1
|
Weckerle J, Mayr CH, Fundel-Clemens K, Lämmle B, Boryn L, Thomas MJ, Bretschneider T, Luippold AH, Huber HJ, Viollet C, Rist W, Veyel D, Ramirez F, Klee S, Kästle M. Transcriptomic and Proteomic Changes Driving Pulmonary Fibrosis Resolution in Young and Old Mice. Am J Respir Cell Mol Biol 2023; 69:422-440. [PMID: 37411041 DOI: 10.1165/rcmb.2023-0012oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/06/2023] [Indexed: 07/08/2023] Open
Abstract
Bleomycin-induced pulmonary fibrosis in mice mimics major hallmarks of idiopathic pulmonary fibrosis. Yet in this model, it spontaneously resolves over time. We studied molecular mechanisms of fibrosis resolution and lung repair, focusing on transcriptional and proteomic signatures and the effect of aging. Old mice showed incomplete and delayed lung function recovery 8 weeks after bleomycin instillation. This shift in structural and functional repair in old bleomycin-treated mice was reflected in a temporal shift in gene and protein expression. We reveal gene signatures and signaling pathways that underpin the lung repair process. Importantly, the downregulation of WNT, BMP, and TGFβ antagonists Frzb, Sfrp1, Dkk2, Grem1, Fst, Fstl1, and Inhba correlated with lung function improvement. Those genes constitute a network with functions in stem cell pathways, wound, and pulmonary healing. We suggest that insufficient and delayed downregulation of those antagonists during fibrosis resolution in old mice explains the impaired regenerative outcome. Together, we identified signaling pathway molecules with relevance to lung regeneration that should be tested in-depth experimentally as potential therapeutic targets for pulmonary fibrosis.
Collapse
Affiliation(s)
| | | | | | - Bärbel Lämmle
- Global Computational Biology and Digital Sciences, and
| | | | | | - Tom Bretschneider
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany; and
| | - Andreas H Luippold
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany; and
| | | | | | - Wolfgang Rist
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany; and
| | - Daniel Veyel
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany; and
| | - Fidel Ramirez
- Global Computational Biology and Digital Sciences, and
| | - Stephan Klee
- Department of Immunology and Respiratory Disease Research
| | - Marc Kästle
- Department of Immunology and Respiratory Disease Research
| |
Collapse
|
2
|
Júnior C, Ulldemolins A, Narciso M, Almendros I, Farré R, Navajas D, López J, Eroles M, Rico F, Gavara N. Multi-Step Extracellular Matrix Remodelling and Stiffening in the Development of Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2023; 24:ijms24021708. [PMID: 36675222 PMCID: PMC9865994 DOI: 10.3390/ijms24021708] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/18/2023] Open
Abstract
The extracellular matrix (ECM) of the lung is a filamentous network composed mainly of collagens, elastin, and proteoglycans that provides structural and physical support to its populating cells. Proliferation, migration and overall behaviour of those cells is greatly determined by micromechanical queues provided by the ECM. Lung fibrosis displays an aberrant increased deposition of ECM which likely changes filament organization and stiffens the ECM, thus upregulating the profibrotic profile of pulmonary cells. We have previously used AFM to assess changes in the Young's Modulus (E) of the ECM in the lung. Here, we perform further ECM topographical, mechanical and viscoelastic analysis at the micro- and nano-scale throughout fibrosis development. Furthermore, we provide nanoscale correlations between topographical and elastic properties of the ECM fibres. Firstly, we identify a softening of the ECM after rats are instilled with media associated with recovery of mechanical homeostasis, which is hindered in bleomycin-instilled lungs. Moreover, we find opposite correlations between fibre stiffness and roughness in PBS- vs bleomycin-treated lung. Our findings suggest that changes in ECM nanoscale organization take place at different stages of fibrosis, with the potential to help identify pharmacological targets to hinder its progression.
Collapse
Affiliation(s)
- Constança Júnior
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
- The Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Anna Ulldemolins
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
- CIBER de Enfermedades Respiratorias, 28029 Madrid, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain
| | - Maria Narciso
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
- The Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Isaac Almendros
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
- CIBER de Enfermedades Respiratorias, 28029 Madrid, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain
| | - Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
- CIBER de Enfermedades Respiratorias, 28029 Madrid, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain
| | - Daniel Navajas
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
- The Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- CIBER de Enfermedades Respiratorias, 28029 Madrid, Spain
| | - Javier López
- Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d’Infection et d’Immunité de Lille, Université de Lille, CNRS, Inserm, CHU Lille, 59000 Lille, France
| | - Mar Eroles
- Aix-Marseille, CNRS, INSERM, LAI, Centuri Centre for Living Systems, 13009 Marseille, France
| | - Felix Rico
- Aix-Marseille, CNRS, INSERM, LAI, Centuri Centre for Living Systems, 13009 Marseille, France
| | - Núria Gavara
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
- The Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Correspondence:
| |
Collapse
|
3
|
Galdino de Souza D, Santos DS, Simon KS, Morais JAV, Coelho LC, Pacheco TJA, Azevedo RB, Bocca AL, Melo-Silva CA, Longo JPF. Fish Oil Nanoemulsion Supplementation Attenuates Bleomycin-Induced Pulmonary Fibrosis BALB/c Mice. NANOMATERIALS 2022; 12:nano12101683. [PMID: 35630905 PMCID: PMC9145453 DOI: 10.3390/nano12101683] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/27/2022] [Accepted: 05/05/2022] [Indexed: 02/06/2023]
Abstract
Diets rich in omega-3 or -6 fatty acids will produce different profiles for cell membranes phospholipid constitutions. Omegas 3 and 6 are part of the diet and can modulate the inflammatory profile. We evaluated the effects of the oral absorption of fish oil, when associated with a lipid nanoemulsion in an experimental pulmonary inflammatory model. Pulmonary fibrosis is a disease associated with excessive extracellular matrix deposition. We determined to investigate the morphophysiological mechanisms in mice that were pretreated after induction with bleomycin (BLM). The pretreatment was for 21 days with saline solution, sunflower oil (SO), fish oil (FO), and fish oil nanoemulsion (NEW3). The animals received a daily dose of 50 mg/Kg of docosahexaenoic acid DHA and 10 mg/Kg eicosapentaenoic (EPA) (100 mg/Kg), represented by a daily dose of 40 µL of NEW3. The blank group was treated with the same amount daily (40 µL) during the 21 days of pretreatment. The animals were treated with SO and FO, 100 mg/Kg (containing 58 mg/Kg of polyunsaturated fats/higher% linoleic acid) and 100 mg/Kg (50 mg/Kg of DHA and 10 mg/Kg EPA), respectively. A single dose of 5 mg/mL (50 μL) bleomycin sulfate, by the intratracheal surgical method in BALB/cAnNTac (BALB/c). NEW3 significantly reduced fibrotic progression, which can be evidenced by the protection from loss of body mass, increase in respiratory incursions per minute, decreased spacing of alveolar septa, decreased severity of fibrosis, and changes in the respiratory system. NEW3 attenuated the inflammatory changes developed in the experimental model of pulmonary fibrosis, while group SO showed a significant increase in inflammatory changes. This concluded that the presented results demonstrated that is possible to positively modulate the immune and inflamamtory response to an external agressor, by changing the nutitional intake of specific fatty acids, such as omega-3 placed in fish oil. Moreover, these benefits can be improved by the nanoencapsulation of fish oil in lipid nanoemulsions.
Collapse
Affiliation(s)
- Danielle Galdino de Souza
- Nanobiotechnology Laboratory, Genetics & Morphology Department, Institute of Biological Science, University of Brasília, Brasília 70910-900, Brazil; (D.G.d.S.); (D.S.S.); (J.A.V.M.); (T.J.A.P.); (R.B.A.)
| | - Débora Silva Santos
- Nanobiotechnology Laboratory, Genetics & Morphology Department, Institute of Biological Science, University of Brasília, Brasília 70910-900, Brazil; (D.G.d.S.); (D.S.S.); (J.A.V.M.); (T.J.A.P.); (R.B.A.)
| | - Karina Smidt Simon
- Applied Immunology Laboratory, Cell Biology Department, Institute of Biological Science, University of Brasília, Brasília 70910-900, Brazil; (K.S.S.); (L.C.C.); (A.L.B.)
| | - José Athayde Vasconcelos Morais
- Nanobiotechnology Laboratory, Genetics & Morphology Department, Institute of Biological Science, University of Brasília, Brasília 70910-900, Brazil; (D.G.d.S.); (D.S.S.); (J.A.V.M.); (T.J.A.P.); (R.B.A.)
| | - Luísa Coutinho Coelho
- Applied Immunology Laboratory, Cell Biology Department, Institute of Biological Science, University of Brasília, Brasília 70910-900, Brazil; (K.S.S.); (L.C.C.); (A.L.B.)
| | - Thyago José Arruda Pacheco
- Nanobiotechnology Laboratory, Genetics & Morphology Department, Institute of Biological Science, University of Brasília, Brasília 70910-900, Brazil; (D.G.d.S.); (D.S.S.); (J.A.V.M.); (T.J.A.P.); (R.B.A.)
| | - Ricardo Bentes Azevedo
- Nanobiotechnology Laboratory, Genetics & Morphology Department, Institute of Biological Science, University of Brasília, Brasília 70910-900, Brazil; (D.G.d.S.); (D.S.S.); (J.A.V.M.); (T.J.A.P.); (R.B.A.)
| | - Anamélia Lorenzetti Bocca
- Applied Immunology Laboratory, Cell Biology Department, Institute of Biological Science, University of Brasília, Brasília 70910-900, Brazil; (K.S.S.); (L.C.C.); (A.L.B.)
| | - César Augusto Melo-Silva
- Respiratory Physiology Laboratory, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil;
| | - João Paulo Figueiró Longo
- Nanobiotechnology Laboratory, Genetics & Morphology Department, Institute of Biological Science, University of Brasília, Brasília 70910-900, Brazil; (D.G.d.S.); (D.S.S.); (J.A.V.M.); (T.J.A.P.); (R.B.A.)
- Correspondence:
| |
Collapse
|
4
|
Giménez A, Duch P, Puig M, Gabasa M, Xaubet A, Alcaraz J. Dysregulated Collagen Homeostasis by Matrix Stiffening and TGF-β1 in Fibroblasts from Idiopathic Pulmonary Fibrosis Patients: Role of FAK/Akt. Int J Mol Sci 2017; 18:ijms18112431. [PMID: 29144435 PMCID: PMC5713399 DOI: 10.3390/ijms18112431] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 11/16/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an aggressive disease in which normal lung parenchyma is replaced by a stiff dysfunctional scar rich in activated fibroblasts and collagen-I. We examined how the mechanochemical pro-fibrotic microenvironment provided by matrix stiffening and TGF-β1 cooperates in the transcriptional control of collagen homeostasis in normal and fibrotic conditions. For this purpose we cultured fibroblasts from IPF patients or control donors on hydrogels with tunable elasticity, including 3D collagen-I gels and 2D polyacrylamide (PAA) gels. We found that TGF-β1 consistently increased COL1A1 while decreasing MMP1 mRNA levels in hydrogels exhibiting pre-fibrotic or fibrotic-like rigidities concomitantly with an enhanced activation of the FAK/Akt pathway, whereas FAK depletion was sufficient to abrogate these effects. We also demonstrate a synergy between matrix stiffening and TGF-β1 that was positive for COL1A1 and negative for MMP1. Remarkably, the COL1A1 expression upregulation elicited by TGF-β1 alone or synergistically with matrix stiffening were higher in IPF-fibroblasts compared to control fibroblasts in association with larger FAK and Akt activities in the former cells. These findings provide new insights on how matrix stiffening and TGF-β1 cooperate to elicit excessive collagen-I deposition in IPF, and support a major role of the FAK/Akt pathway in this cooperation.
Collapse
Affiliation(s)
- Alícia Giménez
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain.
| | - Paula Duch
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain.
| | - Marta Puig
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain.
| | - Marta Gabasa
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain.
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.
| | - Antoni Xaubet
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.
- Pneumology Service, Hospital Clínic, 08036 Barcelona, Spain.
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain.
| | - Jordi Alcaraz
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain.
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain.
| |
Collapse
|
5
|
Braun RK, Koch JM, Hacker TA, Pegelow D, Kim J, Raval AN, Schmuck EG, Schwahn DJ, Hei DJ, Centanni JM, Eldridge M, Hematti P. Cardiopulmonary and histological characterization of an acute rat lung injury model demonstrating safety of mesenchymal stromal cell infusion. Cytotherapy 2016; 18:536-45. [PMID: 26971682 DOI: 10.1016/j.jcyt.2016.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/14/2016] [Accepted: 01/26/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND AIMS In the field of cellular therapy, potential cell entrapment in the lungs following intravenous administration in a compromised or injured pulmonary system is an important concern that requires further investigation. We developed a rat model of inflammatory and fibrotic lung disease to mimic the human clinical condition of obliterative bronchiolitis (OB) and evaluate the safety of intravenous infusion of mesenchymal stromal cells (MSCs). This model was used to obtain appropriate safety information and functional characterization to support the translation of an ex vivo-generated cellular product into human clinical trials. To overcome spontaneous recovery and size limitations associated with current animal models, we used a novel multiple dose bleomycin strategy to induce lasting lung injury in rats. METHODS Intratracheal instillation of bleomycin was administered to rats on multiple days. MSCs were intravenously infused 7 days apart. Detailed pulmonary function tests including forced expiratory volume, total lung capacity, and invasive hemodynamic measurements were conducted to define the representative disease model and monitor cardiopulmonary hemodynamic consequences of the cell infusion. Post-euthanasia assessments included a thorough evaluation of lung morphology and histopathology. RESULTS The double dose bleomycin instillation regimen resulted in severe and irreversible lung injury and fibrosis. Cardiopulmonary physiological monitoring reveled that no adverse events could be attributed to the cell infusion process. DISCUSSION Although our study did not show the infusion of MSCs to result in an improvement in lung function or rescue of damaged tissue this study does confirm the safety of MSC infusion into damaged lungs.
Collapse
Affiliation(s)
- Rudolf K Braun
- Department of Pediatrics, University of Wisconsin, Madison, WI, United States
| | - Jill M Koch
- Department of Medicine, University of Wisconsin, Madison, WI, United States
| | - Timothy A Hacker
- Department of Medicine, University of Wisconsin, Madison, WI, United States
| | - David Pegelow
- Department of Pediatrics, University of Wisconsin, Madison, WI, United States
| | - Jaehyup Kim
- Department of Medicine, University of Wisconsin, Madison, WI, United States
| | - Amish N Raval
- Department of Medicine, University of Wisconsin, Madison, WI, United States
| | - Eric G Schmuck
- Department of Medicine, University of Wisconsin, Madison, WI, United States
| | - Denise J Schwahn
- Research Animal Resource Center, University of Wisconsin, Madison, WI, United States
| | - Derek J Hei
- Waisman Biomanufacturing, University of Wisconsin, Madison, WI, United States
| | - John M Centanni
- Department of Medicine, University of Wisconsin, Madison, WI, United States
| | - Marlowe Eldridge
- Department of Pediatrics, University of Wisconsin, Madison, WI, United States
| | - Peiman Hematti
- Department of Medicine, University of Wisconsin, Madison, WI, United States; University of Wisconsin Carbone Cancer Center, Madison, WI, United States.
| |
Collapse
|
6
|
Pedroza M, Le TT, Lewis K, Karmouty-Quintana H, To S, George AT, Blackburn MR, Tweardy DJ, Agarwal SK. STAT-3 contributes to pulmonary fibrosis through epithelial injury and fibroblast-myofibroblast differentiation. FASEB J 2015; 30:129-40. [PMID: 26324850 DOI: 10.1096/fj.15-273953] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 08/17/2015] [Indexed: 01/08/2023]
Abstract
Lung fibrosis is the hallmark of the interstitial lung diseases. Alveolar epithelial cell (AEC) injury is a key step that contributes to a profibrotic microenvironment. Fibroblasts and myofibroblasts subsequently accumulate and deposit excessive extracellular matrix. In addition to TGF-β, the IL-6 family of cytokines, which signal through STAT-3, may also contribute to lung fibrosis. In the current manuscript, the extent to which STAT-3 inhibition decreases lung fibrosis is investigated. Phosphorylated STAT-3 was elevated in lung biopsies from patients with idiopathic pulmonary fibrosis and bleomycin (BLM)-induced fibrotic murine lungs. C-188-9, a small molecule STAT-3 inhibitor, decreased pulmonary fibrosis in the intraperitoneal BLM model as assessed by arterial oxygen saturation (control, 84.4 ± 1.3%; C-188-9, 94.4 ± 0.8%), histology (Ashcroft score: untreated, 5.4 ± 0.25; C-188-9, 3.3 ± 0.14), and attenuated fibrotic markers such as diminished α-smooth muscle actin, reduced collagen deposition. In addition, C-188-9 decreased the expression of epithelial injury markers, including hypoxia-inducible factor-1α (HIF-1α) and plasminogen activator inhibitor-1 (PAI-1). In vitro studies show that inhibition of STAT-3 decreased IL-6- and TGF-β-induced expression of multiple genes, including HIF-1α and PAI-1, in AECs. Furthermore, C-188-9 decreased fibroblast-to-myofibroblast differentiation. Finally, TGF-β stimulation of lung fibroblasts resulted in SMAD2/SMAD3-dependent phosphorylation of STAT-3. These findings demonstrate that STAT-3 contributes to the development of lung fibrosis and suggest that STAT-3 may be a therapeutic target in pulmonary fibrosis.
Collapse
Affiliation(s)
- Mesias Pedroza
- *Department of Medicine and Department of Infectious Disease, Baylor College of Medicine, Houston, Texas, USA; and Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston Medical School, Houston, Texas, USA
| | - Thuy T Le
- *Department of Medicine and Department of Infectious Disease, Baylor College of Medicine, Houston, Texas, USA; and Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston Medical School, Houston, Texas, USA
| | - Katherine Lewis
- *Department of Medicine and Department of Infectious Disease, Baylor College of Medicine, Houston, Texas, USA; and Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston Medical School, Houston, Texas, USA
| | - Harry Karmouty-Quintana
- *Department of Medicine and Department of Infectious Disease, Baylor College of Medicine, Houston, Texas, USA; and Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston Medical School, Houston, Texas, USA
| | - Sarah To
- *Department of Medicine and Department of Infectious Disease, Baylor College of Medicine, Houston, Texas, USA; and Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston Medical School, Houston, Texas, USA
| | - Anuh T George
- *Department of Medicine and Department of Infectious Disease, Baylor College of Medicine, Houston, Texas, USA; and Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston Medical School, Houston, Texas, USA
| | - Michael R Blackburn
- *Department of Medicine and Department of Infectious Disease, Baylor College of Medicine, Houston, Texas, USA; and Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston Medical School, Houston, Texas, USA
| | - David J Tweardy
- *Department of Medicine and Department of Infectious Disease, Baylor College of Medicine, Houston, Texas, USA; and Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston Medical School, Houston, Texas, USA
| | - Sandeep K Agarwal
- *Department of Medicine and Department of Infectious Disease, Baylor College of Medicine, Houston, Texas, USA; and Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston Medical School, Houston, Texas, USA
| |
Collapse
|
7
|
Moodley Y, Vaghjiani V, Chan J, Baltic S, Ryan M, Tchongue J, Samuel CS, Murthi P, Parolini O, Manuelpillai U. Anti-inflammatory effects of adult stem cells in sustained lung injury: a comparative study. PLoS One 2013; 8:e69299. [PMID: 23936322 PMCID: PMC3731305 DOI: 10.1371/journal.pone.0069299] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 06/10/2013] [Indexed: 01/10/2023] Open
Abstract
Lung diseases are a major cause of global morbidity and mortality that are treated with limited efficacy. Recently stem cell therapies have been shown to effectively treat animal models of lung disease. However, there are limitations to the translation of these cell therapies to clinical disease. Studies have shown that delayed treatment of animal models does not improve outcomes and that the models do not reflect the repeated injury that is present in most lung diseases. We tested the efficacy of amnion mesenchymal stem cells (AM-MSC), bone marrow MSC (BM-MSC) and human amniotic epithelial cells (hAEC) in C57BL/6 mice using a repeat dose bleomycin-induced model of lung injury that better reflects the repeat injury seen in lung diseases. The dual bleomycin dose led to significantly higher levels of inflammation and fibrosis in the mouse lung compared to a single bleomycin dose. Intravenously infused stem cells were present in the lung in similar numbers at days 7 and 21 post cell injection. In addition, stem cell injection resulted in a significant decrease in inflammatory cell infiltrate and a reduction in IL-1 (AM-MSC), IL-6 (AM-MSC, BM-MSC, hAEC) and TNF-α (AM-MSC). The only trophic factor tested that increased following stem cell injection was IL-1RA (AM-MSC). IL-1RA levels may be modulated by GM-CSF produced by AM-MSC. Furthermore, only AM-MSC reduced collagen deposition and increased MMP-9 activity in the lung although there was a reduction of the pro-fibrogenic cytokine TGF-β following BM-MSC, AM-MSC and hAEC treatment. Therefore, AM-MSC may be more effective in reducing injury following delayed injection in the setting of repeated lung injury.
Collapse
Affiliation(s)
- Yuben Moodley
- School of Medicine and Pharmacology, University of Western Australia and Royal Perth Hospital, Perth, Western Australia, Australia
- Department of Respiratory and Sleep Medicine, Royal Perth Hospital, Perth, Australia
- Lung Institute of Western Australia, Perth, Australia
| | - Vijesh Vaghjiani
- Center for Reproduction and Development, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - James Chan
- Center for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Victoria, Australia
| | - Svetlana Baltic
- School of Medicine and Pharmacology, University of Western Australia and Royal Perth Hospital, Perth, Western Australia, Australia
- Lung Institute of Western Australia, Perth, Australia
| | - Marisa Ryan
- School of Medicine and Pharmacology, University of Western Australia and Royal Perth Hospital, Perth, Western Australia, Australia
- Lung Institute of Western Australia, Perth, Australia
| | - Jorge Tchongue
- Center for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Victoria, Australia
| | - Chrishan S. Samuel
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia
- Florey Neurosciences Institute and Department of Biochemistry & Molecular Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Padma Murthi
- Department of Obstetrics and Gynecology, University of Melbourne and Pregnancy Research Center, Department of Perinatal Medicine, Royal Women's Hospital, Parkville, Victoria, Australia
| | - Ornella Parolini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza–Istituto Ospedaliero, Brescia, Italy
| | - Ursula Manuelpillai
- Center for Reproduction and Development, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
8
|
Pinart M, Faffe D, Romero P. In vivo and in vitro lung mechanics by forced oscillations: Effect of bleomycin challenge. Respir Physiol Neurobiol 2012; 181:46-52. [DOI: 10.1016/j.resp.2012.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 01/25/2012] [Accepted: 01/25/2012] [Indexed: 11/26/2022]
|
9
|
Waters CM, Roan E, Navajas D. Mechanobiology in lung epithelial cells: measurements, perturbations, and responses. Compr Physiol 2012; 2:1-29. [PMID: 23728969 PMCID: PMC4457445 DOI: 10.1002/cphy.c100090] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epithelial cells of the lung are located at the interface between the environment and the organism and serve many important functions including barrier protection, fluid balance, clearance of particulate, initiation of immune responses, mucus and surfactant production, and repair following injury. Because of the complex structure of the lung and its cyclic deformation during the respiratory cycle, epithelial cells are exposed to continuously varying levels of mechanical stresses. While normal lung function is maintained under these conditions, changes in mechanical stresses can have profound effects on the function of epithelial cells and therefore the function of the organ. In this review, we will describe the types of stresses and strains in the lungs, how these are transmitted, and how these may vary in human disease or animal models. Many approaches have been developed to better understand how cells sense and respond to mechanical stresses, and we will discuss these approaches and how they have been used to study lung epithelial cells in culture. Understanding how cells sense and respond to changes in mechanical stresses will contribute to our understanding of the role of lung epithelial cells during normal function and development and how their function may change in diseases such as acute lung injury, asthma, emphysema, and fibrosis.
Collapse
|
10
|
Babin AL, Cannet C, Gérard C, Wyss D, Page CP, Beckmann N. Noninvasive assessment of bleomycin-induced lung injury and the effects of short-term glucocorticosteroid treatment in rats using MRI. J Magn Reson Imaging 2011; 33:603-14. [PMID: 21563244 DOI: 10.1002/jmri.22476] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To demonstrate the feasibility of proton MRI to noninvasively quantify bleomycin-induced injury and the effects of glucocorticosteroids in a rat model of lung fibrosis. MATERIALS AND METHODS Sprague-Dawley rats received bleomycin intra-tracheally and underwent MRI up to day 70 following injury onset. A subgroup of animals was treated with budesonide. RESULTS The response in the first 2 weeks post-bleomycin, characterized by diffuse MRI signals, was related primarily to inflammation as confirmed by histology. Later, increased signals reflected principally tissue remodeling involved in fibrosis development, as suggested by histological analysis revealing collagen deposition in the same areas where MRI signals had been detected. Budesonide administration at days 6 and 13 after bleomycin resulted in decreased MRI signals 24 h after each corticosteroid application. However, no complete signal resolution was observed. Histology showed that budesonide affected inflammation but not fibrosis. CONCLUSION The ability of MRI to noninvasively quantify lung injury in bleomycin-treated rats will facilitate in vivo pharmacological studies in this model of pulmonary fibrosis. Repetitive measurements open new avenues in testing compounds as the responses at several time points during the course of treatment can be easily compared. Specifically, studies at the chronic phase, when fibrosis is already established, become amenable.
Collapse
Affiliation(s)
- Anna L Babin
- Global Imaging Group Novartis Institutes for BioMedical Research, CH-4056 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
The lung parenchyma comprises a large number of thin-walled alveoli, forming an enormous surface area, which serves to maintain proper gas exchange. The alveoli are held open by the transpulmonary pressure, or prestress, which is balanced by tissues forces and alveolar surface film forces. Gas exchange efficiency is thus inextricably linked to three fundamental features of the lung: parenchymal architecture, prestress, and the mechanical properties of the parenchyma. The prestress is a key determinant of lung deformability that influences many phenomena including local ventilation, regional blood flow, tissue stiffness, smooth muscle contractility, and alveolar stability. The main pathway for stress transmission is through the extracellular matrix. Thus, the mechanical properties of the matrix play a key role both in lung function and biology. These mechanical properties in turn are determined by the constituents of the tissue, including elastin, collagen, and proteoglycans. In addition, the macroscopic mechanical properties are also influenced by the surface tension and, to some extent, the contractile state of the adherent cells. This chapter focuses on the biomechanical properties of the main constituents of the parenchyma in the presence of prestress and how these properties define normal function or change in disease. An integrated view of lung mechanics is presented and the utility of parenchymal mechanics at the bedside as well as its possible future role in lung physiology and medicine are discussed.
Collapse
Affiliation(s)
- Béla Suki
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA.
| | | | | |
Collapse
|
12
|
Pinart M, Faffe DS, Sapiña M, Romero PV. Dynamic nonlinearity of lung tissue: effects of strain amplitude and stress level. J Appl Physiol (1985) 2011; 110:653-60. [DOI: 10.1152/japplphysiol.01115.2010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lung tissue presents substantial nonlinear phenomena not accounted for by linear models; however, nonlinear approaches are less available. Our aim was to characterize the behavior of total harmonic distortion, an index of nonlinearity, in lung tissue strips under sinusoidal deformation at a single frequency as a function of strain amplitude and operational stress. To that end, lung parenchymal strips from healthy rats ( n = 6) were subjected to sinusoidal deformation (1 Hz) at different strain amplitudes (Δε = 4, 8, 12, 16, and 20%) and operating stresses (σop = 6, 8, 10, 12, 14, and 16 hPa). Additional rats ( n = 9) were intratracheally instilled with saline or bleomycin (2.5 U/kg, 3 times 1 wk apart), killed 28 days after the last instillation, and their lung tissue strips were studied at 5 and 10 hPa σop and 5% Δε. In both cases, harmonic distortion (HD%) of input (strain) and output (stress) signals were determined. In healthy strips, HD% increased linearly with Δε, stress amplitude, and minimum stress by cycle variations, but showed no significant change with σop levels. A prediction model could be determined as a function of operational stress and stress amplitude. Harmonic distortion was significantly increased in bleomycin-treated strips compared with controls and showed positive correlation with E behavior in both normal and diseased strips. We concluded that HD% can be useful as a single and simple parameter of lung tissue nonlinearity.
Collapse
Affiliation(s)
- Mariona Pinart
- Laboratory of Experimental Pneumology, IDIBELL, L’Hospitalet, Barcelona, Spain
| | | | | | | |
Collapse
|
13
|
Stephen MJ, Emami K, Woodburn JM, Chia E, Kadlecek S, Zhu J, Pickup S, Ishii M, Rizi RR, Rossman M. Quantitative assessment of lung ventilation and microstructure in an animal model of idiopathic pulmonary fibrosis using hyperpolarized gas MRI. Acad Radiol 2010; 17:1433-43. [PMID: 20934126 DOI: 10.1016/j.acra.2010.06.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 06/24/2010] [Accepted: 06/24/2010] [Indexed: 11/16/2022]
Abstract
RATIONALE AND OBJECTIVES The use of hyperpolarized (3)He magnetic resonance imaging as a quantitative lung imaging tool has progressed rapidly in the past decade, mostly in the assessment of the airway diseases chronic obstructive pulmonary disease and asthma. This technique has shown potential to assess both structural and functional information in healthy and diseased lungs. In this study, the regional measurements of structure and function were applied to a bleomycin rat model of interstitial lung disease. MATERIALS AND METHODS Male Sprague-Dawley rats (weight, 300-350 g) were administered intratracheal bleomycin. After 3 weeks, apparent diffusion coefficient and fractional ventilation were measured by (3)He magnetic resonance imaging and pulmonary function testing using a rodent-specific plethysmography chamber. Sensitized and healthy animals were then compared using threshold analysis to assess the potential sensitivity of these techniques to pulmonary abnormalities. RESULTS No significant changes were observed in total lung volume and compliance between the two groups. Airway resistance elevated and forced expiratory volume significantly declined in the 3-week bleomycin rats, and fractional ventilation was significantly decreased compared to control animals (P < .0004). The apparent diffusion coefficient of (3)He showed a smaller change but still a significant decrease in 3-week bleomycin animals (P < .05). CONCLUSIONS Preliminary results suggest that quantitative (3)He magnetic resonance imaging can be a sensitive and noninvasive tool to assess changes in an animal interstitial lung disease model. This technique may be useful for longitudinal animal studies and also in the investigation of human interstitial lung diseases.
Collapse
Affiliation(s)
- Michael J Stephen
- Department of Pulmonary and Critical Care, 834 W Gates Building, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Scotton CJ, Chambers RC. Bleomycin revisited: towards a more representative model of IPF? Am J Physiol Lung Cell Mol Physiol 2010; 299:L439-41. [DOI: 10.1152/ajplung.00258.2010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Chris J. Scotton
- Centre for Respiratory Research, University College London, Rayne Institute, London, United Kingdom
| | - Rachel C. Chambers
- Centre for Respiratory Research, University College London, Rayne Institute, London, United Kingdom
| |
Collapse
|