1
|
Astrocytic contribution to glutamate-related central respiratory chemoreception in vertebrates. Respir Physiol Neurobiol 2021; 294:103744. [PMID: 34302992 DOI: 10.1016/j.resp.2021.103744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/01/2021] [Accepted: 07/18/2021] [Indexed: 12/24/2022]
Abstract
Central respiratory chemoreceptors play a key role in the respiratory homeostasis by sensing CO2 and H+ in brain and activating the respiratory neural network. This ability of specific brain regions to respond to acidosis and hypercapnia is based on neuronal and glial mechanisms. Several decades ago, glutamatergic transmission was proposed to be involved as a main mechanism in central chemoreception. However, a complete identification of mechanism has been elusive. At the rostral medulla, chemosensitive neurons of the retrotrapezoid nucleus (RTN) are glutamatergic and they are stimulated by ATP released by RTN astrocytes in response to hypercapnia. In addition, recent findings show that caudal medullary astrocytes in brainstem can also contribute as CO2 and H+ sensors that release D-serine and glutamate, both gliotransmitters able to activate the respiratory neural network. In this review, we describe the mammalian astrocytic glutamatergic contribution to the central respiratory chemoreception trying to trace in vertebrates the emergence of several components involved in this process.
Collapse
|
2
|
Janes TA, Rousseau JP, Fournier S, Kiernan EA, Harris MB, Taylor BE, Kinkead R. Development of central respiratory control in anurans: The role of neurochemicals in the emergence of air-breathing and the hypoxic response. Respir Physiol Neurobiol 2019; 270:103266. [PMID: 31408738 PMCID: PMC7476778 DOI: 10.1016/j.resp.2019.103266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/10/2019] [Accepted: 08/05/2019] [Indexed: 01/08/2023]
Abstract
Physiological and environmental factors impacting respiratory homeostasis vary throughout the course of an animal's lifespan from embryo to adult and can shape respiratory development. The developmental emergence of complex neural networks for aerial breathing dates back to ancestral vertebrates, and represents the most important process for respiratory development in extant taxa ranging from fish to mammals. While substantial progress has been made towards elucidating the anatomical and physiological underpinnings of functional respiratory control networks for air-breathing, much less is known about the mechanisms establishing these networks during early neurodevelopment. This is especially true of the complex neurochemical ensembles key to the development of air-breathing. One approach to this issue has been to utilize comparative models such as anuran amphibians, which offer a unique perspective into early neurodevelopment. Here, we review the developmental emergence of respiratory behaviours in anuran amphibians with emphasis on contributions of neurochemicals to this process and highlight opportunities for future research.
Collapse
Affiliation(s)
- Tara A Janes
- Department of Pediatrics, Université Laval & Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| | - Jean-Philippe Rousseau
- Department of Pediatrics, Université Laval & Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| | - Stéphanie Fournier
- Department of Pediatrics, Université Laval & Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| | - Elizabeth A Kiernan
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison Wisconsin, USA
| | - Michael B Harris
- Department of Biological Sciences, California State University Long Beach, California, USA
| | - Barbara E Taylor
- Department of Biological Sciences, California State University Long Beach, California, USA
| | - Richard Kinkead
- Department of Pediatrics, Université Laval & Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada.
| |
Collapse
|
3
|
The neural control of respiration in lampreys. Respir Physiol Neurobiol 2016; 234:14-25. [PMID: 27562521 DOI: 10.1016/j.resp.2016.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 08/08/2016] [Accepted: 08/21/2016] [Indexed: 11/24/2022]
Abstract
This review focuses on past and recent findings that have contributed to characterize the neural networks controlling respiration in the lamprey, a basal vertebrate. As in other vertebrates, respiration in lampreys is generated centrally in the brainstem. It is characterized by the presence of a fast and a slow respiratory rhythm. The anatomical and the basic physiological properties of the neural networks underlying the generation of the fast rhythm have been more thoroughly investigated; less is known about the generation of the slow respiratory rhythm. Comparative aspects with respiratory generators in other vertebrates as well as the mechanisms of modulation of respiration in association with locomotion are discussed.
Collapse
|
4
|
Santin J, Hartzler L. Respiratory signaling of locus coeruleus neurons during hypercapnic acidosis in the bullfrog, Lithobates catesbeianus. Respir Physiol Neurobiol 2013; 185:553-61. [DOI: 10.1016/j.resp.2012.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 11/02/2012] [Accepted: 11/03/2012] [Indexed: 10/27/2022]
|
5
|
Chronic hypoxia and chronic hypercapnia differentially regulate an NMDA-sensitive component of the acute hypercapnic ventilatory response in the cane toad (Rhinella marina). J Comp Physiol B 2011; 181:793-805. [DOI: 10.1007/s00360-011-0556-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 01/18/2011] [Accepted: 01/31/2011] [Indexed: 10/18/2022]
|
6
|
Fong AY, Zimmer MB, Milsom WK. The conditional nature of the “Central Rhythm Generator” and the production of episodic breathing. Respir Physiol Neurobiol 2009; 168:179-87. [DOI: 10.1016/j.resp.2009.05.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 05/20/2009] [Accepted: 05/28/2009] [Indexed: 12/01/2022]
|
7
|
Gargaglioni LH, Bícegoa KC, Branco LGS. Brain monoaminergic neurons and ventilatory control in vertebrates. Respir Physiol Neurobiol 2009; 164:112-22. [PMID: 18550453 DOI: 10.1016/j.resp.2008.04.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Revised: 04/15/2008] [Accepted: 04/23/2008] [Indexed: 10/22/2022]
Abstract
Monoamines (noradrenaline (NA), adrenaline (AD), dopamine (DA) and serotonin (5-HT) are key neurotransmitters that are implicated in multiple physiological and pathological brain mechanisms, including control of respiration. The monoaminergic system is known to be widely distributed in the animal kingdom, which indicates a considerable degree of phylogenetic conservation of this system amongst vertebrates. Substantial progress has been made in uncovering the participation of the brain monoamines in the breathing regulation of mammals, since they are involved in the maturation of the respiratory network as well as in the modulation of its intrinsic and synaptic properties. On the other hand, for the non-mammalian vertebrates, most of the knowledge of central monoaminergic modulation in respiratory control, which is actually very little, has emerged from studies using anuran amphibians. This article reviews the available data on the role of brain monoaminergic systems in the control of ventilation in terrestrial vertebrates. Emphasis is given to the comparative aspects of the brain noradrenergic, adrenergic, dopaminergic and serotonergic neuronal groups in breathing regulation, after first briefly considering the distribution of monoaminergic neurons in the vertebrate brain.
Collapse
Affiliation(s)
- Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, State University of Sao Paulo, FCAV at Jaboticabal, SP, Brazil.
| | | | | |
Collapse
|
8
|
Fournier S, Kinkead R. Role of pontine neurons in central O(2) chemoreflex during development in bullfrogs (Lithobates catesbeiana). Neuroscience 2008; 155:983-96. [PMID: 18590803 DOI: 10.1016/j.neuroscience.2008.05.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 05/20/2008] [Accepted: 05/26/2008] [Indexed: 11/25/2022]
Abstract
The present study used an in vitro brainstem preparation from pre-metamorphic tadpoles and adult bullfrogs (Lithobates catesbeiana) to understand the neural mechanisms associated with central O(2) chemosensitivity and its maturation. In this species, brainstem hypoxia increases fictive lung ventilation in tadpoles but decreases in adults. Previous studies have shown that alpha(1)-adrenoceptor inactivation prevents these responses, suggesting that noradrenergic neurons are involved. We first tested the hypothesis that the pons (which includes noradrenergic neurons from the locus coeruleus; LC) plays a role in the lung burst frequency response to central hypoxia by comparing the effects of brainstem transection at the LC level between pre-metamorphic tadpoles and adults. Data show that brainstem transection prevents the lung burst frequency response in both stage groups. During development, the progressive decrease in the Na(+)/K(+)/Cl(-) co-transporter NKCC1 contributes to the maturation of neural networks. Because NKCC1 becomes activated during hypoxia, we then tested the hypothesis that NKCC1 contributes to maturation of the central O(2) chemoreflex. Double labeling experiments showed that the proportion of tyrosine hydroxylase positive neurons expressing NKCC1 in the LC decreases during development. Inactivation of NKCC1 with bumetanide bath application reversed the lung burst response to hypoxia in tadpoles. Bumetanide inhibited the response in adults. These data indicate that a structure within the pons (potentially the LC) is necessary to the central hypoxic chemoreflex and demonstrate that NKCC1 plays a role in central O(2) chemosensitivity and its maturation in this species.
Collapse
Affiliation(s)
- S Fournier
- Department of Pediatrics, Université Laval, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec City, QC, Canada
| | | |
Collapse
|
9
|
McAneney J, Reid SG. Chronic hypoxia attenuates central respiratory-related pH/CO2 chemosensitivity in the cane toad. Respir Physiol Neurobiol 2007; 156:266-75. [PMID: 17140861 DOI: 10.1016/j.resp.2006.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Revised: 10/18/2006] [Accepted: 10/19/2006] [Indexed: 11/22/2022]
Abstract
This study examined the effects of chronic hypoxia (CH) and mid-brain transection on central respiratory-related pH/CO(2) chemosensitivity in cane toads (Bufo marinus). Toads were exposed to 10 days of CH (10% O(2)) following which in vitro brainstem-spinal cord preparations, with the mid-brain attached, were used to examine central pH/CO(2) chemosensitivity. A reduction in artificial cerebral spinal fluid (aCSF) pH increased fictive breathing frequency (fR) and total fictive ventilation. CH reduced fictive fR and total fictive ventilation, compared to controls. Mid-brain transection caused an increase in fictive fR, at the lower aCSF pH levels, in both control and CH preparations. In the CH preparations, mid-brain transection restored fictive breathing to control levels. In both groups, mid-brain transection eliminated fictive breath clustering. The data indicate that CH attenuates central pH/CO(2)-sensitive fictive breathing but a mid-brain transection in the middle of the optic lobes abolishes this attenuation. The results suggest that CH induces inhibition of central pH/CO(2) chemoreceptor function via descending inputs from the mid-brain region.
Collapse
Affiliation(s)
- Jessica McAneney
- Centre for the Neurobiology of Stress, Department of Life Sciences, University of Toronto at Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4 Canada
| | | |
Collapse
|
10
|
Chatonnet F, Borday C, Wrobel L, Thoby-Brisson M, Fortin G, McLean H, Champagnat J. Ontogeny of central rhythm generation in chicks and rodents. Respir Physiol Neurobiol 2006; 154:37-46. [PMID: 16533622 DOI: 10.1016/j.resp.2006.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Revised: 01/31/2006] [Accepted: 02/01/2006] [Indexed: 10/24/2022]
Abstract
Recent studies help in understanding how the basic organization of brainstem neuronal circuits along the anterior-posterior (AP) axis is set by the Hox-dependent segmentation of the neural tube in vertebrate embryos. Neonatal respiratory abnormalities in Krox20(-/-), Hoxa1(-/-) and kreisler mutant mice indicate the vital role of a para-facial (Krox20-dependent, rhombomere 4-derived) respiratory group, that is distinct from the more caudal rhythm generator called Pre-Bötzinger complex. Embryological studies in the chick suggest homology and conservation of this Krox20-dependent induction of parafacial rhythms in birds and mammals. Calcium imaging in embryo indicate that rhythm generators may derive from different cell lineages within rhombomeres. In mice, the Pre-Bötzinger complex is found to be distinct from oscillators producing the earliest neuronal activity, a primordial low-frequency rhythm. In contrast, in chicks, maturation of the parafacial generator is tightly linked to the evolution of this primordial rhythm. It seems therefore that ontogeny of brainstem rhythm generation involves conserved processes specifying distinct AP domains in the neural tube, followed by diverse, lineage-specific regulations allowing the emergence of organized rhythm generators at a given AP level.
Collapse
Affiliation(s)
- F Chatonnet
- UPR 2216, Neurobiologie Génétique et Integrative, Institut fédératif de Neurobiologie Alfred Fessard, C.N.R.S. 1, Avenue de la terrasse, Gif sur Yvette, 91198 Cedex, France
| | | | | | | | | | | | | |
Collapse
|
11
|
Gargaglioni LH, Milsom WK. Control of breathing in anuran amphibians. Comp Biochem Physiol A Mol Integr Physiol 2006; 147:665-684. [PMID: 16949847 DOI: 10.1016/j.cbpa.2006.06.040] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Revised: 06/21/2006] [Accepted: 06/24/2006] [Indexed: 11/27/2022]
Abstract
The primary role of the respiratory system is to ensure adequate tissue oxygenation, eliminate carbon dioxide and help to regulate acid-base status. To maintain this homeostasis, amphibians possess an array of receptors located at peripheral and central chemoreceptive sites that sense respiration-related variables in both internal and external environments. As in mammals, input from these receptors is integrated at central rhythmogenic and pattern-forming elements in the medulla in a manner that meets the demands determined by the environment within the constraints of the behavior and breathing pattern of the animal. Also as in mammals, while outputs from areas in the midbrain may modulate respiration directly, they do not play a significant role in the production of the normal respiratory rhythm. However, despite these similarities, the breathing patterns of the two classes are different: mammals maintain homeostasis of arterial blood gases through rhythmic and continuous breathing, whereas amphibians display an intermittent pattern of aerial respiration. While the latter is also often rhythmic, it allows a degree of fluctuation in key respiratory variables that has led some to suggest that control is not as tight in these animals. In this review we will focus specifically on recent advances in studies of the control of ventilation in anuran amphibians. This is the group of amphibians that has attracted the most recent attention from respiratory physiologists.
Collapse
Affiliation(s)
- Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, Sao Paulo State University-FCAV at Jaboticabal, SP, Brazil.
| | - William K Milsom
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
12
|
Wilson RJA, Vasilakos K, Remmers JE. Phylogeny of vertebrate respiratory rhythm generators: the Oscillator Homology Hypothesis. Respir Physiol Neurobiol 2006; 154:47-60. [PMID: 16750658 DOI: 10.1016/j.resp.2006.04.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 04/11/2006] [Accepted: 04/11/2006] [Indexed: 11/30/2022]
Abstract
A revolution is underway in our understanding of respiratory rhythm generation in mammals. Until recently, a major focus of research within the field has centered around the question of locating and elucidating the mechanism of rhythmogenesis of a single respiratory neuronal oscillator which is reiterated bilaterally within the brainstem. Now it appears that each hemisection may contain at least two oscillators that interact to generate the respiratory rhythm in mammals. Comparative studies have hinted at the existence of multiple respiratory oscillators in non-mammalian vertebrates for some time, raising the possibility of homologous oscillators. Here, we consider available tools to identify neuronal oscillators and critically review the evidence for the importance and existence of multiple respiratory oscillators in vertebrates. First focusing on a comparison between frogs and mammals, we then evaluate the hypothesis that ventilatory oscillators in extant tetrapods evolved from ancestral oscillators present in fish (the Oscillator Homology Hypothesis). While supporting data are incomplete, the Oscillator Homology Hypothesis will likely serve as a useful framework to motivate further studies of respiratory rhythm generation in lower vertebrates.
Collapse
Affiliation(s)
- Richard J A Wilson
- Department of Physiology and Biophysics, University of Calgary, Calgary, Alta., Canada.
| | | | | |
Collapse
|
13
|
Uğar-Cankal D, Ozmeric N. A multifaceted molecule, nitric oxide in oral and periodontal diseases. Clin Chim Acta 2006; 366:90-100. [PMID: 16387291 DOI: 10.1016/j.cca.2005.10.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Revised: 10/19/2005] [Accepted: 10/20/2005] [Indexed: 11/28/2022]
Abstract
Nitric oxide (NO) is a molecule with multiple effects on different tissues. NO takes important roles in vasodilatation, bacterial challenge and cytokine stimulation, regulation of mineralized tissue function, neurotransmission, and platelet aggregation, etc. However, under pathological conditions, NO has damaging effects. NO is synthesized by NO synthases (NOS) and inducible isoform of NOS (iNOS) is closely related to the pathophysiological characteristics of inflammatory diseases such as periodontal diseases. The expression of iNOS has been investigated in salivary gland-related diseases, temporomandibular joint disorders and oral cancer as well. The beneficial and damaging effects of NO in diseases related with periodontal, dental and maxillofacial area are discussed in this review. The biological pathways involved with NO and NO inhibitors may be good drug targets to have a role in the future management of patients with diseases in orofacial region.
Collapse
Affiliation(s)
- Dilek Uğar-Cankal
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Gazi University, Biskek caddesi 84.sokak 06510 Emek, Ankara, Turkey.
| | | |
Collapse
|
14
|
Gheshmy A, Vukelich R, Noronha A, Reid SG. Chronic hypercapnia modulates respiratory-related central pH/CO2 chemoreception in an amphibian,Bufo marinus. J Exp Biol 2006; 209:1135-46. [PMID: 16513940 DOI: 10.1242/jeb.02106] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYAnuran amphibians have multiple populations of pH/CO2-sensitive respiratory-related chemoreceptors. This study examined in cane toads(Bufo marinus) whether chronic hypercapnia (CHC) altered the pH/CO2 sensitivity of central respiratory-related chemoreceptors in vitro and whether CHC altered the acute hypercapnic ventilatory response (HCVR; 5% CO2) in vivo. Toads were exposed to CHC(3.5% CO2) for 9 days. In vitro brainstem–spinal cord preparations were used to examine central respiratory-related pH/CO2 chemosensitivity. CHC augmented in vitro fictive breathing as the pH of the superfusate was lowered from 8.2 to 7.4. Midbrain transection in vitro (at a level known to reduce the clustering of breaths) did not alter this augmentation. In vivo, CHC did not alter the acute HCVR but midbrain transection changed the breathing pattern and increased the overall level of ventilation. CHC did not alter the effect of olfactory CO2 chemoreceptor denervation on the acute HCVR in vivo but did alter the response when returned to normal air. The results indicate that CHC increases the response of central pH/CO2chemoreceptors to changes in cerebrospinal fluid pH in vitro yet this increase is not manifest as an increase in the HCVR in vivo.
Collapse
Affiliation(s)
- Afshan Gheshmy
- The Centre for the Neurobiology of Stress, Department of Life Sciences, University of Toronto at Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | | | | | | |
Collapse
|
15
|
Reid SG. Chemoreceptor and pulmonary stretch receptor interactions within amphibian respiratory control systems. Respir Physiol Neurobiol 2006; 154:153-64. [PMID: 16504604 DOI: 10.1016/j.resp.2006.01.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Revised: 01/24/2006] [Accepted: 01/27/2006] [Indexed: 10/25/2022]
Abstract
The hypercapnic drive to breathe in amphibians is generally greater than hypoxic ventilatory drive and a variety of interdependent control systems function to regulate both the hypoxic and hypercapnic ventilatory responses. During exposure to hypercapnic conditions, breathing increases in response to input from central chemoreceptors (sensitive to CSF pH/CO(2) levels) and peripheral chemoreceptors (sensitive to arterial blood O(2) and CO(2)). On the other hand, olfactory CO(2) receptors in the nasal epithelium inhibit breathing during exposure to acute hypercapnia. Further complexity arises from the CO(2)-sensitive nature of the pulmonary stretch receptors (PSR) which provide both tonic (stimulates lung inflation at low lung volumes; deflation at higher volumes) and phasic (generally excitatory) feedback. This review focuses on interactions between the various populations of chemoreceptors and interactions between chemoreceptors and PSR. Differences between various levels of experimental reduction (i.e., in vitro; in situ; in vivo) are highlighted as are the effects of chronic respiratory challenges on acute hypoxic and hypercapnic chemoreflexes.
Collapse
Affiliation(s)
- Stephen G Reid
- Centre for the Neurobiology of Stress, Department of Life Sciences, University of Toronto at Scarborough, 1265 Military Trail, Toronto, Ont., Canada.
| |
Collapse
|
16
|
Milsom WK, Chatburn J, Zimmer MB. Pontine influences on respiratory control in ectothermic and heterothermic vertebrates. Respir Physiol Neurobiol 2004; 143:263-80. [PMID: 15519560 DOI: 10.1016/j.resp.2004.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2004] [Indexed: 11/24/2022]
Abstract
Respiratory rhythm generators appear both evolutionarily and developmentally as paired segmental rhythm generators in the reticular formation, associated with the motor nuclei of cranial nerves V, VII, IX, X, and XII. Those associated with the Vth and VIIth motor nuclei are "pontine" in origin and in fishes that employ a buccal suction/force pump for breathing the primary pair of respiratory rhythm generators are associated with the trigeminal nuclei. In amphibians, while the basic respiratory pump remains the same, the dominant site of respiratory rhythm generation has been assumed by the facial, glossopharyngeal and vagal motor nuclei. In reptiles, birds and mammals, in general there is a switch to an aspiration pump driven by thoraco-lumbar muscles innervated by spinal nerves. In these groups, the critical sites necessary for respiratory rhythmogenesis now sit near the ponto-medullary border, in the parafacial region (which may underlie expiratory-dominated, intercostal-abdominal breathing in non-mammalian tetrapods) and in a more caudal region, the preBotzinger complex (which may underlie inspiratory-dominated diaphragmatic breathing in mammals).
Collapse
Affiliation(s)
- William K Milsom
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4.
| | | | | |
Collapse
|