1
|
Maletz SN, Reid BT, Varga AG, Levitt ES. Nucleus Tractus Solitarius Neurons Activated by Hypercapnia and Hypoxia Lack Mu Opioid Receptor Expression. Front Mol Neurosci 2022; 15:932189. [PMID: 35898697 PMCID: PMC9309891 DOI: 10.3389/fnmol.2022.932189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022] Open
Abstract
Impaired chemoreflex responses are a central feature of opioid-induced respiratory depression, however, the mechanism through which mu opioid receptor agonists lead to diminished chemoreflexes is not fully understood. One brainstem structure involved in opioid-induced impairment of chemoreflexes is the nucleus of the solitary tract (NTS), which contains a population of neurons that express mu opioid receptors. Here, we tested whether caudal NTS neurons activated during the chemoreflex challenge express mu opioid receptors and overlap with neurons activated by opioids. Using genetic labeling of mu opioid receptor-expressing neurons and cFos immunohistochemistry as a proxy for neuronal activation, we examined the distribution of activated NTS neurons following hypercapnia, hypoxia, and morphine administration. The main finding was that hypoxia and hypercapnia primarily activated NTS neurons that did not express mu opioid receptors. Furthermore, concurrent administration of morphine with hypercapnia induced cFos expression in non-overlapping populations of neurons. Together these results suggest an indirect effect of opioids within the NTS, which could be mediated through mu opioid receptors on afferents and/or inhibitory interneurons.
Collapse
Affiliation(s)
- Sebastian N. Maletz
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, United States
| | - Brandon T. Reid
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, United States
| | - Adrienn G. Varga
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, United States
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, United States
| | - Erica S. Levitt
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, United States
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, United States
- *Correspondence: Erica S. Levitt ; orcid.org/0000-0002-3634-6594
| |
Collapse
|
2
|
Hinojo CM, Ciarlone GE, D'Agostino DP, Dean JB. Exogenous ketone salts inhibit superoxide production in the rat caudal solitary complex during exposure to normobaric and hyperbaric hyperoxia. J Appl Physiol (1985) 2021; 130:1936-1954. [PMID: 33661724 DOI: 10.1152/japplphysiol.01071.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The use of hyperbaric oxygen (HBO2) in hyperbaric and undersea medicine is limited by the risk of seizures [i.e., central nervous system (CNS) oxygen toxicity, CNS-OT] resulting from increased production of reactive oxygen species (ROS) in the CNS. Importantly, ketone supplementation has been shown to delay onset of CNS-OT in rats by ∼600% in comparison with control groups (D'Agostino DP, Pilla R, Held HE, Landon CS, Puchowicz M, Brunengraber H, Ari C, Arnold P, Dean JB. Am J Physiol Regu Integr Comp Physiol 304: R829-R836, 2013). We have tested the hypothesis that ketone body supplementation inhibits ROS production during exposure to hyperoxygenation in rat brainstem cells. We measured the rate of cellular superoxide ([Formula: see text]) production in the caudal solitary complex (cSC) in rat brain slices using a fluorogenic dye, dihydroethidium (DHE), during exposure to control O2 (0.4 ATA) followed by 1-2 h of normobaric oxygen (NBO2) (0.95 ATA) and HBO2 (1.95, and 4.95 ATA) hyperoxia, with and without a 50:50 mixture of ketone salts (KS) dl-β-hydroxybutyrate + acetoacetate. All levels of hyperoxia tested stimulated [Formula: see text] production similarly in cSC cells and coexposure to 5 mM KS during hyperoxia significantly blunted the rate of increase in DHE fluorescence intensity during exposure to hyperoxia. Not all cells tested produced [Formula: see text] at the same rate during exposure to control O2 and hyperoxygenation; cells that increased [Formula: see text] production by >25% during hyperoxia in comparison with baseline were inhibited by KS, whereas cells that did not reach that threshold during hyperoxia were unaffected by KS. These findings support the hypothesis that ketone supplementation decreases the steady-state concentrations of superoxide produced during exposure to NBO2 and HBO2 hyperoxia.NEW & NOTEWORTHY Exposure of rat medullary tissue slices to levels of O2 that mimic those that cause seizures in rats stimulates cellular superoxide ([Formula: see text]) production to varying degrees. Cellular [Formula: see text] generation in the caudal solitary complex is variable during exposure to control O2 and hyperoxia and significantly decreases during ketone supplementation. Our findings support the theory that ketone supplementation delays onset of central nervous system oxygen toxicity in mammals, in part, by decreasing [Formula: see text] production in O2-sensitive neurons.
Collapse
Affiliation(s)
- Christopher M Hinojo
- Department of Molecular Pharmacology and Physiology, Hyperbaric Biomedical Research Laboratory, Morsani College of Medicine, MDC 8, University of South Florida, Tampa, Florida
| | - Geoffrey E Ciarlone
- Department of Molecular Pharmacology and Physiology, Hyperbaric Biomedical Research Laboratory, Morsani College of Medicine, MDC 8, University of South Florida, Tampa, Florida
| | - Dominic P D'Agostino
- Department of Molecular Pharmacology and Physiology, Hyperbaric Biomedical Research Laboratory, Morsani College of Medicine, MDC 8, University of South Florida, Tampa, Florida.,Institute of Human and Machine Cognition, Ocala, Florida
| | - Jay B Dean
- Department of Molecular Pharmacology and Physiology, Hyperbaric Biomedical Research Laboratory, Morsani College of Medicine, MDC 8, University of South Florida, Tampa, Florida
| |
Collapse
|
3
|
Maia OAC, Malheiros-Lima MR, Oliveira MA, Castro CL, Moriya HT, Tavares-de-Lima W, Takakura AC, Moreira TS. Pilocarpine-induced status epilepticus reduces chemosensory control of breathing. Brain Res Bull 2020; 161:98-105. [PMID: 32433938 DOI: 10.1016/j.brainresbull.2020.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/27/2020] [Accepted: 05/02/2020] [Indexed: 12/14/2022]
Abstract
One of the possible causes of death in epilepsy is breathing disorders, especially apneas, which lead to an increase in CO2 levels (hypercapnia) and/or a decrease in O2 levels in arterial blood (hypoxemia). The respiratory neurons located in the ventral brainstem respiratory column are the main groups responsible for controlling breathing. Recent data from our group demonstrated respiratory changes in two experimental models of epilepsy, i.e. audiogenic epilepsy, and amygdala rapid kindling. Here, we aimed to evaluate respiratory changes in the classic model of temporal lobe epilepsy induced by intra-hippocampal injection of pilocarpine. Adult Wistar rats with stainless-steel cannulas implanted in the hippocampus region were used. The animals were submitted to pilocarpine injection (2.4 mg/μL, N = 12-15) or saline (N = 9) into the hippocampus. The respiratory parameters analyzed by whole-body plethysmography were respiratory rate (fR), tidal volume (VT) and ventilation (VE). Respiratory mechanics such as Newtonian airway resistance (Rn), viscance of the pulmonary parenchyma (G) and the elastance of the pulmonary parenchyma (H) were also investigated. No changes in baseline breathing were detected 15 or 30 days after pilocarpine-induced status epilepticus (SE). However, 30 days after pilocarpine-induced SE, a significant reduction in VE was observed during hypercapnic (7% CO2) stimulation, without affecting the hypoxia (8% O2) ventilatory response. We also did not observe changes in respiratory mechanics. The present results suggest that the impairment of the hypercapnia ventilatory response in pilocarpine-induced SE could be related to a presumable degeneration of brainstem respiratory neurons but not to peripheral mechanisms.
Collapse
Affiliation(s)
- Octávio A C Maia
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of Sao Paulo, 1524 Prof Lineu Prestes Av 05508-000, Sao Paulo, SP, Brazil
| | - Milene R Malheiros-Lima
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of Sao Paulo, 1524 Prof Lineu Prestes Av 05508-000, Sao Paulo, SP, Brazil
| | - Maria A Oliveira
- Department of Pharmacology, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Claudio L Castro
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of Sao Paulo, 1524 Prof Lineu Prestes Av 05508-000, Sao Paulo, SP, Brazil
| | - Henrique T Moriya
- Department of Engineering of Control and Telecommunication, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Wothan Tavares-de-Lima
- Department of Pharmacology, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Ana C Takakura
- Department of Pharmacology, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of Sao Paulo, 1524 Prof Lineu Prestes Av 05508-000, Sao Paulo, SP, Brazil.
| |
Collapse
|
4
|
Matott MP, Hasser EM, Kline DD. Sustained Hypoxia Alters nTS Glutamatergic Signaling and Expression and Function of Excitatory Amino Acid Transporters. Neuroscience 2020; 430:131-140. [PMID: 32032667 PMCID: PMC7560968 DOI: 10.1016/j.neuroscience.2020.01.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 01/11/2020] [Accepted: 01/23/2020] [Indexed: 01/16/2023]
Abstract
Glutamate is the major excitatory neurotransmitter in the nucleus tractus solitarii (nTS) and mediates chemoreflex function during periods of low oxygen (i.e. hypoxia). We have previously shown that nTS excitatory amino acid transporters (EAATs), specifically EAAT-2, located on glia modulate neuronal activity, cardiorespiratory and chemoreflex function under normal conditions via its tonic uptake of extracellular glutamate. Chronic sustained hypoxia (SH) elevates nTS synaptic transmission and chemoreflex function. The goal of this study was to determine the extent to which glial EAAT-2 contributes to SH-induced nTS synaptic alterations. To do so, male Sprague-Dawley rats (4-7 weeks) were exposed to either 1, 3, or 7 days of SH (10% O2, 24 h/day) and compared to normoxic controls (21% O2, 24 h/day, i.e., 0 days SH). After which, the nTS was harvested for patch clamp electrophysiology, quantitative real-time PCR, immunohistochemistry and immunoblots. SH induced time- and parameter-dependent increases in excitatory postsynaptic currents (EPSCs). TS-evoked EPSC amplitude increased after 1D SH which returned at 3D and 7D SH. Spontaneous EPSC frequency increased only after 3D SH, which returned to normoxic levels at 7D SH. EPSC enhancement occurred primarily by presynaptic mechanisms. Inhibition of EAAT-2 with dihydrokainate (DHK, 300 µM) did not alter EPSCs following 1D SH but induced depolarizing inward currents (Ihold). After 3D SH, DHK decreased TS-EPSC amplitude yet its resulting Ihold was eliminated. EAAT-2 mRNA and protein increased after 3D and 7D SH, respectively. These data suggest that SH alters the expression and function of EAAT-2 which may have a neuroprotective effect.
Collapse
Affiliation(s)
- Michael P Matott
- Dept. of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, 134 Research Park Drive, Columbia, MO 65211, USA
| | - Eileen M Hasser
- Dept. of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, 134 Research Park Drive, Columbia, MO 65211, USA
| | - David D Kline
- Dept. of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, 134 Research Park Drive, Columbia, MO 65211, USA.
| |
Collapse
|
5
|
Zhuang J, Gao X, Gao F, Xu F. Mu-opioid receptors in the caudomedial NTS are critical for respiratory responses to stimulation of bronchopulmonary C-fibers and carotid body in conscious rats. Respir Physiol Neurobiol 2017; 235:71-78. [DOI: 10.1016/j.resp.2016.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/06/2016] [Accepted: 10/09/2016] [Indexed: 01/08/2023]
|
6
|
Zena LA, Fonseca EM, Santin JM, Porto L, Gargaglioni LH, Bícego KC, Hartzler LK. Effect of temperature on chemosensitive locus coeruleus neurons of savannah monitor lizards, Varanus exanthematicus. ACTA ACUST UNITED AC 2016; 219:2856-2864. [PMID: 27401762 DOI: 10.1242/jeb.138800] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 06/29/2016] [Indexed: 11/20/2022]
Abstract
Savannah monitor lizards (Varanus exanthematicus) are unusual among ectothermic vertebrates in maintaining arterial pH nearly constant during changes in body temperature in contrast to the typical α-stat regulating strategy of most other ectotherms. Given the importance of pH in the control of ventilation, we examined the CO2/H+ sensitivity of neurons from the locus coeruleus (LC) region of monitor lizard brainstems. Whole-cell patch-clamp electrophysiology was used to record membrane voltage in LC neurons in brainstem slices. Artificial cerebral spinal fluid equilibrated with 80% O2, 0.0-10.0% CO2, balance N2, was superfused across brainstem slices. Changes in firing rate of LC neurons were calculated from action potential recordings to quantify the chemosensitive response to hypercapnic acidosis. Our results demonstrate that the LC brainstem region contains neurons that can be excited or inhibited by, and/or are not sensitive to CO2 in V. exanthematicus While few LC neurons were activated by hypercapnic acidosis (15%), a higher proportion of the LC neurons responded by decreasing their firing rate during exposure to high CO2 at 20°C (37%); this chemosensitive response was no longer exhibited when the temperature was increased to 30°C. Further, the proportion of chemosensitive LC neurons changed at 35°C with a reduction in CO2-inhibited (11%) neurons and an increase in CO2-activated (35%) neurons. Expressing a high proportion of inhibited neurons at low temperature may provide insights into mechanisms underlying the temperature-dependent pH-stat regulatory strategy of savannah monitor lizards.
Collapse
Affiliation(s)
- Lucas A Zena
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal, São Paulo 14884-900, Brazil Department of Biological Sciences, Wright State University, Dayton, OH, USA National Institute of Science and Technology in Comparative Physiology (INCT Fisiologia Comparada), Brazil
| | - Elisa M Fonseca
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal, São Paulo 14884-900, Brazil Department of Biological Sciences, Wright State University, Dayton, OH, USA National Institute of Science and Technology in Comparative Physiology (INCT Fisiologia Comparada), Brazil
| | - Joseph M Santin
- Department of Biological Sciences, Wright State University, Dayton, OH, USA
| | - Lays Porto
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal, São Paulo 14884-900, Brazil Department of Biological Sciences, Wright State University, Dayton, OH, USA National Institute of Science and Technology in Comparative Physiology (INCT Fisiologia Comparada), Brazil
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal, São Paulo 14884-900, Brazil National Institute of Science and Technology in Comparative Physiology (INCT Fisiologia Comparada), Brazil
| | - Kênia C Bícego
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal, São Paulo 14884-900, Brazil National Institute of Science and Technology in Comparative Physiology (INCT Fisiologia Comparada), Brazil
| | - Lynn K Hartzler
- Department of Biological Sciences, Wright State University, Dayton, OH, USA
| |
Collapse
|
7
|
Pamenter ME, Powell FL. Time Domains of the Hypoxic Ventilatory Response and Their Molecular Basis. Compr Physiol 2016; 6:1345-85. [PMID: 27347896 DOI: 10.1002/cphy.c150026] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ventilatory responses to hypoxia vary widely depending on the pattern and length of hypoxic exposure. Acute, prolonged, or intermittent hypoxic episodes can increase or decrease breathing for seconds to years, both during the hypoxic stimulus, and also after its removal. These myriad effects are the result of a complicated web of molecular interactions that underlie plasticity in the respiratory control reflex circuits and ultimately control the physiology of breathing in hypoxia. Since the time domains of the physiological hypoxic ventilatory response (HVR) were identified, considerable research effort has gone toward elucidating the underlying molecular mechanisms that mediate these varied responses. This research has begun to describe complicated and plastic interactions in the relay circuits between the peripheral chemoreceptors and the ventilatory control circuits within the central nervous system. Intriguingly, many of these molecular pathways seem to share key components between the different time domains, suggesting that varied physiological HVRs are the result of specific modifications to overlapping pathways. This review highlights what has been discovered regarding the cell and molecular level control of the time domains of the HVR, and highlights key areas where further research is required. Understanding the molecular control of ventilation in hypoxia has important implications for basic physiology and is emerging as an important component of several clinical fields. © 2016 American Physiological Society. Compr Physiol 6:1345-1385, 2016.
Collapse
Affiliation(s)
| | - Frank L Powell
- Physiology Division, Department of Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
8
|
Role of Astrocytes in Central Respiratory Chemoreception. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 949:109-145. [PMID: 27714687 DOI: 10.1007/978-3-319-40764-7_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Astrocytes perform various homeostatic functions in the nervous system beyond that of a supportive or metabolic role for neurons. A growing body of evidence indicates that astrocytes are crucial for central respiratory chemoreception. This review presents a classical overview of respiratory central chemoreception and the new evidence for astrocytes as brainstem sensors in the respiratory response to hypercapnia. We review properties of astrocytes for chemosensory function and for modulation of the respiratory network. We propose that astrocytes not only mediate between CO2/H+ levels and motor responses, but they also allow for two emergent functions: (1) Amplifying the responses of intrinsic chemosensitive neurons through feedforward signaling via gliotransmitters and; (2) Recruiting non-intrinsically chemosensitive cells thanks to volume spreading of signals (calcium waves and gliotransmitters) to regions distant from the CO2/H+ sensitive domains. Thus, astrocytes may both increase the intensity of the neuron responses at the chemosensitive sites and recruit of a greater number of respiratory neurons to participate in the response to hypercapnia.
Collapse
|
9
|
Matott M, Ciarlone G, Putnam R, Dean J. Normobaric hyperoxia (95% O2) stimulates CO2-sensitive and CO2-insensitive neurons in the caudal solitary complex of rat medullary tissue slices maintained in 40% O2. Neuroscience 2014; 270:98-122. [DOI: 10.1016/j.neuroscience.2014.03.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/09/2014] [Accepted: 03/10/2014] [Indexed: 12/13/2022]
|
10
|
Substance P differentially modulates firing rate of solitary complex (SC) neurons from control and chronic hypoxia-adapted adult rats. PLoS One 2014; 9:e88161. [PMID: 24516602 PMCID: PMC3917864 DOI: 10.1371/journal.pone.0088161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 01/03/2014] [Indexed: 11/19/2022] Open
Abstract
NK1 receptors, which bind substance P, are present in the majority of brainstem regions that contain CO2/H(+)-sensitive neurons that play a role in central chemosensitivity. However, the effect of substance P on the chemosensitive response of neurons from these regions has not been studied. Hypoxia increases substance P release from peripheral afferents that terminate in the caudal nucleus tractus solitarius (NTS). Here we studied the effect of substance P on the chemosensitive responses of solitary complex (SC: NTS and dorsal motor nucleus) neurons from control and chronic hypoxia-adapted (CHx) adult rats. We simultaneously measured intracellular pH and electrical responses to hypercapnic acidosis in SC neurons from control and CHx adult rats using the blind whole cell patch clamp technique and fluorescence imaging microscopy. Substance P significantly increased the basal firing rate in SC neurons from control and CHx rats, although the increase was smaller in CHx rats. However, substance P did not affect the chemosensitive response of SC neurons from either group of rats. In conclusion, we found that substance P plays a role in modulating the basal firing rate of SC neurons but the magnitude of the effect is smaller for SC neurons from CHx adult rats, implying that NK1 receptors may be down regulated in CHx adult rats. Substance P does not appear to play a role in modulating the firing rate response to hypercapnic acidosis of SC neurons from either control or CHx adult rats.
Collapse
|
11
|
Wilkinson KA, Fu Z, Powell FL. Ventilatory effects of substance P-saporin lesions in the nucleus tractus solitarii of chronically hypoxic rats. Am J Physiol Regul Integr Comp Physiol 2011; 301:R343-50. [PMID: 21593425 PMCID: PMC3154706 DOI: 10.1152/ajpregu.00375.2010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 05/16/2011] [Indexed: 01/09/2023]
Abstract
During ventilatory acclimatization to hypoxia (VAH), time-dependent increases in ventilation lower Pco(2) levels, and this persists on return to normoxia. We hypothesized that plasticity in the caudal nucleus tractus solitarii (NTS) contributes to VAH, as the NTS receives the first synapse from the carotid body chemoreceptor afferents and also contains CO(2)-sensitive neurons. We lesioned cells in the caudal NTS containing the neurokinin-1 receptor by microinjecting the neurotoxin saporin conjugated to substance P and measured ventilatory responses in awake, unrestrained rats 18 days later. Lesions did not affect hypoxic or hypercapnic ventilatory responses in normoxic control rats, in contrast to published reports for similar lesions in other central chemosensitive areas. Also, lesions did not affect the hypercapnic ventilatory response in chronically hypoxic rats (inspired Po(2) = 90 Torr for 7 days). These results suggest functional differences between central chemoreceptor sites. However, lesions significantly increased ventilation in normoxia or acute hypoxia in chronically hypoxic rats. Hence, chronic hypoxia increases an inhibitory effect of neurokinin-1 receptor neurons in the NTS on ventilatory drive, indicating that these neurons contribute to plasticity during chronic hypoxia, although such plasticity does not explain VAH.
Collapse
Affiliation(s)
- Katherine A Wilkinson
- Division of Physiology, Department of Medicine, University of California, San Diego, USA.
| | | | | |
Collapse
|
12
|
Popa D, Fu Z, Go A, Powell FL. Ibuprofen blocks time-dependent increases in hypoxic ventilation in rats. Respir Physiol Neurobiol 2011; 178:381-6. [PMID: 21457799 DOI: 10.1016/j.resp.2011.03.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/23/2011] [Accepted: 03/23/2011] [Indexed: 10/18/2022]
Abstract
Recently, inflammatory processes have been shown to increase O(2)-sensitivity of the carotid body during chronic sustained hypoxia [Liu, X., He, L., Stensaas, L., Dinger, B., Fidone, S., 2009. Adaptation to chronic hypoxia involves immune cell invasion and increased expression of inflammatory cytokines in rat carotid body. Am. J. Physiol. Lung Cell Mol. Physiol. 296, L158-L166]. We hypothesized that blocking inflammation with ibuprofen would reduce ventilatory acclimatization to hypoxia by blocking such increases in carotid body O(2) sensitivity. We tested this in conscious rats treated with ibuprofen (4mg/kg IP daily) or saline during acclimatization to hypoxia ( [Formula: see text] for 7 days). Ibuprofen blocked the increase in hypoxic ventilation observed in chronically hypoxic rats treated with saline; ibuprofen had no effects on ventilation in normoxic control rats. Ibuprofen blocked increases in inflammatory cytokines (IL-1β, IL-6) in the brainstem with chronic hypoxia. The data supports our hypothesis and further analysis indicates that ibuprofen also blocks inflammatory processes in the central nervous system contributing to ventilatory acclimatization to hypoxia. Possible mechanisms linking inflammatory and hypoxic signaling are reviewed.
Collapse
Affiliation(s)
- Dan Popa
- Division of Physiology, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0623, United States
| | | | | | | |
Collapse
|
13
|
Theory of gastric CO2 ventilation and its control during respiratory acidosis: Implications for central chemosensitivity, pH regulation, and diseases causing chronic CO2 retention. Respir Physiol Neurobiol 2011; 175:189-209. [DOI: 10.1016/j.resp.2010.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 12/01/2010] [Accepted: 12/01/2010] [Indexed: 01/16/2023]
|
14
|
Dean JB, Putnam RW. The caudal solitary complex is a site of central CO(2) chemoreception and integration of multiple systems that regulate expired CO(2). Respir Physiol Neurobiol 2010; 173:274-87. [PMID: 20670695 DOI: 10.1016/j.resp.2010.07.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 06/30/2010] [Accepted: 07/01/2010] [Indexed: 12/16/2022]
Abstract
The solitary complex is comprised of the nucleus tractus solitarius (NTS, sensory) and dorsal motor nucleus of the vagus (DMV, motor), which functions as an integrative center for neural control of multiple systems including the respiratory, cardiovascular and gastroesophageal systems. The caudal NTS-DMV is one of the several sites of central CO(2) chemoreception in the brain stem. CO(2) chemosensitive neurons are fully responsive to CO(2) at birth and their responsiveness seems to depend on pH-sensitive K(+) channels. In addition, chemosensitive neurons are highly sensitive to conditions such as hypoxia (e.g., neural plasticity) and hyperoxia (e.g., stimulation), suggesting they employ redox and nitrosative signaling mechanisms. Here we review the cellular and systems physiological evidence supporting our hypothesis that the caudal NTS-DMV is a site for integration of respiratory, cardiovascular and gastroesophageal systems that work together to eliminate CO(2) during acute and chronic respiratory acidosis to restore pH homeostasis.
Collapse
Affiliation(s)
- Jay B Dean
- Dept. of Molecular Pharmacology & Physiology, Hyperbaric Biomedical Research Laboratory, University of South Florida, Tampa, FL 33612, USA.
| | | |
Collapse
|
15
|
Abstract
Considerable progress has been made elucidating the cellular signals and ion channel targets involved in the response to increased CO2/H+ of brain stem neurons from chemosensitive regions. Intracellular pH (pHi) does not exhibit recovery from an acid load when extracellular pH (pHo) is also acid. This lack of pHi recovery is an essential but not unique feature of all chemosensitive neurons. These neurons have pH-regulating transporters, especially Na+/H+ exchangers, but some may also contain HCO3--dependent transporters as well. Studies in locus ceruleus (LC) neurons have shown that firing rate will increase in response to decreased pHi or pHo but not in response to increased CO2 alone. A number of K+ channels, as well as other channels, have been suggested to be targets of these pH changes with a fall of pH inhibiting these channels. In neurons from some regions it appears that multiple signals and multiple channels are involved in their chemosensitive response while in neurons from other regions a single signal and/or channel may be involved. Despite the progress, a number of key issues remain to be studied. A detailed study of chemosensitive signaling needs to be done in neurons from more brain stem regions. Fully describing the chemosensitive signaling pathways in brain stem neurons will offer new targets for therapies to alter the strength of central chemosensitivity and will yield new insights into the reason why there are multiple central chemoreceptive sites.
Collapse
Affiliation(s)
- Robert W Putnam
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University Boonshoft School of Medicine, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA.
| |
Collapse
|
16
|
Riley D, Dwinell M, Qian B, Krause KL, Bonis JM, Neumueller S, Marshall BD, Hodges MR, Forster HV. Differences between three inbred rat strains in number of K+ channel-immunoreactive neurons in the medullary raphé nucleus. J Appl Physiol (1985) 2009; 108:1003-10. [PMID: 19926827 DOI: 10.1152/japplphysiol.00625.2009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ventilatory sensitivity to hypercapnia is greater in Dahl salt-sensitive (SS) rats than in Fawn Hooded hypertensive (FHH) and Brown Norway (BN) inbred rats. Since pH-sensitive potassium ion (K(+)) channels are postulated to contribute to the sensing and signaling of changes in CO(2)-H(+) in chemosensitive neurons, we tested the hypothesis that there are more pH-sensitive K(+) channel-immunoreactive (ir) neurons within the medullary raphé nuclei of the highly chemosensitive SS rats than in the other two strains. Medullary tissues from male and female BN, FHH, and SS rats were stained with cresyl violet or with antibodies targeting TASK-1, K(v)1.4, and Kir2.3 channels. K(+) channel-ir neurons were quantified and compared with the total neurons in the region. The total number of neurons in the medullary raphé 1) was greater in male FHH than the other male rats, 2) did not differ among the female rats, and 3) did not differ between sexes. The average number of K(+) channel-ir neurons per section was 30-60 neurons higher in the male SS than in the other rat strains. In contrast, for the females, the number of K(+) channel-ir neurons was greatest in the BN. We also found significant differences in the number of K(+) channel-ir neurons between sexes in SS (males > females) and BN (females > males) rats, but not the FHH strain. Our findings support the hypothesis for males but not for females, suggesting that both genetic background and sex are determinants of K(+) channel immunoreactivity of medullary raphé neurons, and that the expression of pH-sensitive K(+) channels in the medullary raphé does not correlate with the ventilatory sensitivity to hypercapnia.
Collapse
Affiliation(s)
- D Riley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | | | | | | | |
Collapse
|