1
|
Chang Y, Lusk S, Chang A, Ward CS, Ray RS. Vglut2-based glutamatergic signaling in central noradrenergic neurons is dispensable for normal breathing and chemosensory reflexes. eLife 2024; 12:RP88673. [PMID: 39287624 PMCID: PMC11407767 DOI: 10.7554/elife.88673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Central noradrenergic (NA) neurons are key constituents of the respiratory homeostatic network. NA dysfunction is implicated in several developmental respiratory disorders including Congenital Central Hyperventilation Syndrome (CCHS), Sudden Infant Death Syndrome (SIDS), and Rett Syndrome. The current unchallenged paradigm in the field, supported by multiple studies, is that glutamate co-transmission in subsets of central NA neurons plays a role in breathing control. If true, NA-glutamate co-transmission may also be mechanistically important in respiratory disorders. However, the requirement of NA-derived glutamate in breathing has not been directly tested and the extent of glutamate co-transmission in the central NA system remains uncharacterized. Therefore, we fully characterized the cumulative fate maps and acute adult expression patterns of all three vesicular glutamate transporters (Slc17a7 (Vglut1), Slc17a6 (Vglut2), and Slc17a8 (Vglut3)) in NA neurons, identifying a novel, dynamic expression pattern for Vglut2 and an undescribed co-expression domain for Vglut3 in the NA system. In contrast to our initial hypothesis that NA-derived glutamate is required to breathing, our functional studies showed that loss of Vglut2 throughout the NA system failed to alter breathing or metabolism under room air, hypercapnia, or hypoxia in unrestrained and unanesthetized mice. These data demonstrate that Vglut2-based glutamatergic signaling within the central NA system is not required for normal baseline breathing and hypercapnic, hypoxic chemosensory reflexes. These outcomes challenge the current understanding of central NA neurons in the control of breathing and suggests that glutamate may not be a critical target to understand NA neuron dysfunction in respiratory diseases.
Collapse
Affiliation(s)
- Yuan Chang
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Department of Integrative Physiology, Baylor College of MedicineHoustonUnited States
| | - Savannah Lusk
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| | - Andersen Chang
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| | - Christopher S Ward
- Department of Integrative Physiology, Baylor College of MedicineHoustonUnited States
| | - Russell S Ray
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Department of Integrative Physiology, Baylor College of MedicineHoustonUnited States
- McNair Medical InstituteHoustonUnited States
| |
Collapse
|
2
|
Bassi M, Bilel S, Tirri M, Corli G, Di Rosa F, Gregori A, Alkilany AM, Rachid O, Roda E, De Luca F, Papa P, Buscaglia E, Zauli G, Locatelli CA, Marti M. The synthetic cathinones MDPHP and MDPV: Comparison of the acute effects in mice, in silico ADMET profiles and clinical reports. Neurotoxicology 2024; 103:230-255. [PMID: 38955288 DOI: 10.1016/j.neuro.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/17/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
The 3,4-methylenedioxy-alpha-pyrrolidinohexanophenone (MDPHP) is a synthetic cathinone closely related to 3,4-methylenedioxypyrovalerone (MDPV), one of the most common synthetic cathinones present in the "bath salts". MDPHP has recently gained attention due to increasing seizures and involvement in human intoxications which occurred in Europe and Italy in the last years, but currently there is a lack of information about its pharmaco-toxicological effects. With the aim at filling this gap, the present study is endeavoured to (i) evaluate the effects of acute administration of MDPHP (0.01-20 mg/kg; i.p.) on behaviour, cardiorespiratory and cardiovascular parameters in CD-1 male mice, comparing them to those observed after administration of MDPV; (ii) predict the ADMET profile of the two analogues using the Plus ADMET Predictor®; (iii) present clinical data related to MDPHP and MDPV-induced intoxications recorded between 2011 and 2023 by the Pavia Poison Control Centre (PCC) - National Toxicology Information Centre (Istituti Clinici Scientifici Maugeri, IRCCS Pavia, Italy). Our results substantiated that MDPHP and MDPV similarly affect sensorimotor and behavioural responses in mice, importantly increased locomotion and induced aggressive behaviour, and, at higher dosage, increased heart rate and blood pressure. These findings are in line with those observed in humans, revealing severe toxidromes typically characterized by Central Nervous System (CNS) alterations (behavioural/neuropsychiatric symptoms), including psychomotor agitation and aggressiveness, cardiovascular and respiratory disorders (e.g. tachycardia, hypertension, dyspnoea), and other peripheral symptoms (e.g. hyperthermia, acidosis, rhabdomyolysis).
Collapse
Affiliation(s)
- Marta Bassi
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Sabrine Bilel
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Micaela Tirri
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Giorgia Corli
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Fabiana Di Rosa
- Department of Scientific Investigation (RIS), Carabinieri, Rome 00191, Italy
| | - Adolfo Gregori
- Department of Scientific Investigation (RIS), Carabinieri, Rome 00191, Italy
| | - Alaaldin M Alkilany
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Qatar
| | - Ousama Rachid
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Qatar
| | - Elisa Roda
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Fabrizio De Luca
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia 27100, Italy
| | - Pietro Papa
- Laboratory of Analytical Toxicology-Clinical Chemistry, IRCCS Fondazione Policlinico S. Matteo, Pavia, Italy
| | - Eleonora Buscaglia
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh, Saudi Arabia
| | - Carlo Alessandro Locatelli
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy; Department of Anti-Drug Policies, Collaborative Center for the Italian National Early Warning System, Presidency of the Council of Ministers, Ferrara, Italy.
| |
Collapse
|
3
|
Viemari JC. Isoproterenol modulates expiratory activities in the brainstem spinal cord preparation in neonatal mice in vitro. Respir Physiol Neurobiol 2024; 324:104241. [PMID: 38417565 DOI: 10.1016/j.resp.2024.104241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/12/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
Motor behaviors such as breathing required temporal coordination of different muscle groups to insured efficient ventilation and provide oxygen to the body. This action is the result of interactions between neural networks located within the brainstem. Inspiration and expiration depend at least in part on interactions between two separate oscillators: inspiration is driven by a neural network located in the preBötzinger complex (PreBötC) and active expiration is driven by a network in the parafacial respiratory group (pFRG). Neurons of the pFRG are silent at rest and become active when the respiratory drive increased. This study investigated the temporal coordination between the brainstem respiratory network and the lumbar spinal network that generates spontaneous activities that is different of the induced fictive locomotion. The remaining question is how these activities coordinate early during the development. Results of this study show that brainstem networks contribute to the temporal coordination of the lumbar spontaneous activity during inspiration since lumbar motor activity occurs exclusively during the expiratory time. This study also investigated the role of the β-noradrenergic modulation on the respiratory activities. β-noradrenergic receptors activation increased the frequency of the double bursts and increased expiratory activity at the lumbar level. These results suggest interactions between brainstem and spinal networks and reveal a descending drive that may contribute to the coordination of the respiratory and lumbar spontaneous activities.
Collapse
Affiliation(s)
- Jean-Charles Viemari
- Aix-Marseille Univ, Inserm, MMG, Marseille, France; Aix-Marseille Univ, CNRS, INT, Marseille, France.
| |
Collapse
|
4
|
Chang Y, Lusk S, Chang A, Ward CS, Ray RS. Vglut2-based glutamatergic signaling in central noradrenergic neurons is dispensable for normal breathing and chemosensory reflexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.16.535729. [PMID: 37090585 PMCID: PMC10120737 DOI: 10.1101/2023.04.16.535729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Central noradrenergic (NA) neurons are key constituents of the respiratory homeostatic network. NA dysfunction is implicated in several developmental respiratory disorders including Congenital Central Hyperventilation Syndrome (CCHS), Sudden Infant Death Syndrome (SIDS) and Rett Syndrome. The current unchallenged paradigm in the field, supported by multiple studies, is that glutamate co-transmission in subsets of central NA neurons plays a role in breathing control. If true, NA-glutamate co-transmission may also be mechanistically important in respiratory disorders. However, the requirement of NA-derived glutamate in breathing has not been directly tested and the extent of glutamate co-transmission in the central NA system remains uncharacterized. Therefore, we fully characterized the cumulative fate maps and acute adult expression patterns of all three Vesicular Glutamate Transporters ( Slc17a7 (Vglut1), Slc17a6 (Vglut2), and Slc17a8 (Vglut3)) in NA neurons, identifying a novel, dynamic expression pattern for Vglut2 and an undescribed co-expression domain for Vglut3 in the NA system. In contrast to our initial hypothesis that NA derived glutamate is required to breathing, our functional studies showed that loss of Vglut2 throughout the NA system failed to alter breathing or metabolism under room air, hypercapnia, or hypoxia in unrestrained and unanesthetized mice. These data demonstrate that Vglut2-based glutamatergic signaling within the central NA system is not required for normal baseline breathing and hypercapnic, hypoxic chemosensory reflexes. These outcomes challenge the current understanding of central NA neurons in the control of breathing and suggests that glutamate may not be a critical target to understand NA neuron dysfunction in respiratory diseases.
Collapse
|
5
|
Rocha I, González-García M, Carrillo-Franco L, Dawid-Milner MS, López-González MV. Influence of Brainstem's Area A5 on Sympathetic Outflow and Cardiorespiratory Dynamics. BIOLOGY 2024; 13:161. [PMID: 38534431 DOI: 10.3390/biology13030161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024]
Abstract
Area A5 is a noradrenergic cell group in the brain stem characterised by its important role in triggering sympathetic activity, exerting a profound influence on the sympathetic outflow, which is instrumental in the modulation of cardiovascular functions, stress responses and various other physiological processes that are crucial for adaptation and survival mechanisms. Understanding the role of area A5, therefore, not only provides insights into the basic functioning of the sympathetic nervous system but also sheds light on the neuronal basis of a number of autonomic responses. In this review, we look deeper into the specifics of area A5, exploring its anatomical connections, its neurochemical properties and the mechanisms by which it influences sympathetic nervous system activity and cardiorespiratory regulation and, thus, contributes to the overall dynamics of the autonomic function in regulating body homeostasis.
Collapse
Affiliation(s)
- Isabel Rocha
- Lisbon School of Medicine and CCUL@Rise, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Marta González-García
- Department of Human Physiology, Faculty of Medicine, University of Malaga, 29590 Malaga, Spain
- Unit of Neurophysiology of the Autonomic Nervous System (CIMES), University of Malaga, 29590 Malaga, Spain
- Biomedical Research Institute of Malaga (IBIMA), 29590 Malaga, Spain
| | - Laura Carrillo-Franco
- Department of Human Physiology, Faculty of Medicine, University of Malaga, 29590 Malaga, Spain
- Biomedical Research Institute of Malaga (IBIMA), 29590 Malaga, Spain
| | - Marc Stefan Dawid-Milner
- Department of Human Physiology, Faculty of Medicine, University of Malaga, 29590 Malaga, Spain
- Unit of Neurophysiology of the Autonomic Nervous System (CIMES), University of Malaga, 29590 Malaga, Spain
- Biomedical Research Institute of Malaga (IBIMA), 29590 Malaga, Spain
| | - Manuel Victor López-González
- Department of Human Physiology, Faculty of Medicine, University of Malaga, 29590 Malaga, Spain
- Unit of Neurophysiology of the Autonomic Nervous System (CIMES), University of Malaga, 29590 Malaga, Spain
- Biomedical Research Institute of Malaga (IBIMA), 29590 Malaga, Spain
| |
Collapse
|
6
|
Tacke C, Bischoff AM, Harb A, Vafadari B, Hülsmann S. Fiber optical imaging of astroglial calcium signaling in the respiratory network in the working heart brainstem preparation. Front Physiol 2023; 14:1237376. [PMID: 37693007 PMCID: PMC10484401 DOI: 10.3389/fphys.2023.1237376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
The neuronal activity in the respiratory network strongly depends on a variety of different neuromodulators. Given the essential role of astrocytes in stabilizing respiratory network activity generated by neurons in the preBötzinger complex (preBötC), our aim was to investigate astrocytic calcium signaling in the working heart brainstem preparation using fiber-optical imaging. By using transgenic mice that express GCaMP6s specifically in astrocytes, we successfully recorded astrocytic calcium signals in response to norepinephrine from individual astrocytes.
Collapse
Affiliation(s)
| | | | | | | | - Swen Hülsmann
- Department of Anesthesiology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
7
|
Lusk SJ, McKinney A, Hunt PJ, Fahey PG, Patel J, Chang A, Sun JJ, Martinez VK, Zhu PJ, Egbert JR, Allen G, Jiang X, Arenkiel BR, Tolias AS, Costa-Mattioli M, Ray RS. A CRISPR toolbox for generating intersectional genetic mouse models for functional, molecular, and anatomical circuit mapping. BMC Biol 2022; 20:28. [PMID: 35086530 PMCID: PMC8796356 DOI: 10.1186/s12915-022-01227-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 01/06/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The functional understanding of genetic interaction networks and cellular mechanisms governing health and disease requires the dissection, and multifaceted study, of discrete cell subtypes in developing and adult animal models. Recombinase-driven expression of transgenic effector alleles represents a significant and powerful approach to delineate cell populations for functional, molecular, and anatomical studies. In addition to single recombinase systems, the expression of two recombinases in distinct, but partially overlapping, populations allows for more defined target expression. Although the application of this method is becoming increasingly popular, its experimental implementation has been broadly restricted to manipulations of a limited set of common alleles that are often commercially produced at great expense, with costs and technical challenges associated with production of intersectional mouse lines hindering customized approaches to many researchers. Here, we present a simplified CRISPR toolkit for rapid, inexpensive, and facile intersectional allele production. RESULTS Briefly, we produced 7 intersectional mouse lines using a dual recombinase system, one mouse line with a single recombinase system, and three embryonic stem (ES) cell lines that are designed to study the way functional, molecular, and anatomical features relate to each other in building circuits that underlie physiology and behavior. As a proof-of-principle, we applied three of these lines to different neuronal populations for anatomical mapping and functional in vivo investigation of respiratory control. We also generated a mouse line with a single recombinase-responsive allele that controls the expression of the calcium sensor Twitch-2B. This mouse line was applied globally to study the effects of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) on calcium release in the ovarian follicle. CONCLUSIONS The lines presented here are representative examples of outcomes possible with the successful application of our genetic toolkit for the facile development of diverse, modifiable animal models. This toolkit will allow labs to create single or dual recombinase effector lines easily for any cell population or subpopulation of interest when paired with the appropriate Cre and FLP recombinase mouse lines or viral vectors. We have made our tools and derivative intersectional mouse and ES cell lines openly available for non-commercial use through publicly curated repositories for plasmid DNA, ES cells, and transgenic mouse lines.
Collapse
Affiliation(s)
- Savannah J Lusk
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Andrew McKinney
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Patrick J Hunt
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Paul G Fahey
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Jay Patel
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Andersen Chang
- Department of Statistics, Rice University, Houston, TX, USA
| | - Jenny J Sun
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Vena K Martinez
- Department of Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Ping Jun Zhu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Jeremy R Egbert
- Department of Cell Biology, University of Connecticut, Farmington, CT, USA
| | - Genevera Allen
- Department of Statistics, Computer Science, and Electrical and Computer Engineering, Rice University, Houston, TX, USA
- Neurological Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Xiaolong Jiang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Benjamin R Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- McNair Medical Institute, Houston, TX, USA
| | - Andreas S Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | | | - Russell S Ray
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- McNair Medical Institute, Houston, TX, USA.
| |
Collapse
|
8
|
Buchholz KJ, Burgraff NJ, Neumueller SE, Hodges MR, Pan LG, Forster HV. Physiological and neurochemical adaptations following abrupt termination of chronic hypercapnia in goats. J Appl Physiol (1985) 2021; 130:1259-1273. [PMID: 33539265 PMCID: PMC8262788 DOI: 10.1152/japplphysiol.00909.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic hypercapnia (CH) is a hallmark of respiratory diseases such as chronic obstructive pulmonary disease. In such patients, mechanical ventilation is often used to restore normal blood-gas homeostasis. However, little is known regarding physiological changes and neuroplasticity within physiological control networks after termination of CH. Utilizing our goat model of increased inspired CO2-induced CH, we determined whether termination of CH elicits time-dependent physiological and neurochemical changes within brain stem sites of physiological control. Thirty days of CH increased [Formula: see text] (+15 mmHg) and steady-state ventilation (SS V̇i; 283% of control). Within 24 h after terminating CH, SS V̇i, blood gases, arterial [H+], and most physiological measurements returned to control. However, the acute ventilatory chemoreflex (ΔV̇i/Δ[H+]) was greater than control, and measured SS V̇i exceeded ventilation predicted by arterial [H+] and ΔV̇i/Δ[H+]. Potentially contributing to these differences were increased excitatory neuromodulators serotonin and norepinephrine in the nucleus tractus solitarius, which contrasts with minimal changes observed at 24 h and 30 days of hypercapnia. Similarly, there were minimal changes found in markers of neuroinflammation and glutamate receptor-dependent neuroplasticity upon termination of CH, which were previously increased following 24 h of hypercapnia. Thus, following termination of CH: 1) ventilatory, renal, and other physiological functions rapidly return to control; 2) neuroplasticity within the ventilatory control network may contribute to the difference between measured vs. predicted ventilation and the elevation in the acute ventilatory [H+] chemoreflex; and 3) neuroplasticity is fundamentally distinct from acclimatization to CH.NEW & NOTEWORTHY In healthy adult goats, steady-state ventilation and most physiological measures return to control within 24 h after termination of chronic hypercapnia (CH). However, the acute [H+] chemoreflex is increased, and measured ventilation exceeds predicted ventilation. At 24 h of recovery, excitatory neuromodulators are above control, but other measured markers of neuroplasticity are unchanged from control. Our data suggest that CH elicits persistent physiological and neurochemical changes for up to 24 h after termination of CH.
Collapse
Affiliation(s)
- Kirstyn J. Buchholz
- 1Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Nicholas J. Burgraff
- 5Center for Integrated Brain Research, Seattle Children’s Research Institute, Seattle, Washington
| | | | - Matthew Robert Hodges
- 1Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin,3Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Lawrence G. Pan
- 2Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin
| | - Hubert V. Forster
- 1Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin,3Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin,4Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin
| |
Collapse
|
9
|
Di Lascio S, Benfante R, Cardani S, Fornasari D. Research Advances on Therapeutic Approaches to Congenital Central Hypoventilation Syndrome (CCHS). Front Neurosci 2021; 14:615666. [PMID: 33510615 PMCID: PMC7835644 DOI: 10.3389/fnins.2020.615666] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
Congenital central hypoventilation syndrome (CCHS) is a genetic disorder of neurodevelopment, with an autosomal dominant transmission, caused by heterozygous mutations in the PHOX2B gene. CCHS is a rare disorder characterized by hypoventilation due to the failure of autonomic control of breathing. Until now no curative treatment has been found. PHOX2B is a transcription factor that plays a crucial role in the development (and maintenance) of the autonomic nervous system, and in particular the neuronal structures involved in respiratory reflexes. The underlying pathogenetic mechanism is still unclear, although studies in vivo and in CCHS patients indicate that some neuronal structures may be damaged. Moreover, in vitro experimental data suggest that transcriptional dysregulation and protein misfolding may be key pathogenic mechanisms. This review summarizes latest researches that improved the comprehension of the molecular pathogenetic mechanisms responsible for CCHS and discusses the search for therapeutic intervention in light of the current knowledge about PHOX2B function.
Collapse
Affiliation(s)
- Simona Di Lascio
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy
| | - Roberta Benfante
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy.,CNR-Institute of Neuroscience, Milan, Italy.,NeuroMi-Milan Center for Neuroscience, University of Milano Bicocca, Milan, Italy
| | - Silvia Cardani
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy
| | - Diego Fornasari
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy.,CNR-Institute of Neuroscience, Milan, Italy
| |
Collapse
|
10
|
De-Giorgio F, Bilel S, Tirri M, Arfè R, Trapella C, Camuto C, Foti F, Frisoni P, Neri M, Botrè F, Marti M. Methiopropamine and its acute behavioral effects in mice: is there a gray zone in new psychoactive substances users? Int J Legal Med 2020; 134:1695-1711. [DOI: 10.1007/s00414-020-02302-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/14/2020] [Indexed: 12/18/2022]
|
11
|
Patrone LGA, Capalbo AC, Marques DA, Bícego KC, Gargaglioni LH. An age- and sex-dependent role of catecholaminergic neurons in the control of breathing and hypoxic chemoreflex during postnatal development. Brain Res 2019; 1726:146508. [PMID: 31606412 DOI: 10.1016/j.brainres.2019.146508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/23/2019] [Accepted: 10/09/2019] [Indexed: 12/27/2022]
Abstract
The respiratory system undergoes significant development during the postnatal phase. Maturation of brainstem catecholaminergic (CA) neurons is important for the control and modulation of respiratory rhythmogenesis, as well as for chemoreception in early life. We demonstrated an inhibitory role for CA neurons in CO2 chemosensitivity in neonatal and juvenile male and female rats, but information regarding their role in the hypoxic ventilatory response (HVR) is lacking. We evaluated the contribution of brainstem CA neurons in the HVR during postnatal (P) development (P7-8, P14-15 and P20-21) in male and female rats through chemical injury with conjugated saporin anti-dopamine beta-hydroxylase (DβH-SAP, 420 ng·μL-1) injected in the fourth ventricle. Ventilation (V̇E) and oxygen consumption were recorded one week after the lesion in unanesthetized rats during exposure to normoxia and hypoxia. Hypoxia reduced breathing variability in P7-8 control rats of both sexes. At P7-8, the HVR for lesioned males and females increased 27% and 24%, respectively. Additionally, the lesion reduced the normoxic breathing variability in both sexes at P7-8, but hypoxia partially reverted this effect. For P14-15, the increase in V̇E during hypoxia was 30% higher for male and 24% higher for female lesioned animals. A sex-specific difference was detected at P20-21, as lesioned males exhibited a 24% decrease in the HVR, while lesioned females experienced a 22% increase. Furthermore, the hypoxia-induced body temperature reduction was attenuated in P20-21 lesioned females. We conclude that brainstem CA neurons modulate the HRV during the postnatal phase, and possibly thermoregulation during hypoxia.
Collapse
Affiliation(s)
- Luis Gustavo A Patrone
- Department of Animal Morphology and Physiology, Sao Paulo State University, UNESP/FCAV, Jaboticabal, SP, Brazil
| | - Aretuza C Capalbo
- Department of Animal Morphology and Physiology, Sao Paulo State University, UNESP/FCAV, Jaboticabal, SP, Brazil
| | - Danuzia A Marques
- Department of Animal Morphology and Physiology, Sao Paulo State University, UNESP/FCAV, Jaboticabal, SP, Brazil
| | - Kênia C Bícego
- Department of Animal Morphology and Physiology, Sao Paulo State University, UNESP/FCAV, Jaboticabal, SP, Brazil
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, Sao Paulo State University, UNESP/FCAV, Jaboticabal, SP, Brazil.
| |
Collapse
|
12
|
Martinez VK, Saldana-Morales F, Sun JJ, Zhu PJ, Costa-Mattioli M, Ray RS. Off-Target Effects of Clozapine-N-Oxide on the Chemosensory Reflex Are Masked by High Stress Levels. Front Physiol 2019; 10:521. [PMID: 31178741 PMCID: PMC6538678 DOI: 10.3389/fphys.2019.00521] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/11/2019] [Indexed: 12/28/2022] Open
Abstract
Respiratory chemosensory circuits are implicated in several physiological and behavioral disorders ranging from sudden infant death syndrome to panic disorder. Thus, a comprehensive map of the chemosensory network would be of significant value. To delineate chemosensory neuronal populations, we have utilized pharmacogenetic Designer Receptors Exclusively Activated by Designer Drugs (DREADD) perturbations for acute neuronal perturbations in respiratory circuit mapping. Recent studies show that the biologically inert DREADD ligand clozapine-N-oxide (CNO) is back-metabolized into the bioactive compound clozapine in rodents, emphasizing the need for CNO-only DREADD-free controls, which have been carried out in several studies. However, we show that high CNO doses used in several chemosensory circuit mapping studies nonetheless affect the chemosensory ventilatory reflexes in control mice, which is unmasked by extensive habituation. Here, unhabituated control animals showed no differences in respiratory parameters after CNO administration, whereas habituated animals receiving the commonly used dose of 10 mg/kg of CNO show a deficit in the hypercapnic (high CO2) chemosensory reflex, which is not present in 1 mg/kg CNO treated or saline control groups. Our findings indicate that even in appropriately controlled studies, additional masked CNO off-target effects may exist and underscore the importance of using minimal doses of activating ligand in combination with high levels of habituation.
Collapse
Affiliation(s)
- Vena K Martinez
- Department of Pharmacology, Baylor College of Medicine, Houston, TX, United States.,Memory Brain Research Center, Baylor College of Medicine, Houston, TX, United States
| | - Fatima Saldana-Morales
- Memory Brain Research Center, Baylor College of Medicine, Houston, TX, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Jenny J Sun
- Memory Brain Research Center, Baylor College of Medicine, Houston, TX, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Ping Jun Zhu
- Memory Brain Research Center, Baylor College of Medicine, Houston, TX, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Mauro Costa-Mattioli
- Memory Brain Research Center, Baylor College of Medicine, Houston, TX, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Russell S Ray
- Memory Brain Research Center, Baylor College of Medicine, Houston, TX, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States.,McNair Medical Institute, Houston, TX, United States
| |
Collapse
|
13
|
Bardanzellu F, Pintus MC, Fanos V, Marcialis MA. Neonatal Congenital Central Hypoventilation Syndrome: Why We Should not Sleep on it. Literature Review of Forty-two Neonatal Onset Cases. Curr Pediatr Rev 2019; 15:139-153. [PMID: 31223092 DOI: 10.2174/1573396315666190621103954] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/18/2019] [Accepted: 03/25/2019] [Indexed: 12/31/2022]
Abstract
Congenital Central Hypoventilation Syndrome (CCHS), also referred with the expression "Ondine's Curse", is a rare genetic life-long disease resulting from the mutation of PHOX2B gene on chromosome 4p12.3. CCHS represents an autonomic nervous system disorder; its more fearsome manifestation is central hypoventilation, due to a deficient response of chemoreceptors to hypercapnia and hypoxia. Several associated symptoms can occur, such as pupillary anomalies, arrhythmias, reduced heart rate variability, esophageal dysmotility, and structural comorbidities (Hirschsprung's Disease or neural crest tumours). CCHS typical onset is during the neonatal period, but cases of delayed diagnosis have been reported; moreover, both sporadic or familial cases can occur. In preterm newborns, asphyxia and typical prematurity-related findings may overlap CCHS clinical manifestations and make it harder to formulate a correct diagnosis. The early recognition of CCHS allows appropriate management, useful to reduce immediate and long- term consequences.
Collapse
Affiliation(s)
- Flaminia Bardanzellu
- Neonatal Intensive Care Unit, AOU and University of Cagliari, SS 554 km 4,500, 09042 Monserrato, Italy
| | - Maria Cristina Pintus
- Neonatal Intensive Care Unit, AOU and University of Cagliari, SS 554 km 4,500, 09042 Monserrato, Italy
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, AOU and University of Cagliari, SS 554 km 4,500, 09042 Monserrato, Italy
| | | |
Collapse
|
14
|
Dubois CJ, Cardoit L, Schwarz V, Markkanen M, Airaksinen MS, Uvarov P, Simmers J, Thoby-Brisson M. Role of the K +-Cl - Cotransporter KCC2a Isoform in Mammalian Respiration at Birth. eNeuro 2018; 5:ENEURO.0264-18.2018. [PMID: 30406192 PMCID: PMC6220586 DOI: 10.1523/eneuro.0264-18.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/15/2018] [Accepted: 09/17/2018] [Indexed: 12/31/2022] Open
Abstract
In central respiratory circuitry, synaptic excitation is responsible for synchronizing neuronal activity in the different respiratory rhythm phases, whereas chloride-mediated inhibition is important for shaping the respiratory pattern itself. The potassium chloride cotransporter KCC2, which serves to maintain low intraneuronal Cl- concentration and thus render chloride-mediated synaptic signaling inhibitory, exists in two isoforms, KCC2a and KCC2b. KCC2 is essential for functional breathing motor control at birth, but the specific contribution of the KCC2a isoform remains unknown. Here, to address this issue, we investigated the respiratory phenotype of mice deficient for KCC2a. In vivo plethysmographic recordings revealed that KCC2a-deficient pups at P0 transiently express an abnormally low breathing rate and a high occurrence of apneas. Immunostainings confirmed that KCC2a is normally expressed in the brainstem neuronal groups involved in breathing (pre-Bötzinger complex, parafacial respiratory group, hypoglossus nucleus) and is absent in these regions in the KCC2a-/- mutant. However, in variously reduced in vitro medullary preparations, spontaneous rhythmic respiratory activity is similar to that expressed in wild-type preparations, as is hypoglossal motor output, and no respiratory pauses are detected, suggesting that the rhythm-generating networks are not intrinsically affected in mutants at P0. In contrast, inhibitory neuromodulatory influences exerted by the pons on respiratory rhythmogenesis are stronger in the mutant, thereby explaining the breathing anomalies observed in vivo. Thus, our results indicate that the KCC2a isoform is important for establishing proper breathing behavior at the time of birth, but by acting at sites that are extrinsic to the central respiratory networks themselves.
Collapse
Affiliation(s)
- Christophe J. Dubois
- Institut de Neurosciences Cognitives et Intégratives D’Aquitaine, CNRS UMR 5287, Université de Bordeaux, Bordeaux 33076, France
| | - Laura Cardoit
- Institut de Neurosciences Cognitives et Intégratives D’Aquitaine, CNRS UMR 5287, Université de Bordeaux, Bordeaux 33076, France
| | - Veronika Schwarz
- Institut de Neurosciences Cognitives et Intégratives D’Aquitaine, CNRS UMR 5287, Université de Bordeaux, Bordeaux 33076, France
| | - Marika Markkanen
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki Finland
| | - Matti S. Airaksinen
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki Finland
| | - Pavel Uvarov
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki Finland
| | - John Simmers
- Institut de Neurosciences Cognitives et Intégratives D’Aquitaine, CNRS UMR 5287, Université de Bordeaux, Bordeaux 33076, France
| | - Muriel Thoby-Brisson
- Institut de Neurosciences Cognitives et Intégratives D’Aquitaine, CNRS UMR 5287, Université de Bordeaux, Bordeaux 33076, France
| |
Collapse
|
15
|
Breathing responses produced by optogenetic stimulation of adrenergic C1 neurons are dependent on the connection with preBötzinger complex in rats. Pflugers Arch 2018; 470:1659-1672. [DOI: 10.1007/s00424-018-2186-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/11/2018] [Accepted: 07/20/2018] [Indexed: 01/14/2023]
|
16
|
Vogelgesang S, Niebert M, Bischoff AM, Hülsmann S, Manzke T. Persistent Expression of Serotonin Receptor 5b Alters Breathing Behavior in Male MeCP2 Knockout Mice. Front Mol Neurosci 2018. [PMID: 29515365 PMCID: PMC5826236 DOI: 10.3389/fnmol.2018.00028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Mutations in the transcription factor methyl-CpG-binding protein 2 (MeCP2) cause the neurodevelopmental disorder Rett syndrome (RTT). Besides many other neurological problems, RTT patients show irregular breathing with recurrent apneas or breath-holdings. MeCP2-deficient mice, which recapitulate this breathing phenotype, show a dysregulated, persistent expression of G-protein-coupled serotonin receptor 5-ht5b (Htr5b) in the brainstem. To investigate whether the persistence of 5-ht5b expression is contributing to the respiratory phenotype, we crossbred MeCP2-deficient mice with 5-ht5b-deficient mice to generate double knockout mice (Mecp2−/y;Htr5b−/−). To compare respiration between wild type (WT), Mecp2−/y and Mecp2−/y;Htr5b−/− mice, we used unrestrained whole-body plethysmography. While the breathing of MeCP2-deficient male mice (Mecp2−/y) at postnatal day 40 is characterized by a slow breathing rate and the occurrence of prolonged respiratory pauses, we found that in MeCP2-deficient mice, which also lacked the 5-ht5b receptor, the breathing rate and the number of pauses were indistinguishable from WT mice. To test for a potential mechanism, we also analyzed if the known coupling of 5-ht5b receptors to Gi proteins is altering second messenger signaling. Tissue cAMP levels in the medulla of Mecp2−/y mice were decreased as compared to WT mice. In contrast, cAMP levels in Mecp2−/y;Htr5b−/− mice were indistinguishable from WT mice. Taken together, our data points towards a role of 5-ht5b receptors within the complex breathing phenotype of MeCP2-deficient mice.
Collapse
Affiliation(s)
- Steffen Vogelgesang
- DFG-Research Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University of Göttingen, Göttingen, Germany.,Institute of Neuro- and Sensory Physiology, University of Göttingen, Göttingen, Germany
| | - Marcus Niebert
- DFG-Research Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University of Göttingen, Göttingen, Germany.,Institute of Neuro- and Sensory Physiology, University of Göttingen, Göttingen, Germany
| | - Anne M Bischoff
- DFG-Research Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University of Göttingen, Göttingen, Germany.,Clinic for Anesthesiology, University Medical Göttingen, Göttingen, Germany
| | - Swen Hülsmann
- DFG-Research Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University of Göttingen, Göttingen, Germany.,Clinic for Anesthesiology, University Medical Göttingen, Göttingen, Germany
| | - Till Manzke
- DFG-Research Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University of Göttingen, Göttingen, Germany.,Institute of Neuro- and Sensory Physiology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
17
|
Sun JJ, Ray RS. Tg(Th-Cre)FI172Gsat ( Th-Cre) defines neurons that are required for full hypercapnic and hypoxic reflexes. Biol Open 2017; 6:1200-1208. [PMID: 28684394 PMCID: PMC5576086 DOI: 10.1242/bio.026823] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The catecholaminergic (CA) system has been implicated in many facets of breathing control and offers an important target to better comprehend the underlying etiologies of both developmental and adult respiratory pathophysiologies. Here, we used a noninvasive DREADD-based pharmacogenetic approach to acutely perturb Tg(Th-Cre)FI172Gsat (Th-Cre)-defined neurons in awake and unrestrained mice in an attempt to characterize CA function in breathing. We report that clozapine-N-oxide (CNO)-DREADD-mediated inhibition of Th-Cre-defined neurons results in blunted ventilatory responses under respiratory challenge. Under a hypercapnic challenge (5% CO2/21% O2/74% N2), perturbation of Th-Cre neurons results in reduced fR, and . Under a hypoxic challenge (10% O2/90% N2), we saw reduced fR, and , in addition to instability in both interbreath interval and tidal volume, resulting in a Cheyne-Stokes-like respiratory pattern. These findings demonstrate the necessity of Th-Cre-defined neurons for the hypercapnic and hypoxic ventilatory responses and breathing stability during hypoxia. However, given the expanded non-CA expression domains of the Tg(Th-Cre)FI172Gsat mouse line found in the brainstem, full phenotypic effect cannot be assigned solely to CA neurons. Nonetheless, this work identifies a key respiratory population that may lead to further insights into the circuitry that maintains respiratory stability in the face of homeostatic challenges. Summary: DREADD-mediated silencing of Tg(Th-Cre)FI172Gsat-defined neurons in adult mice results in reduced O2 and CO2 breathing reflexes and respiratory rhythm destabilization under hypoxic challenge, resembling Cheyne-Stokes respiration.
Collapse
Affiliation(s)
- Jenny J Sun
- Baylor College of Medicine, Department of Neuroscience, 1 Baylor Plaza, T707, Houston, TX 77030, USA
| | - Russell S Ray
- Baylor College of Medicine, Department of Neuroscience, 1 Baylor Plaza, T707, Houston, TX 77030, USA
| |
Collapse
|
18
|
Young JO, Geurts A, Hodges MR, Cummings KJ. Active sleep unmasks apnea and delayed arousal in infant rat pups lacking central serotonin. J Appl Physiol (1985) 2017; 123:825-834. [PMID: 28775068 DOI: 10.1152/japplphysiol.00439.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/31/2017] [Accepted: 07/31/2017] [Indexed: 11/22/2022] Open
Abstract
Sudden infant death syndrome (SIDS), occurring during sleep periods, is highly associated with abnormalities within serotonin (5-HT) neurons, including reduced 5-HT. There is evidence that future SIDS cases experience more apnea and have abnormal arousal from sleep. In rodents, a loss of 5-HT neurons is associated with apnea in early life and, in adulthood, delayed arousal. As the activity of 5-HT neurons changes with vigilance state, we hypothesized that the degree of apnea and delayed arousal displayed by rat pups specifically lacking central 5-HT varies with state. Two-week-old tryptophan hydroxylase 2-deficient (TPH2-/-) and wild-type (WT) rat pups were placed in plethysmographic chambers supplied with room air. At the onset of active (AS) or quiet (QS) sleep, separate groups of rats were exposed to hypercapnia (5% CO2) or mild hypoxia (~17% O2) or maintained in room air. Upon arousal, rats received room air. Apnea indexes and latencies to spontaneous arousal from AS and QS were determined for pups exposed only to room air. Arousal latencies were also calculated for TPH2-/- and WT pups exposed to hypoxia or hypercapnia. Compared with WT, TPH2-/- pups hypoventilated in all states but were profoundly more apneic solely in AS. TPH2-/- pups had delayed arousal in response to increasing CO2, and AS selectively delayed the arousal of TPH2-/- pups, irrespective of the gas they breathed. Thus infants who are deficient in CNS 5-HT may be at increased risk for SIDS in AS because of increased apnea and delayed arousal compared with QS.NEW & NOTEWORTHY Sudden infant death syndrome (SIDS) occurs during sleep and is associated with central serotonin (5-HT) deficiency. We report that rat pups deficient in central 5-HT (TPH2-/-) are profoundly more apneic in active sleep (AS) but not quiet sleep (QS). Unlike control pups, the arousal of TPH2-/- pups in air, CO2, and hypoxia was delayed in AS compared with QS. Thus for infants deficient in central 5-HT, the risk of SIDS may be higher in AS than in QS.
Collapse
Affiliation(s)
- Jacob O Young
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; and
| | - Aron Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Matthew R Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Kevin J Cummings
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; and
| |
Collapse
|
19
|
Catecholaminergic neurons in synaptic connections with pre-Bötzinger complex neurons in the rostral ventrolateral medulla in normoxic and daily acute intermittent hypoxic rats. Exp Neurol 2017; 287:165-175. [DOI: 10.1016/j.expneurol.2016.05.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 04/12/2016] [Accepted: 05/26/2016] [Indexed: 02/07/2023]
|
20
|
Tree K, Viemari JC, Cayetanot F, Peyronnet J. Growth restriction induced by chronic prenatal hypoxia affects breathing rhythm and its pontine catecholaminergic modulation. J Neurophysiol 2016; 116:1654-1662. [PMID: 27486108 DOI: 10.1152/jn.00869.2015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 07/08/2016] [Indexed: 11/22/2022] Open
Abstract
Impaired transplacental supply of oxygen leads to intrauterine growth restriction, one of the most important causes of perinatal mortality and respiratory morbidity. Breathing rhythm depends on the central respiratory network modulated by catecholamines. We investigated the impact of growth restriction, using prenatal hypoxia, on respiratory frequency, on central respiratory-like rhythm, and on its catecholaminergic modulation after birth. At birth, respiratory frequency was increased and confirmed in en bloc medullary preparations, where the frequency of the fourth cervical (C4) ventral root discharge was increased, and in slice preparations containing the pre-Bötzinger complex with an increased inspiratory rhythm. The inhibition of C4 burst discharge observed in pontomedullary preparations was stronger in the growth-restricted group. These results cannot be directly linked by the tyrosine hydroxylase activity increase of A1/C1 and A2/C2 cell groups in the medulla since blockade of α1- and α2-adrenergic receptors did not abolish the difference between both groups. However, in pontomedullary preparations, the stronger inhibition of C4 burst discharge is probably supported by an increased inhibition of A5, a respiratory rhythm inhibitor pontine group of neurons displaying increased tyrosine hydroxylase activity, because blockade of α2-adrenergic receptors abolished the difference between the two groups. Taken together, these results indicate that growth restriction leads to a perturbation of the breathing frequency, which finds, at least in part, its origin in the modification of catecholaminergic modulation of the central breathing network.
Collapse
Affiliation(s)
- K Tree
- UMR 7289, Institut de Neurosciences de la Timone, Aix Marseille Université, Centre National de la Recherche Scientifique, Marseille, France
| | - J C Viemari
- UMR 7289, Institut de Neurosciences de la Timone, Aix Marseille Université, Centre National de la Recherche Scientifique, Marseille, France
| | - F Cayetanot
- UMR 7289, Institut de Neurosciences de la Timone, Aix Marseille Université, Centre National de la Recherche Scientifique, Marseille, France
| | - J Peyronnet
- UMR 7289, Institut de Neurosciences de la Timone, Aix Marseille Université, Centre National de la Recherche Scientifique, Marseille, France
| |
Collapse
|
21
|
Oliveira LM, Moreira TS, Kuo FS, Mulkey DK, Takakura AC. α1- and α2-adrenergic receptors in the retrotrapezoid nucleus differentially regulate breathing in anesthetized adult rats. J Neurophysiol 2016; 116:1036-48. [PMID: 27306670 DOI: 10.1152/jn.00023.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 06/09/2016] [Indexed: 02/07/2023] Open
Abstract
Norepinephrine (NE) is a potent modulator of breathing that can increase/decrease respiratory activity by α1-/α2-adrenergic receptor (AR) activation, respectively. The retrotrapezoid nucleus (RTN) is known to contribute to central chemoreception, inspiration, and active expiration. Here we investigate the sources of catecholaminergic inputs to the RTN and identify respiratory effects produced by activation of ARs in this region. By injecting the retrograde tracer Fluoro-Gold into the RTN, we identified back-labeled catecholaminergic neurons in the A7 region. In urethane-anesthetized, vagotomized, and artificially ventilated male Wistar rats unilateral injection of NE or moxonidine (α2-AR agonist) blunted diaphragm muscle activity (DiaEMG) frequency and amplitude, without changing abdominal muscle activity. Those inhibitory effects were reduced by preapplication of yohimbine (α2-AR antagonist) into the RTN. Conversely, unilateral RTN injection of phenylephrine (α1-AR agonist) increased DiaEMG amplitude and frequency and facilitated active expiration. This response was blocked by prior RTN injection of prazosin (α1-AR antagonist). Interestingly, RTN injection of propranolol (β-AR antagonist) had no effect on respiratory inhibition elicited by applications of NE into the RTN; however, the combined blockade of α2- and β-ARs (coapplication of propranolol and yohimbine) revealed an α1-AR-dependent excitatory response to NE that resulted in increase in DiaEMG frequency and facilitation of active expiration. However, blockade of α1-, α2-, or β-ARs in the RTN had minimal effect on baseline respiratory activity, on central or peripheral chemoreflexes. These results suggest that NE signaling can modulate RTN chemoreceptor function; however, endogenous NE signaling does not contribute to baseline breathing or the ventilatory response to central or peripheral chemoreceptor activity in urethane-anesthetized rats.
Collapse
Affiliation(s)
- Luiz M Oliveira
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil; and
| | - Fu-Shan Kuo
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut
| | - Daniel K Mulkey
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut
| | - Ana C Takakura
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil;
| |
Collapse
|
22
|
Kuo FS, Falquetto B, Chen D, Oliveira LM, Takakura AC, Mulkey DK. In vitro characterization of noradrenergic modulation of chemosensitive neurons in the retrotrapezoid nucleus. J Neurophysiol 2016; 116:1024-35. [PMID: 27306669 DOI: 10.1152/jn.00022.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 06/09/2016] [Indexed: 01/08/2023] Open
Abstract
Chemosensitive neurons in the retrotrapezoid nucleus (RTN) regulate breathing in response to CO2/H(+) changes and serve as an integration center for other autonomic centers, including brain stem noradrenergic neurons. Norepinephrine (NE) contributes to respiratory control and chemoreception, and, since disruption of NE signaling may contribute to several breathing disorders, we sought to characterize effects of NE on RTN chemoreception. All neurons included in this study responded similarly to CO2/H(+) but showed differential sensitivity to NE; we found that NE activated (79%), inhibited (7%), or had no effect on activity (14%) of RTN chemoreceptors. The excitatory effect of NE on RTN chemoreceptors was dose dependent, retained in the presence of neurotransmitter receptor blockers, and could be mimicked and blocked by pharmacological manipulation of α1-adrenergic receptors (ARs). In addition, NE-activation was blunted by XE991 (KCNQ channel blocker), and partially occluded the firing response to serotonin, suggesting involvement of KCNQ channels. However, in whole cell voltage clamp, activation of α1-ARs decreased outward current and conductance by what appears to be a mixed effect on multiple channels. The inhibitory effect of NE on RTN chemoreceptors was blunted by an α2-AR antagonist. A third group of RTN chemoreceptors was insensitive to NE. We also found that chemosensitive RTN astrocytes do not respond to NE with a change in voltage or by releasing ATP to enhance activity of chemosensitive neurons. These results indicate NE modulates subsets of RTN chemoreceptors by mechanisms involving α1- and α2-ARs.
Collapse
Affiliation(s)
- Fu-Shan Kuo
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut; and
| | - Bárbara Falquetto
- Department of Pharmacology, University of Sao Paulo, Sao Paulo, Brazil
| | - Dawei Chen
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut; and
| | - Luiz M Oliveira
- Department of Pharmacology, University of Sao Paulo, Sao Paulo, Brazil
| | - Ana C Takakura
- Department of Pharmacology, University of Sao Paulo, Sao Paulo, Brazil
| | - Daniel K Mulkey
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut; and
| |
Collapse
|
23
|
Joubert F, Perrin-Terrin AS, Verkaeren E, Cardot P, Fiamma MN, Frugière A, Rivals I, Similowski T, Straus C, Bodineau L. Desogestrel enhances ventilation in ondine patients: Animal data involving serotoninergic systems. Neuropharmacology 2016; 107:339-350. [PMID: 27040794 DOI: 10.1016/j.neuropharm.2016.03.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/25/2016] [Accepted: 03/24/2016] [Indexed: 01/09/2023]
Abstract
Congenital central hypoventilation syndrome (CCHS) is a neurorespiratory disease characterized by life-threatening sleep-related hypoventilation involving an alteration of CO2/H(+) chemosensitivity. Incidental findings have suggested that desogestrel may allow recovery of the ventilatory response to CO2. The effects of desogestrel on resting ventilation have not been reported. This study was designed to test the hypothesis that desogestrel strengthens baseline ventilation by analyzing the ventilation of CCHS patients. Rodent models were used in order to determine the mechanisms involved. Ventilation in CCHS patients was measured with a pneumotachometer. In mice, ventilatory neural activity was recorded from ex vivo medullary-spinal cord preparations, ventilation was measured by plethysmography and c-fos expression was studied in medullary respiratory nuclei. Desogestrel increased baseline respiratory frequency of CCHS patients leading to a decrease in their PETCO2. In medullary spinal-cord preparations or in vivo mice, the metabolite of desogestrel, etonogestrel, induced an increase in respiratory frequency that necessitated the functioning of serotoninergic systems, and modulated GABAA and NMDA ventilatory regulations. c-FOS analysis showed the involvement of medullary respiratory groups of cell including serotoninergic neurons of the raphe pallidus and raphe obscurus nuclei that seem to play a key role. Thus, desogestrel may improve resting ventilation in CCHS patients by a stimulant effect on baseline respiratory frequency. Our data open up clinical perspectives based on the combination of this progestin with serotoninergic drugs to enhance ventilation in CCHS patients.
Collapse
Affiliation(s)
- Fanny Joubert
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S1158 Neurophysiologie respiratoire expérimentale et clinique, F-75013, Paris, France
| | - Anne-Sophie Perrin-Terrin
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S1158 Neurophysiologie respiratoire expérimentale et clinique, F-75013, Paris, France; University Paris 13, Sorbonne Paris Cité, Laboratory "Hypoxia & Lung" EA2363, 74 rue Marcel Cachin, 93017, Bobigny, France
| | - Emilienne Verkaeren
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S1158 Neurophysiologie respiratoire expérimentale et clinique, F-75013, Paris, France
| | - Philippe Cardot
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S1158 Neurophysiologie respiratoire expérimentale et clinique, F-75013, Paris, France
| | - Marie-Noëlle Fiamma
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S1158 Neurophysiologie respiratoire expérimentale et clinique, F-75013, Paris, France
| | - Alain Frugière
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S1158 Neurophysiologie respiratoire expérimentale et clinique, F-75013, Paris, France
| | - Isabelle Rivals
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S1158 Neurophysiologie respiratoire expérimentale et clinique, F-75013, Paris, France; Équipe de Statistique Appliquée, ESPCI ParisTech, PSL Research University, F-75005, Paris, France
| | - Thomas Similowski
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S1158 Neurophysiologie respiratoire expérimentale et clinique, F-75013, Paris, France; AP-HP, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Service de Pneumologie et Réanimation Médicale (Département "R3S"), F-75013, Paris, France; AP-HP, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Branche "Adultes" du Centre de Référence du Syndrome d'Ondine, F-75013, Paris, France
| | - Christian Straus
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S1158 Neurophysiologie respiratoire expérimentale et clinique, F-75013, Paris, France; AP-HP, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Branche "Adultes" du Centre de Référence du Syndrome d'Ondine, F-75013, Paris, France; AP-HP, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Service d'Explorations Fonctionnelles de la Respiration, de l'Exercice et de la Dyspnée (Département "R3S"), Paris, France
| | - Laurence Bodineau
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S1158 Neurophysiologie respiratoire expérimentale et clinique, F-75013, Paris, France.
| |
Collapse
|
24
|
Nobuta H, Cilio MR, Danhaive O, Tsai HH, Tupal S, Chang SM, Murnen A, Kreitzer F, Bravo V, Czeisler C, Gokozan HN, Gygli P, Bush S, Weese-Mayer DE, Conklin B, Yee SP, Huang EJ, Gray PA, Rowitch D, Otero JJ. Dysregulation of locus coeruleus development in congenital central hypoventilation syndrome. Acta Neuropathol 2015; 130:171-83. [PMID: 25975378 PMCID: PMC4503865 DOI: 10.1007/s00401-015-1441-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/01/2015] [Accepted: 05/02/2015] [Indexed: 12/29/2022]
Abstract
Human congenital central hypoventilation syndrome (CCHS), resulting from mutations in transcription factor PHOX2B, manifests with impaired responses to hypoxemia and hypercapnia especially during sleep. To identify brainstem structures developmentally affected in CCHS, we analyzed two postmortem neonatal-lethal cases with confirmed polyalanine repeat expansion (PARM) or Non-PARM (PHOX2B∆8) mutation of PHOX2B. Both human cases showed neuronal losses within the locus coeruleus (LC), which is important for central noradrenergic signaling. Using a conditionally active transgenic mouse model of the PHOX2B∆8 mutation, we found that early embryonic expression (<E10.5) caused failure of LC neuronal specification and perinatal respiratory lethality. In contrast, later onset (E11.5) of PHOX2B∆8 expression was not deleterious to LC development and perinatal respiratory lethality was rescued, despite failure of chemosensor retrotrapezoid nucleus formation. Our findings indicate that early-onset mutant PHOX2B expression inhibits LC neuronal development in CCHS. They further suggest that such mutations result in dysregulation of central noradrenergic signaling, and therefore, potential for early pharmacologic intervention in humans with CCHS.
Collapse
|
25
|
Sugiyama Y, Shiba K, Mukudai S, Umezaki T, Sakaguchi H, Hisa Y. Role of the retrotrapezoid nucleus/parafacial respiratory group in coughing and swallowing in guinea pigs. J Neurophysiol 2015. [PMID: 26203106 DOI: 10.1152/jn.00332.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The retrotrapezoid/parafacial respiratory group (RTN/pFRG) located ventral to the facial nucleus plays a key role in regulating breathing, especially enhanced expiratory activity during hypercapnic conditions. To clarify the roles of the RTN/pFRG region in evoking coughing, during which reflexive enhanced expiration is produced, and in swallowing, during which the expiratory activity is consistently halted, we recorded extracellular activity from RTN/pFRG neurons during these fictive behaviors in decerebrate, paralyzed, and artificially ventilated guinea pigs. The activity of the majority of recorded respiratory neurons was changed in synchrony with coughing and swallowing. To further evaluate the contribution of RTN/pFRG neurons to these nonrespiratory behaviors, the motor output patterns during breathing, coughing, and swallowing were compared before and after brain stem transection at the caudal margin of RTN/pFRG region. In addition, the effects of transection at its rostral margin were also investigated to evaluate pontine contribution to these behaviors. During respiration, transection at the rostral margin attenuated the postinspiratory activity of the recurrent laryngeal nerve. Meanwhile, the late expiratory activity of the abdominal nerve was abolished after caudal transection. The caudal transection also decreased the amplitude of the coughing-related abdominal nerve discharge but did not abolish the activity. Swallowing could be elicited even after the caudal end transection. These findings raise the prospect that the RTN/pFRG contributes to expiratory regulation during normal respiration, although this region is not an essential element of the neuronal networks involved in coughing and swallowing.
Collapse
Affiliation(s)
- Yoichiro Sugiyama
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan;
| | - Keisuke Shiba
- Hikifune Otolaryngology Clinic, Sumida, Tokyo, Japan
| | - Shigeyuki Mukudai
- Department of Otolaryngology, Japanese Red Cross Kyoto Daini Hospital, Kyoto, Japan; and
| | - Toshiro Umezaki
- Department of Otolaryngology, Graduate School of Medicine, Kyushu University, Fukuoka, Japan
| | - Hirofumi Sakaguchi
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yasuo Hisa
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
26
|
Evidence for respiratory neuromodulator interdependence after cholinergic disruption in the ventral respiratory column. Respir Physiol Neurobiol 2014; 205:7-15. [PMID: 25262584 DOI: 10.1016/j.resp.2014.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/16/2014] [Accepted: 09/17/2014] [Indexed: 01/05/2023]
Abstract
Reverse dialysis of the muscarinic receptor antagonist, atropine (ATR, 50 mM), into the pre-Bötzinger Complex region of the ventral respiratory column (VRC) of awake and sleeping goats increases breathing frequency and serotonin (5-HT), substance P (SP), glycine, and GABA concentrations in the effluent dialysate. Herein, we report data from goats in which we reverse dialyzed 5 mM ATR or specific antagonists of M2 or M3 muscarinic receptors into the VRC. The effects on frequency of all three antagonists were not significantly different from time control studies. 5 mM ATR and the M3 antagonist increased SP sevenfold less than 50 mM ATR. The antagonists had no effect on 5-HT, glycine, and/or GABA, suggesting that the increases in glycine and GABA with 50 mM ATR were secondary to the larger increases in 5-HT and/or SP. These data are suggestive of neuromodulator interdependence, whereby attenuation of one neuromodulator is compensated for by local changes in other neuromodulators to stabilize breathing.
Collapse
|
27
|
Bellot B, Peyronnet-Roux J, Gire C, Simeoni U, Vinay L, Viemari JC. Deficits of brainstem and spinal cord functions after neonatal hypoxia-ischemia in mice. Pediatr Res 2014; 75:723-30. [PMID: 24618565 DOI: 10.1038/pr.2014.42] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 12/30/2013] [Indexed: 01/18/2023]
Abstract
BACKGROUND Perinatal cerebral hypoxia-ischemia (HI) can lead to severe neurodevelopmental disorders. Studies in humans and animal models mainly focused on cerebral outcomes, and little is known about the mechanisms that may affect the brainstem and the spinal cord. Dysfunctions of neuromodulatory systems, such as the serotonergic (5-HT) projections, critical for the development of neural networks, have been postulated to underlie behavioral and motor deficits, as well as metabolic changes. METHODS The aim of this study was to investigate brainstem and spinal cord functions by means of plethysmography and sensorimotor tests in a neonatal Rice-Vanucci model of HI in mice. We also evaluated bioaminergic contents in central regions dedicated to the motor control of autonomic functions. RESULTS Mice with cerebral infarct expressed motor disturbances and had a lower body weight and a decreased respiratory frequency than SHAM, suggesting defects of brainstem neural network involved in the motor control of feeding, suckling, swallowing, and respiration. Moreover, our study revealed changes of monoamine and amino acid contents in the brainstem and the spinal cord of HI mice. CONCLUSION Our results suggest that monoaminergic neuromodulation plays an important role in the physiopathology of HI brain injury that may represent a good therapeutic target.
Collapse
Affiliation(s)
- Blandine Bellot
- 1] Institut de Neurosciences de la Timone (P3M Team), UMR 7289, CNRS, Aix Marseille Université, Marseille, France [2] Pôle de Médecine et Réanimation Néonatales, Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - Julie Peyronnet-Roux
- Institut de Neurosciences de la Timone (P3M Team), UMR 7289, CNRS, Aix Marseille Université, Marseille, France
| | - Catherine Gire
- Pôle de Médecine et Réanimation Néonatales, Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - Umberto Simeoni
- 1] Pôle de Médecine et Réanimation Néonatales, Assistance Publique Hôpitaux de Marseille, Marseille, France [2] Aix Marseille Université, Marseille, France
| | - Laurent Vinay
- Institut de Neurosciences de la Timone (P3M Team), UMR 7289, CNRS, Aix Marseille Université, Marseille, France
| | - Jean-Charles Viemari
- Institut de Neurosciences de la Timone (P3M Team), UMR 7289, CNRS, Aix Marseille Université, Marseille, France
| |
Collapse
|
28
|
Abstract
Pontine respiratory nuclei provide synaptic input to medullary rhythmogenic circuits to shape and adapt the breathing pattern. An understanding of this statement depends on appreciating breathing as a behavior, rather than a stereotypic rhythm. In this review, we focus on the pontine-mediated inspiratory off-switch (IOS) associated with postinspiratory glottal constriction. Further, IOS is examined in the context of pontine regulation of glottal resistance in response to multimodal sensory inputs and higher commands, which in turn rules timing, duration, and patterning of respiratory airflow. In addition, network plasticity in respiratory control emerges during the development of the pons. Synaptic plasticity is required for dynamic and efficient modulation of the expiratory breathing pattern to cope with rapid changes from eupneic to adaptive breathing linked to exploratory (foraging and sniffing) and expulsive (vocalizing, coughing, sneezing, and retching) behaviors, as well as conveyance of basic emotions. The speed and complexity of changes in the breathing pattern of behaving animals implies that "learning to breathe" is necessary to adjust to changing internal and external states to maintain homeostasis and survival.
Collapse
Affiliation(s)
- Mathias Dutschmann
- Florey Neurosciences Institutes, University of Melbourne, Victoria, Australia.
| | | |
Collapse
|
29
|
Viemari JC, Garcia AJ, Doi A, Elsen G, Ramirez JM. β-Noradrenergic receptor activation specifically modulates the generation of sighs in vivo and in vitro. Front Neural Circuits 2013; 7:179. [PMID: 24273495 PMCID: PMC3824105 DOI: 10.3389/fncir.2013.00179] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 10/23/2013] [Indexed: 11/13/2022] Open
Abstract
The pre-Bötzinger complex (preBötC), an area that is critical for generating breathing (eupnea), gasps and sighs is continuously modulated by catecholamines. These amines and the generation of sighs have also been implicated in the regulation of arousal. Here we studied the catecholaminergic modulation of sighs not only in anesthetized freely breathing mice (in vivo), but also in medullary slice preparations that contain the preBötC and that generate fictive eupneic and sigh rhythms in vitro. We demonstrate that activating β-noradrenergic receptors (β-NR) specifically increases the frequency of sighs, while eupnea remains unaffected both in vitro and in vivo. β-NR activation specifically increased the frequency of intrinsically bursting pacemaker neurons that rely on persistent sodium current (I(Nap)). By contrast, all parameters of bursting pacemakers that rely on the non-specific cation current (I(CAN)) remained unaffected. Moreover, riluzole, which blocks bursting in I(Nap) pacemakers abolished sighs altogether, while flufenamic acid (FFA) which blocks the I(CAN) current did not alter the sigh-increasing effect caused by β-NR. Our results suggest that the selective β-NR action of sighs may result from the modulation of I(Nap) pacemaker activity and that disturbances in noradrenergic system may contribute to abnormal arousal response. The β-NR action on the preBötC may be an important mechanism in modulating behaviors that are specifically associated with sighs, such as the regulation of the early events leading to the arousal response.
Collapse
Affiliation(s)
- Jean-Charles Viemari
- Team P3M, Institut de Neurosciences de la Timone, UMR 7289, CNRS, Aix Marseille Univesité , Marseille, France
| | | | | | | | | |
Collapse
|
30
|
King TL, Kline DD, Ruyle BC, Heesch CM, Hasser EM. Acute systemic hypoxia activates hypothalamic paraventricular nucleus-projecting catecholaminergic neurons in the caudal ventrolateral medulla. Am J Physiol Regul Integr Comp Physiol 2013; 305:R1112-23. [PMID: 24049118 DOI: 10.1152/ajpregu.00280.2013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hypoxia activates catecholamine neurons in the caudal ventrolateral medulla (CVLM). The hypothalamic paraventricular nucleus (PVN) modulates arterial chemoreflex responses and receives catecholaminergic projections from the CVLM, but it is not known whether the CVLM-PVN projection is activated by chemoreflex stimulation. We hypothesized that acute hypoxia (AH) activates PVN-projecting catecholaminergic neurons in the CVLM. Fluoro-Gold (2%, 60-90 nl) was microinjected into the PVN of rats to retrogradely label CVLM neurons. After recovery, conscious rats underwent 3 h of normoxia (21% O2, n = 4) or AH (12, 10, or 8% O2; n = 5 each group). We used Fos immunoreactivity as an index of CVLM neuronal activation and tyrosine hydroxylase (TH) immunoreactivity to identify catecholaminergic neurons. Positively labeled neurons were counted in six caudal-rostral sections containing CVLM. Hypoxia progressively increased the number of Fos-immunoreactive CVLM cells (21%, 19 ± 6; 12%, 49 ± 2; 10%, 117 ± 8; 8%, 179 ± 7; P < 0.001). Catecholaminergic cells colabeled with Fos immunoreactivity in the CVLM were observed following 12% O2, and further increases in hypoxia severity caused markedly more activation. PVN-projecting CVLM cells were activated following more severe hypoxia (10% and 8% O2). A large proportion (89 ± 3%) of all activated PVN-projecting CVLM neurons were catecholaminergic, regardless of hypoxia intensity. Data suggest that catecholaminergic, PVN-projecting CVLM neurons are particularly hypoxia-sensitive, and these neurons may be important in the cardiorespiratory and/or neuroendocrine responses elicited by the chemoreflex.
Collapse
Affiliation(s)
- T Luise King
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | | | | | | | | |
Collapse
|
31
|
ter Horst PGJ, Bos HJ, de Jong-van de Berg LTW, Wilffert B. In utero exposure to antidepressants and the use of drugs for pulmonary diseases in children. Eur J Clin Pharmacol 2012; 69:541-7. [PMID: 22815049 PMCID: PMC3572380 DOI: 10.1007/s00228-012-1314-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 05/12/2012] [Indexed: 11/29/2022]
Abstract
Purpose The use of antidepressants during pregnancy is common. Some studies suggest an association between in utero exposure to antidepressants and the occurrence of pulmonary diseases like asthma later in life. Serotonin reuptake inhibitors (SSRIs) as well tricyclic antidepressants (TCAs) are thought to be involved in the development of the respiratory rhythm generator (RRG) and the maturation of the formation of surfactant. In this study the use of drugs for pulmonary diseases in children who were exposed to antidepressants in utero were compared with non-exposed children. Methods The pharmacy prescription database IADB.nl was used for a cohort study in which the use of drugs for pulmonary disease in children after in utero exposure to antidepressants (TCAs, SSRIs) was compared with children with no antidepressant exposure in utero. Drugs for pulmonary diseases were applied as a proxy for disturbed development of the respiratory tract. Results A small though significant increase in the incidence risk ratio (IRR) of the use of drugs for pulmonary disease was found after any-time in utero exposure to SSRIs, adjusted for maternal use of antibiotics, of 1.17 (95 % CI 1.16–1.18). An increase was also seen when we looked specifically for the use of SSRIs in at least the first trimester (IRR = 1.18, 95 % CI 1.17–1.20). An increased IRR in the use of drugs for pulmonary disease was also seen when children were exposed to TCAs, but this was not statistically significant. However, in both groups our sample size was rather small. The effect size is modest and may also be confounded by maternal smoking. Conclusions In utero exposure to SSRIs leads to a statistically significant increase in the use of drugs for pulmonary diseases, especially when exposure occurred during the first trimester of pregnancy. The increase in the use of drugs for pulmonary disease may also be related to other factors. Therefore, further study is recommended.
Collapse
Affiliation(s)
- P G J ter Horst
- Department of Clinical Pharmacy, Isala Klinieken, Groot Wezenland 20, 8011 JW Zwolle, The Netherlands.
| | | | | | | |
Collapse
|
32
|
Peña-Ortega F. Tonic neuromodulation of the inspiratory rhythm generator. Front Physiol 2012; 3:253. [PMID: 22934010 PMCID: PMC3429030 DOI: 10.3389/fphys.2012.00253] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 06/19/2012] [Indexed: 12/15/2022] Open
Abstract
The generation of neural network dynamics relies on the interactions between the intrinsic and synaptic properties of their neural components. Moreover, neuromodulators allow networks to change these properties and adjust their activity to specific challenges. Endogenous continuous (“tonic”) neuromodulation can regulate and sometimes be indispensible for networks to produce basal activity. This seems to be the case for the inspiratory rhythm generator located in the pre-Bötzinger complex (preBötC). This neural network is necessary and sufficient for generating inspiratory rhythms. The preBötC produces normal respiratory activity (eupnea) as well as sighs under normoxic conditions, and it generates gasping under hypoxic conditions after a reconfiguration process. The reconfiguration leading to gasping generation involves changes of synaptic and intrinsic properties that can be mediated by several neuromodulators. Over the past years, it has been shown that endogenous continuous neuromodulation of the preBötC may involve the continuous action of amines and peptides on extrasynaptic receptors. I will summarize the findings supporting the role of endogenous continuous neuromodulation in the generation and regulation of different inspiratory rhythms, exploring the possibility that these neuromodulatory actions involve extrasynaptic receptors along with evidence of glial modulation of preBötC activity.
Collapse
Affiliation(s)
- Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM-Campus Juriquilla Querétaro, Mexico
| |
Collapse
|
33
|
Bartman ME, Johnson SM. Regulation of respiratory-related hypoglossal motor output by α₁ adrenergic and serotonin 5-HT₃ receptor activation in isolated adult turtle brainstems. Respir Physiol Neurobiol 2012; 181:202-13. [PMID: 22446563 DOI: 10.1016/j.resp.2012.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 02/20/2012] [Accepted: 03/07/2012] [Indexed: 02/02/2023]
Abstract
The effects of brainstem α(1) adrenergic receptor activation on respiratory control in reptiles are poorly understood. Isolated adult turtle brainstems were exposed to phenylephrine (α(1) adrenergic agonist) and respiratory motor bursts were recorded on hypoglossal nerves. Phenylephrine acutely increased burst frequency, amplitude (low concentrations only), and regularity of the time interval between the start of respiratory events (single or clustered bursts), and decreased bursts/respiratory event. Burst frequency and timing changes persisted during a 2.0 h washout. Acute increases in burst frequency and amplitude were blocked by prazosin (α(1) adrenergic antagonist). Pretreatment with prazosin and tropisetron (5-HT(3) antagonist) blocked the increase in respiratory event regularity, but did not alter the decrease in bursts/respiratory event. Intermittent phenylephrine application (4 × 5.0 min separated by 20 min) did not produce long-lasting changes in burst frequency and amplitude, bursts/respiratory event, or respiratory event regularity. Thus, sustained α(1) adrenergic receptor activation in turtle brainstems produces acute and long-lasting changes in respiratory burst frequency and pattern.
Collapse
Affiliation(s)
- Michelle E Bartman
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|
34
|
Madan V, Jha SK. A Moderate Increase of Physiological CO(2) in a Critical Range during Stable NREM Sleep Episode: A Potential Gateway to REM Sleep. Front Neurol 2012; 3:19. [PMID: 22363318 PMCID: PMC3282299 DOI: 10.3389/fneur.2012.00019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 02/01/2012] [Indexed: 01/05/2023] Open
Abstract
Sleep is characterized as rapid eye movement (REM) and non-rapid eye movement (NREM) sleep. Studies suggest that wake-related neurons in the basal forebrain, posterior hypothalamus and brainstem, and NREM sleep-related neurons in the anterior-hypothalamic area inhibit each other, thus alternating sleep-wakefulness. Similarly, pontine REM-ON and REM-OFF neurons reciprocally inhibit each other for REM sleep modulation. It has been proposed that inhibition of locus coeruleus (LC) REM-OFF neurons is pre-requisite for REM sleep genesis, but it remains ambiguous how REM-OFF neurons are hyperpolarized at REM sleep onset. The frequency of breathing pattern remains high during wake, slows down during NREM sleep but further escalates during REM sleep. As a result, brain CO(2) level increases during NREM sleep, which may alter REM sleep manifestation. It has been reported that hypocapnia decreases REM sleep while hypercapnia increases REM sleep periods. The groups of brainstem chemosensory neurons, including those present in LC, sense the alteration in CO(2) level and respond accordingly. For example, one group of LC neurons depolarize while other hyperpolarize during hypercapnia. In another group, hypercapnia initially depolarizes but later hyperpolarizes LC neurons. Besides chemosensory functions, LC REM-OFF neurons are an integral part of REM sleep executive machinery. We reason that increased CO(2) level during a stable NREM sleep period may hyperpolarize LC neurons including REM-OFF, which may help initiate REM sleep. We propose that REM sleep might act as a sentinel to help maintain normal CO(2) level for unperturbed sleep.
Collapse
Affiliation(s)
- Vibha Madan
- Sleep Research Laboratory, School of Life Sciences, Jawaharlal Nehru University New Delhi, India
| | | |
Collapse
|
35
|
Zhang X, Su J, Cui N, Gai H, Wu Z, Jiang C. The disruption of central CO2 chemosensitivity in a mouse model of Rett syndrome. Am J Physiol Cell Physiol 2011; 301:C729-38. [PMID: 21307341 PMCID: PMC3174562 DOI: 10.1152/ajpcell.00334.2010] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 02/07/2011] [Indexed: 01/14/2023]
Abstract
People with Rett syndrome (RTT) have breathing instability in addition to other neuropathological manifestations. The breathing disturbances contribute to the high incidence of unexplained death and abnormal brain development. However, the cellular mechanisms underlying the breathing abnormalities remain unclear. To test the hypothesis that the central CO(2) chemoreception in these people is disrupted, we studied the CO(2) chemosensitivity in a mouse model of RTT. The Mecp2-null mice showed a selective loss of their respiratory response to 1-3% CO(2) (mild hypercapnia), whereas they displayed more regular breathing in response to 6-9% CO(2) (severe hypercapnia). The defect was alleviated with the NE uptake blocker desipramine (10 mg·kg(-1)·day(-1) ip, for 5-7 days). Consistent with the in vivo observations, in vitro studies in brain slices indicated that CO(2) chemosensitivity of locus coeruleus (LC) neurons was impaired in Mecp2-null mice. Two major neuronal pH-sensitive Kir currents that resembled homomeric Kir4.1 and heteromeric Ki4.1/Kir5.1 channels were identified in the LC neurons. The screening of Kir channels with real-time PCR indicated the overexpression of Kir4.1 in the LC region of Mecp2-null mice. In a heterologous expression system, an overexpression of Kir4.1 resulted in a reduction in the pH sensitivity of the heteromeric Kir4.1-Kir5.1 channels. Given that Kir4.1 and Kir5.1 subunits are also expressed in brain stem respiration-related areas, the Kir4.1 overexpression may not allow CO(2) to be detected until hypercapnia becomes severe, leading to periodical hyper- and hypoventilation in Mecp2-null mice and, perhaps, in people with RTT as well.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Dept. of Biology, Georgia State Univ., Atlanta, 30303, USA
| | | | | | | | | | | |
Collapse
|
36
|
Viemari JC, Garcia AJ, Doi A, Ramirez JM. Activation of alpha-2 noradrenergic receptors is critical for the generation of fictive eupnea and fictive gasping inspiratory activities in mammals in vitro. Eur J Neurosci 2011; 33:2228-37. [PMID: 21615559 DOI: 10.1111/j.1460-9568.2011.07706.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biogenic amines are not just 'modulators', they are often essential for the execution of behaviors. Here, we explored the role of biogenic amines acting on the pre-Bötzinger complex (pre-BötC), an area located in the ventrolateral medulla which is critical for the generation of different forms of breathing. Isolated in transverse slices from mice, this region continues to spontaneously generate rhythmic activities that resemble normal (eupneic) inspiratory activity in normoxia and gasping in hypoxia. We refer to these as 'fictive eupneic' and 'fictive gasping' activity. When exposed to hypoxia, the pre-BötC transitions from a network state relying on calcium-activated nonspecific cation currents (I(CAN)) and persistent sodium currents (I(Nap)) to one that primarily depends on the I(Nap) current. Here we show that in inspiratory neurons I(Nap)-dependent bursting, blocked by riluzole, but not I(CAN) -dependent bursting, required endogenously released norepinephrine acting on alpha2-noradrenergic receptors (α2-NR). At the network level, fictive eupneic activity persisted while fictive gasping ceased following the blockade of α2-NR. Blockade of α2-NR eliminated fictive gasping even in slice preparations as well as in inspiratory island preparations. Blockade of fictive gasping by α2-NR antagonists was prevented by activation of 5-hydroxytryptamine type 2A receptors (5-HT2A). Our data suggest that gasping depends on the converging aminergic activation of 5-HT2AR and α2-NR acting on riluzole-sensitive mechanisms that have been shown to be crucial for gasping.
Collapse
Affiliation(s)
- Jean-Charles Viemari
- Laboratoire Plasticité et Physio-Pathologie de la motricité, CNRS UMR 6196, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
| | | | | | | |
Collapse
|
37
|
Tree K, Caravagna C, Hilaire G, Peyronnet J, Cayetanot F. Anandamide centrally depresses the respiratory rhythm generator of neonatal mice. Neuroscience 2010; 170:1098-109. [PMID: 20800658 DOI: 10.1016/j.neuroscience.2010.08.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 08/02/2010] [Accepted: 08/19/2010] [Indexed: 11/26/2022]
Abstract
Endogenous cannabinoid receptors are widely distributed throughout the CNS, including the brainstem, and modulate a variety of functions, including breathing. In adult rats, activation of cannabinoid 1 receptors has been shown to depress breathing. Here in neonatal mice, we used in vitro electrophysiology, pharmacology, and immunohistochemistry to analyse the central effects of the endocannabinoid anandamide (AEA) on the activity of the medullary respiratory rhythm generator (RRG). First of all, in vitro electrophysiology on medullary preparations has revealed that bath application of AEA (30 μM, 15 min) significantly depressed respiratory activity. Secondly, applying pre-treatments with alpha-1 (Prazosin, 5 μM, 10 min) and alpha-2 (Yohimbine, 5 μM, 10 min) adrenoceptor antagonists prior to AEA application abolished the AEA-induced depression of the RRG. Finally, immunostaining revealed a dense network of fibres positive for the cannabinoid 1 receptor in the ventrolateral medulla (VLM), a region known to contain both the RRG and the modulatory A1/C1 catecholaminergic group. Moreover, cannabinoid 1 receptor positive fibres were found in close apposition with A1/C1 catecholaminergic cells, identified by the presence of tyrosine hydroxylase. In regard of our electrophysiological, pharmacological and immunostaining results, we conclude that AEA has a central depressive effect on the neonatal RRG, probably via the medullary A1/C1 catecholaminergic neurons which are already known to modulate the respiratory rhythm generator.
Collapse
Affiliation(s)
- K Tree
- Centre de Recherche en Neurobiologie-Neurophysiologie de Marseille CRN2M, Département de Physiologie Neurovégétative (PNV), Université Paul Cézanne Aix Marseille III, Faculté des Sciences et Techniques St. Jérôme, UMR, 6231 CNRS, Marseille, France
| | | | | | | | | |
Collapse
|
38
|
Teppema LJ, Dahan A. The Ventilatory Response to Hypoxia in Mammals: Mechanisms, Measurement, and Analysis. Physiol Rev 2010; 90:675-754. [DOI: 10.1152/physrev.00012.2009] [Citation(s) in RCA: 257] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The respiratory response to hypoxia in mammals develops from an inhibition of breathing movements in utero into a sustained increase in ventilation in the adult. This ventilatory response to hypoxia (HVR) in mammals is the subject of this review. The period immediately after birth contains a critical time window in which environmental factors can cause long-term changes in the structural and functional properties of the respiratory system, resulting in an altered HVR phenotype. Both neonatal chronic and chronic intermittent hypoxia, but also chronic hyperoxia, can induce such plastic changes, the nature of which depends on the time pattern and duration of the exposure (acute or chronic, episodic or not, etc.). At adult age, exposure to chronic hypoxic paradigms induces adjustments in the HVR that seem reversible when the respiratory system is fully matured. These changes are orchestrated by transcription factors of which hypoxia-inducible factor 1 has been identified as the master regulator. We discuss the mechanisms underlying the HVR and its adaptations to chronic changes in ambient oxygen concentration, with emphasis on the carotid bodies that contain oxygen sensors and initiate the response, and on the contribution of central neurotransmitters and brain stem regions. We also briefly summarize the techniques used in small animals and in humans to measure the HVR and discuss the specific difficulties encountered in its measurement and analysis.
Collapse
Affiliation(s)
- Luc J. Teppema
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Albert Dahan
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
39
|
Viemari JC, Tryba AK. Bioaminergic neuromodulation of respiratory rhythm in vitro. Respir Physiol Neurobiol 2009; 168:69-75. [PMID: 19538922 DOI: 10.1016/j.resp.2009.03.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 03/25/2009] [Accepted: 03/25/2009] [Indexed: 11/28/2022]
Abstract
Bioamines, such as norepinephrine and serotonin are key neurotransmitters implicated in multiple physiological and pathological brain mechanisms. Evolutionarily, the bioaminergic neuromodulatory system is widely distributed throughout the brain and is among the earliest neurotransmitters to arise within the hindbrain. In both vertebrates and invertebrates, monoamines play a critical role in the control of respiration. In mammals, both norepinephrine and serotonin are involved in the maturation of the respiratory network, as well as in the neuromodulation of intrinsic and synaptic properties, that not only differentially alters the activity of individual respiratory neurons but also the activity of the network during normoxic and hypoxic conditions. Here, we review the basic noradrenergic and serotonergic pathways and their impact on the activity of the pre-Bötzinger Complex inspiratory neurons and network activity.
Collapse
Affiliation(s)
- Jean-Charles Viemari
- Laboratoire Plasticité et Physio-Pathologie de la Motricité (P3M), UMR 6196-CNRS, Aix-Marseille Université, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
| | | |
Collapse
|
40
|
|
41
|
Dwyer JB, McQuown SC, Leslie FM. The dynamic effects of nicotine on the developing brain. Pharmacol Ther 2009; 122:125-39. [PMID: 19268688 DOI: 10.1016/j.pharmthera.2009.02.003] [Citation(s) in RCA: 426] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 02/05/2009] [Indexed: 12/25/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) regulate critical aspects of brain maturation during the prenatal, early postnatal, and adolescent periods. During these developmental windows, nAChRs are often transiently upregulated or change subunit composition in those neural structures that are undergoing major phases of differentiation and synaptogenesis, and are sensitive to environmental stimuli. Nicotine exposure, most often via tobacco smoke, but increasingly via nicotine replacement therapy, has been shown to have unique effects on the developing human brain. Consistent with a dynamic developmental role for acetylcholine, exogenous nicotine produces effects that are unique to the period of exposure and that impact the developing structures regulated by acetylcholine at that time. Here we present a review of the evidence, available from both the clinical literature and preclinical animal models, which suggests that the diverse effects of nicotine exposure are best evaluated in the context of regional and temporal expression patterns of nAChRs during sensitive maturational periods, and disruption of the normal developmental influences of acetylcholine. We present evidence that nicotine interferes with catecholamine and brainstem autonomic nuclei development during the prenatal period of the rodent (equivalent to first and second trimester of the human), alters the neocortex, hippocampus, and cerebellum during the early postnatal period (third trimester of the human), and influences limbic system and late monoamine maturation during adolescence.
Collapse
Affiliation(s)
- Jennifer B Dwyer
- Department of Pharmacology, Med Surge II, School of Medicine, University of California, Irvine, CA 92697, USA.
| | | | | |
Collapse
|
42
|
McCrimmon DR, Mitchell GS, Alheid GF. Overview: the neurochemistry of respiratory control. Respir Physiol Neurobiol 2008; 164:1-2. [PMID: 18721910 PMCID: PMC2642897 DOI: 10.1016/j.resp.2008.07.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 07/23/2008] [Indexed: 01/25/2023]
Abstract
This special issue of Respiratory Physiology and Neurobiology surveys a broad range of topics focused on the neurochemical control of breathing. A variety of approaches have integrated the neurochemistry of breathing with the physiology of individual neurons, with the neuroanatomy of brainstem and forebrain respiratory circuits, and with the clinical pathology of respiratory disorders all of which has been fueled by the ongoing explosion of information in the molecular biology of the nervous system. Accordingly, substantial progress has identified neurotransmitters, neuromodulators, receptors, signaling cascades, trophic factors, hormones, and genes mediating normal and pathological breathing. Dynamic changes in the neurochemistry of breathing are addressed with respect to brainstem development, environmental challenges such as intermittent or chronic hypoxia, and as a function of the sleep-wake cycle. Respiratory disruption has also been identified in an increasing variety of genetic-based disorders and remarkable progress has been made in determining the affected genes and their mutations that negatively impact respiration.
Collapse
Affiliation(s)
- Donald R. McCrimmon
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA 60611−3088
| | - Gordon S. Mitchell
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA, 53706
| | - George F. Alheid
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA 60611−3088
| |
Collapse
|