disinfect the re-circulating air of the human outposts. The most favourable positions where to place these collectors are over the peaks at the Moon's poles, which have the peculiarity of being exposed to solar radiation most of the time. On August 2022, NASA communicated to have identified 13 candidate landing regions near the lunar South Pole for Artemis missions. Another advantage of the Moon is its low inclination to the ecliptic, which maintains the Sun's apparent altitude inside a reduced angular range. For this reason, Ultraviolet solar radiation can be collected through a simplified Sun's tracking collector or even a static collector and used to disinfect the recycled air. Fluid-dynamic and optical simulations have been performed to support the proposed idea. The expected inactivation rates for some airborne pathogens, either common or found on the International Space Station, are reported and compared with the proposed device efficiency. The results show that it is possible to use Ultraviolet solar radiation directly for air disinfection inside the lunar outposts and deliver a healthy living environment to the astronauts.
Collapse
Affiliation(s)
- Matteo Lombini
- Istituto Nazionale di Astrofisica - Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, Bologna, Italy.
| | - Laura Schreiber
- Istituto Nazionale di Astrofisica - Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, Bologna, Italy
| | - Roberto Albertini
- Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
| | - Elisa Maria Alessi
- Istituto di Matematica Applicata e Tecnologie Informatiche "E. Magenes" - Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Primo Attinà
- Istituto Nazionale di Astrofisica - Osservatorio Astronomico di Brera, Merate, LC, Italy
| | - Andrea Bianco
- Istituto Nazionale di Astrofisica - Osservatorio Astronomico di Brera, Merate, LC, Italy
| | - Enrico Cascone
- Istituto Nazionale di Astrofisica - Osservatorio Astronomico di Capodimonte, Naples, Italy
| | | | - Fausto Cortecchia
- Istituto Nazionale di Astrofisica - Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, Bologna, Italy
| | - Vincenzo De Caprio
- Istituto Nazionale di Astrofisica - Osservatorio Astronomico di Capodimonte, Naples, Italy
| | - Emiliano Diolaiti
- Istituto Nazionale di Astrofisica - Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, Bologna, Italy
| | - Mauro Fiorini
- Istituto Nazionale di Astrofisica - Istituto di Astrofisica Spaziale e Fisica Cosmica di Milano, Milan, Italy
| | - Luigi Lessio
- Istituto Nazionale di Astrofisica - Osservatorio Astronomico di Padova, Padua, Italy
| | - Alberto Macchi
- Istituto Nazionale di Astrofisica - Osservatorio Astronomico di Brera, Merate, LC, Italy
| | - Giuseppe Malaguti
- Istituto Nazionale di Astrofisica - Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, Bologna, Italy
| | - Giuseppe Mongelluzzo
- Istituto Nazionale di Astrofisica - Osservatorio Astronomico di Capodimonte, Naples, Italy
| | - Giovanni Pareschi
- Istituto Nazionale di Astrofisica - Osservatorio Astronomico di Brera, Merate, LC, Italy
| | - Maria G Pelizzo
- Dipartimento di Ingegneria dell'Informazione, Università di Padova, Padua, Italy
| | | |
Collapse
|
4
|
Vélez Justiniano YA, Goeres DM, Sandvik EL, Kjellerup BV, Sysoeva TA, Harris JS, Warnat S, McGlennen M, Foreman CM, Yang J, Li W, Cassilly CD, Lott K, HerrNeckar LE. Mitigation and use of biofilms in space for the benefit of human space exploration. Biofilm 2023; 5:100102. [PMID: 36660363 PMCID: PMC9843197 DOI: 10.1016/j.bioflm.2022.100102] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/08/2023] Open
Abstract
Biofilms are self-organized communities of microorganisms that are encased in an extracellular polymeric matrix and often found attached to surfaces. Biofilms are widely present on Earth, often found in diverse and sometimes extreme environments. These microbial communities have been described as recalcitrant or protective when facing adversity and environmental exposures. On the International Space Station, biofilms were found in human-inhabited environments on a multitude of hardware surfaces. Moreover, studies have identified phenotypic and genetic changes in the microorganisms under microgravity conditions including changes in microbe surface colonization and pathogenicity traits. Lack of consistent research in microgravity-grown biofilms can lead to deficient understanding of altered microbial behavior in space. This could subsequently create problems in engineered systems or negatively impact human health on crewed spaceflights. It is especially relevant to long-term and remote space missions that will lack resupply and service. Conversely, biofilms are also known to benefit plant growth and are essential for human health (i.e., gut microbiome). Eventually, biofilms may be used to supply metabolic pathways that produce organic and inorganic components useful to sustaining life on celestial bodies beyond Earth. This article will explore what is currently known about biofilms in space and will identify gaps in the aerospace industry's knowledge that should be filled in order to mitigate or to leverage biofilms to the advantage of spaceflight.
Collapse
Affiliation(s)
- Yo-Ann Vélez Justiniano
- ECLSS Development Branch, NASA Marshall Space Flight Center, Huntsville, AL, USA,Corresponding author.
| | - Darla M. Goeres
- The Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA,Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA
| | | | - Birthe Veno Kjellerup
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, USA
| | - Tatyana A. Sysoeva
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, AL, USA
| | - Jacob S. Harris
- Biomedical and Environmental Science Division, NASA Johnson Space Center, Houston, TX, USA
| | - Stephan Warnat
- The Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA,Mechanical Engineering, Montana State University, Bozeman, MT, USA
| | - Matthew McGlennen
- The Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA,Mechanical Engineering, Montana State University, Bozeman, MT, USA
| | - Christine M. Foreman
- The Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA,Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA
| | - Jiseon Yang
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, USA
| | - Wenyan Li
- Laboratory Support Services and Operations (LASSO), NASA Kennedy Space Center, Cape Canaveral, FL, USA
| | | | - Katelynn Lott
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, AL, USA
| | - Lauren E. HerrNeckar
- ECLSS Development Branch, NASA Marshall Space Flight Center, Huntsville, AL, USA
| |
Collapse
|
5
|
Photosensitized Thermoplastic Nano-Photocatalysts Active in the Visible Light Range for Potential Applications Inside Extraterrestrial Facilities. NANOMATERIALS 2022; 12:nano12060996. [PMID: 35335809 PMCID: PMC8948973 DOI: 10.3390/nano12060996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023]
Abstract
Among different depollution methods, photocatalysis activated by solar light is promising for terrestrial outdoor applications. However, its use in underground structures and/or microgravity environments (e.g., extraterrestrial structures) is forbidden. In these cases, there are issues related to the energy emitted from the indoor lighting system because it is not high enough to promote the photocatalytic mechanism. Moreover, microgravity does not allow the recovery of the photocatalytic slurry from the depolluted solution. In this work, the synthesis of a filmable nanocomposite based on semiconductor nanoparticles supported by photosensitized copolyacrylates was performed through a bulk in situ radical copolymerization involving a photosensitizer macromonomer. The macromonomer and the nanocomposites were characterized through UV-Vis, fluorescence and NMR spectroscopies, gel permeation chromatography and thermogravimetric analysis. The photocatalytic activity of the sensitized nanocomposites was studied through photodegradation tests of common dyes and recalcitrant xenobiotic pollutants, employing UV-Vis and visible range (λ > 390 nm) light radiations. The sensitized nanocomposite photocatalytic performances increased about two times that of the unsensitized nanocomposite and that of visible range light radiation alone (>390 nm). The experimental data have shown that these new systems, applied as thin films, have the potential for use in indoor deep underground and extraterrestrial structures.
Collapse
|
6
|
Bacci G, Mengoni A, Emiliani G, Chiellini C, Cipriani EG, Bianconi G, Canganella F, Fani R. Defining the resilience of the human salivary microbiota by a 520-day longitudinal study in a confined environment: the Mars500 mission. MICROBIOME 2021; 9:152. [PMID: 34193273 PMCID: PMC8247138 DOI: 10.1186/s40168-021-01070-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 04/06/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The human microbiota plays several roles in health and disease but is often difficult to determine which part is in intimate relationships with the host vs. the occasional presence. During the Mars500 mission, six crewmembers lived completely isolated from the outer world for 520 days following standardized diet regimes. The mission constitutes the first spaceflight simulation to Mars and was a unique experiment to determine, in a longitudinal study design, the composition and importance of the resident vs. a more variable microbiota-the fraction of the human microbiota that changes in time and according to environmental conditions-in humans. METHODS Here, we report the characterization of the salivary microbiota from 88 samples taken during and after Mars500 mission for a total of 720 days. Amplicon sequencing of the V3-V4 regions of 16S rRNA gene was performed, and results were analyzed monitoring the diversity of the microbiota while evaluating the effect of the three main variables present in the experimental system: time, diet, and individuality of each subject. RESULTS Results showed statistically significant effects for either time, diet, and individuality of each subject. The main contribution came from the individuality of each subject, emphasizing salivary microbiota-personalized features, and an individual-based resilience of the microbiota. CONCLUSIONS The uniqueness of Mars500 mission, allowed to dampen the effect of environmental variables on salivary microbiota, highlighting its pronounced personalization even after sharing the same physical space for more than a year. Video abstract.
Collapse
Affiliation(s)
- Giovanni Bacci
- Department of Biology, University of Florence, Via Madonna del Piano 6, I-50019 Sesto Fiorentino, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florence, Via Madonna del Piano 6, I-50019 Sesto Fiorentino, Italy
| | - Giovanni Emiliani
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Italy
| | - Carolina Chiellini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy
| | - Edoardo Giovanni Cipriani
- Department of Biology, University of Florence, Via Madonna del Piano 6, I-50019 Sesto Fiorentino, Italy
| | - Giovanna Bianconi
- Department of Biological, Agricultural and Forestry Sciences, Università della Tuscia, Via San Camillo de Lellis snc, I-01100 Viterbo, Italy
| | - Francesco Canganella
- Department of Biological, Agricultural and Forestry Sciences, Università della Tuscia, Via San Camillo de Lellis snc, I-01100 Viterbo, Italy
- Embassy of Italy, 98 Hannam-daero, Hannam-dong, Yongsan-gu, Seoul, South Korea
| | - Renato Fani
- Department of Biology, University of Florence, Via Madonna del Piano 6, I-50019 Sesto Fiorentino, Italy
| |
Collapse
|
7
|
|
8
|
Zea L, McLean RJ, Rook TA, Angle G, Carter DL, Delegard A, Denvir A, Gerlach R, Gorti S, McIlwaine D, Nur M, Peyton BM, Stewart PS, Sturman P, Velez Justiniano YA. Potential biofilm control strategies for extended spaceflight missions. Biofilm 2020; 2:100026. [PMID: 33447811 PMCID: PMC7798464 DOI: 10.1016/j.bioflm.2020.100026] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 05/08/2020] [Accepted: 05/24/2020] [Indexed: 01/10/2023] Open
Abstract
Biofilms, surface-adherent microbial communities, are associated with microbial fouling and corrosion in terrestrial water-distribution systems. Biofilms are also present in human spaceflight, particularly in the Water Recovery System (WRS) on the International Space Station (ISS). The WRS is comprised of the Urine Processor Assembly (UPA) and the Water Processor Assembly (WPA) which together recycles wastewater from human urine and recovered humidity from the ISS atmosphere. These wastewaters and various process streams are continually inoculated with microorganisms primarily arising from the space crew microbiome. Biofilm-related fouling has been encountered and addressed in spacecraft in low Earth orbit, including ISS and the Russian Mir Space Station. However, planned future missions beyond low Earth orbit to the Moon and Mars present additional challenges, as resupplying spare parts or support materials would be impractical and the mission timeline would be in the order of years in the case of a mission to Mars. In addition, future missions are expected to include a period of dormancy in which the WRS would be unused for an extended duration. The concepts developed in this review arose from a workshop including NASA personnel and representatives with biofilm expertise from a wide range of industrial and academic backgrounds. Here, we address current strategies that are employed on Earth for biofilm control, including antifouling coatings and biocides and mechanisms for mitigating biofilm growth and damage. These ideas are presented in the context of their applicability to spaceflight and identify proposed new topics of biofilm control that need to be addressed in order to facilitate future extended, crewed, spaceflight missions.
Collapse
Affiliation(s)
- Luis Zea
- BioServe Space Technologies, University of Colorado, Boulder, CO, USA
| | | | | | | | | | | | | | - Robin Gerlach
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Sridhar Gorti
- NASA Marshall Spaceflight Center, Huntsville, AL, USA
| | | | - Mononita Nur
- NASA Marshall Spaceflight Center, Huntsville, AL, USA
| | - Brent M. Peyton
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Philip S. Stewart
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Paul Sturman
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | | |
Collapse
|
9
|
Antimicrobial Photoinactivation Approach Based on Natural Agents for Control of Bacteria Biofilms in Spacecraft. Int J Mol Sci 2020; 21:ijms21186932. [PMID: 32967302 PMCID: PMC7554952 DOI: 10.3390/ijms21186932] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 01/08/2023] Open
Abstract
A spacecraft is a confined system that is inhabited by a changing microbial consortium, mostly originating from life-supporting devices, equipment collected in pre-flight conditions, and crewmembers. Continuous monitoring of the spacecraft’s bioburden employing culture-based and molecular methods has shown the prevalence of various taxa, with human skin-associated microorganisms making a substantial contribution to the spacecraft microbiome. Microorganisms in spacecraft can prosper not only in planktonic growth mode but can also form more resilient biofilms that pose a higher risk to crewmembers’ health and the material integrity of the spacecraft’s equipment. Moreover, bacterial biofilms in space conditions are characterized by faster formation and acquisition of resistance to chemical and physical effects than under the same conditions on Earth, making most decontamination methods unsafe. There is currently no reported method available to combat biofilm formation in space effectively and safely. However, antibacterial photodynamic inactivation based on natural photosensitizers, which is reviewed in this work, seems to be a promising method.
Collapse
|
10
|
Paton S, Moore G, Campagnolo L, Pottage T. Antimicrobial surfaces for use on inhabited space craft: A review. LIFE SCIENCES IN SPACE RESEARCH 2020; 26:125-131. [PMID: 32718678 DOI: 10.1016/j.lssr.2020.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/28/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
Biodegradation of materials on crewed spacecraft can cause disruption, loss of function and lost crew time. Cleaning of surfaces is only partially effective due in accessibility and resource concerns. Commonly affected surfaces are hand-touch sites, waste disposal systems and liquid-handling systems, including condensing heat exchangers. The use of materials on and within such affected systems that reduce the attachment of and degradation by microbes, is an innovative solution to this problem. This review aims to examine both terrestrial and space-based experiments that have aimed to reduce microbial growth which are applicable to the unique conditions of crewed spacecraft. Traditional antimicrobial surfaces such as copper and silver, as well as nanoparticles, long-chain organic molecules and surface topographical features, as well as novel "smart" technologies are discussed. Future missions to cis-lunar and Martian destinations will depend on materials that retain their function and reliability for their success; thus, the use of antimicrobial and antifouling materials is a pivotal one.
Collapse
Affiliation(s)
- Susan Paton
- Public Health England, Porton Down, Salisbury SP4 0JG, UK.
| | - Ginny Moore
- Public Health England, Porton Down, Salisbury SP4 0JG, UK.
| | - Lucie Campagnolo
- Medes - IMPS, Institut de Médecine et de Physiologie Spatiales, BP 74404, TOULOUSE CEDEX 4 31405, France.
| | - Thomas Pottage
- Public Health England, Porton Down, Salisbury SP4 0JG, UK.
| |
Collapse
|
11
|
Current Progression: Application of High-Throughput Sequencing Technique in Space Microbiology. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4094191. [PMID: 32685480 PMCID: PMC7327617 DOI: 10.1155/2020/4094191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/01/2020] [Indexed: 11/17/2022]
Abstract
During a spaceflight, astronauts need to live in a spacecraft on orbit for a long time, and the relationship between humans and microorganisms in the closed environment of space is not the same as on the ground. The dynamic study of microorganisms in confined space shows that with the extension of the isolation time, harmful bacteria gradually accumulate. Monitoring and controlling microbial pollution in a confined environment system are very important for crew health and the sustainable operation of a space life support system. Culture-based assays have been used traditionally to assess the microbial loads in a spacecraft, and uncultured-based techniques are already under way according to the NASA global exploration roadmap. High-throughput sequencing technology has been used generally to study the communities of the environment and human on the ground and shows its broad prospects applied onboard. We here review the recent application of high-throughput sequencing on space microbiology and analyze its feasibility and potential as an on-orbit detection technology.
Collapse
|
12
|
Landry KS, Morey JM, Bharat B, Haney NM, Panesar SS. Biofilms-Impacts on Human Health and Its Relevance to Space Travel. Microorganisms 2020; 8:microorganisms8070998. [PMID: 32635371 PMCID: PMC7409192 DOI: 10.3390/microorganisms8070998] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/19/2020] [Accepted: 07/01/2020] [Indexed: 01/08/2023] Open
Abstract
As the world looks towards the stars, the impacts of endogenous and exogenous microorganisms on human health during long-duration space flight are subjects of increased interest within the space community. The presence and continued growth of bacterial biofilms about spacecraft has been documented for decades; however, the impact on crew health is in its infancy. The impacts of biofilms are well known in the medical, agricultural, commercial, and industrial spaces. It less known that biofilms are undermining many facets of space travel and that their effects need to be understood and addressed for future space missions. Biofilms can damage space crew health and spoil limited food supply. Yet, at the same time, they can benefit plant systems for food growth, nutrient development, and other biological systems that are being explored for use in space travel. Various biofilm removal techniques have been studied to mitigate the hazards posed by biofilm persistence during space travel. Because the presence of biofilms can advance or hinder humanity’s space exploration efforts, an understanding of their impacts over the duration of space flights is of paramount importance.
Collapse
Affiliation(s)
- Kyle S Landry
- Liberty Biosecurity, Expeditionary and Special Programs Division, Worcester, MA 01605, USA;
- Correspondence:
| | - Jose M Morey
- Liberty Biosecurity, Expeditionary and Special Programs Division, Worcester, MA 01605, USA;
| | - Bharat Bharat
- Department of Psychology, University of South Florida, St. Petersburg, FL 33620, USA;
| | - Nora M Haney
- Department of Urology, Johns Hopkins University, Baltimore, MD 21218, USA;
| | - Sandip S Panesar
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA;
| |
Collapse
|
13
|
Amalfitano S, Levantesi C, Copetti D, Stefani F, Locantore I, Guarnieri V, Lobascio C, Bersani F, Giacosa D, Detsis E, Rossetti S. Water and microbial monitoring technologies towards the near future space exploration. WATER RESEARCH 2020; 177:115787. [PMID: 32315899 DOI: 10.1016/j.watres.2020.115787] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Space exploration is demanding longer lasting human missions and water resupply from Earth will become increasingly unrealistic. In a near future, the spacecraft water monitoring systems will require technological advances to promptly identify and counteract contingent events of waterborne microbial contamination, posing health risks to astronauts with lowered immune responsiveness. The search for bio-analytical approaches, alternative to those applied on Earth by cultivation-dependent methods, is pushed by the compelling need to limit waste disposal and avoid microbial regrowth from analytical carryovers. Prospective technologies will be selected only if first validated in a flight-like environment, by following basic principles, advantages, and limitations beyond their current applications on Earth. Starting from the water monitoring activities applied on the International Space Station, we provide a critical overview of the nucleic acid amplification-based approaches (i.e., loop-mediated isothermal amplification, quantitative PCR, and high-throughput sequencing) and early-warning methods for total microbial load assessments (i.e., ATP-metry, flow cytometry), already used at a high readiness level aboard crewed space vehicles. Our findings suggest that the forthcoming space applications of mature technologies will be necessarily bounded by a compromise between analytical performances (e.g., speed to results, identification depth, reproducibility, multiparametricity) and detrimental technical requirements (e.g., reagent usage, waste production, operator skills, crew time). As space exploration progresses toward extended missions to Moon and Mars, miniaturized systems that also minimize crew involvement in their end-to-end operation are likely applicable on the long-term and suitable for the in-flight water and microbiological research.
Collapse
Affiliation(s)
- Stefano Amalfitano
- Water Research Institute - National Research Council of Italy (IRSA-CNR), Via Salaria Km 29,300, 00015, Monterotondo, Roma, Italy.
| | - Caterina Levantesi
- Water Research Institute - National Research Council of Italy (IRSA-CNR), Via Salaria Km 29,300, 00015, Monterotondo, Roma, Italy
| | - Diego Copetti
- Water Research Institute - National Research Council of Italy (IRSA-CNR), Via del Mulino 19, 20861, Brugherio, Monza-Brianza, Italy
| | - Fabrizio Stefani
- Water Research Institute - National Research Council of Italy (IRSA-CNR), Via del Mulino 19, 20861, Brugherio, Monza-Brianza, Italy
| | - Ilaria Locantore
- Thales Alenia Space Italia SpA, Strada Antica di Collegno, 253 - 10146, Turin, Italy
| | - Vincenzo Guarnieri
- Thales Alenia Space Italia SpA, Strada Antica di Collegno, 253 - 10146, Turin, Italy
| | - Cesare Lobascio
- Thales Alenia Space Italia SpA, Strada Antica di Collegno, 253 - 10146, Turin, Italy
| | - Francesca Bersani
- Centro Ricerche SMAT, Società Metropolitana Acque Torino S.p.A., C.so Unità d'Italia 235/3, 10127, Torino, Italy
| | - Donatella Giacosa
- Centro Ricerche SMAT, Società Metropolitana Acque Torino S.p.A., C.so Unità d'Italia 235/3, 10127, Torino, Italy
| | - Emmanouil Detsis
- European Science Foundation, 1 quai Lezay Marnésia, BP 90015, 67080, Strasbourg Cedex, France
| | - Simona Rossetti
- Water Research Institute - National Research Council of Italy (IRSA-CNR), Via Salaria Km 29,300, 00015, Monterotondo, Roma, Italy
| |
Collapse
|
14
|
Microbial community composition of water samples stored inside the International Space Station. Res Microbiol 2019; 170:230-234. [DOI: 10.1016/j.resmic.2019.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 02/26/2019] [Accepted: 04/29/2019] [Indexed: 01/07/2023]
|