1
|
Callado Pérez A, Demers M, Fassihi A, Moore JD, Kleinfeld D, Deschênes M. A brainstem circuit for the expression of defensive facial reactions in rat. Curr Biol 2023; 33:4030-4035.e3. [PMID: 37703878 PMCID: PMC11034846 DOI: 10.1016/j.cub.2023.08.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/08/2023] [Accepted: 08/15/2023] [Indexed: 09/15/2023]
Abstract
The brainstem houses neuronal circuits that control homeostasis of vital functions. These include the depth and rate of breathing1,2 and, critically, apnea, a transient cessation of breathing that prevents noxious vapors from entering further into the respiratory tract. Current thinking is that this reflex is mediated by two sensory pathways. One known pathway involves vagal and glossopharyngeal afferents that project to the nucleus of the solitary tract.3,4,5 Yet, apnea induced by electrical stimulation of the nasal epithelium or delivery of ammonia vapors to the nose persists after brainstem transection at the pontomedullary junction, indicating that the circuitry that mediates this reflex is intrinsic to the medulla.6 A second potential pathway, consistent with this observation, involves trigeminal afferents from the nasal cavity that project to the muralis subnucleus of the spinal trigeminal complex.7,8 Notably, the apneic reflex is not dependent on olfaction as it can be initiated even after disruption of olfactory pathways.9 We investigated how subnucleus muralis cells mediate apnea in rat. By means of electrophysiological recordings and lesions in anesthetized rats, we identified a pathway from chemosensors in the nostrils through the muralis subnucleus and onto both the preBötzinger and facial motor nuclei. We then monitored breathing and orofacial reactions upon ammonia delivery near the nostril of alert, head-restrained rats. The apneic reaction was associated with a grimace, characterized by vibrissa protraction, wrinkling of the nose, and squinting of the eyes. Our results show that a brainstem circuit can control facial expressions for nocifensive and potentially pain-inducing stimuli.
Collapse
Affiliation(s)
- Amalia Callado Pérez
- Cervo Research Center, Université Laval, Québec City, Québec G1J 2R3, Canada; Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maxime Demers
- Cervo Research Center, Université Laval, Québec City, Québec G1J 2R3, Canada
| | - Arash Fassihi
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jeffrey D Moore
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - David Kleinfeld
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA; Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Martin Deschênes
- Cervo Research Center, Université Laval, Québec City, Québec G1J 2R3, Canada.
| |
Collapse
|
2
|
Panneton WM, Gan Q. The Mammalian Diving Response: Inroads to Its Neural Control. Front Neurosci 2020; 14:524. [PMID: 32581683 PMCID: PMC7290049 DOI: 10.3389/fnins.2020.00524] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 04/27/2020] [Indexed: 01/03/2023] Open
Abstract
The mammalian diving response (DR) is a remarkable behavior that was first formally studied by Laurence Irving and Per Scholander in the late 1930s. The DR is called such because it is most prominent in marine mammals such as seals, whales, and dolphins, but nevertheless is found in all mammals studied. It consists generally of breathing cessation (apnea), a dramatic slowing of heart rate (bradycardia), and an increase in peripheral vasoconstriction. The DR is thought to conserve vital oxygen stores and thus maintain life by directing perfusion to the two organs most essential for life-the heart and the brain. The DR is important, not only for its dramatic power over autonomic function, but also because it alters normal homeostatic reflexes such as the baroreceptor reflex and respiratory chemoreceptor reflex. The neurons driving the reflex circuits for the DR are contained within the medulla and spinal cord since the response remains after the brainstem transection at the pontomedullary junction. Neuroanatomical and physiological data suggesting brainstem areas important for the apnea, bradycardia, and peripheral vasoconstriction induced by underwater submersion are reviewed. Defining the brainstem circuit for the DR may open broad avenues for understanding the mechanisms of suprabulbar control of autonomic function in general, as well as implicate its role in some clinical states. Knowledge of the proposed diving circuit should facilitate studies on elite human divers performing breath-holding dives as well as investigations on sudden infant death syndrome (SIDS), stroke, migraine headache, and arrhythmias. We have speculated that the DR is the most powerful autonomic reflex known.
Collapse
Affiliation(s)
- W. Michael Panneton
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Qi Gan
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, St. Louis, MO, United States
- Department of Pediatrics, School of Medicine, Saint Louis University, St. Louis, MO, United States
| |
Collapse
|
3
|
Golanov EV, Shiflett JM, Britz GW. Diving Response in Rats: Role of the Subthalamic Vasodilator Area. Front Neurol 2016; 7:157. [PMID: 27708614 PMCID: PMC5030511 DOI: 10.3389/fneur.2016.00157] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/08/2016] [Indexed: 11/29/2022] Open
Abstract
Diving response (DR) is a powerful integrative response targeted toward survival of the hypoxic/anoxic conditions. Being present in all animals and humans, it allows to survive adverse conditions like diving. Earlier, we discovered that forehead stimulation affords neuroprotective effect, decreasing infarction volume triggered by permanent occlusion of the middle cerebral artery in rats. We hypothesized that cold stimulation of the forehead induces DR in rats, which, in turn, exerts neuroprotection. We compared autonomic [AP, heart rate (HR), cerebral blood flow (CBF)] and EEG responses to the known DR-triggering stimulus, ammonia stimulation of the nasal mucosa, cold stimulation of the forehead, and cold stimulation of the glabrous skin of the tail base in anesthetized rats. Responses in AP, HR, CBF, and EEG to cold stimulation of the forehead and ammonia vapors instillation into the nasal cavity were comparable and differed significantly from responses to the cold stimulation of the tail base. Excitotoxic lesion of the subthalamic vasodilator area (SVA), which is known to participate in CBF regulation and to afford neuroprotection upon excitation, failed to affect autonomic components of the DR evoked by forehead cold stimulation or nasal mucosa ammonia stimulation. We conclude that cold stimulation of the forehead triggers physiological response comparable to the response evoked by ammonia vapor instillation into nasal cavity, which is considered as stimulus triggering protective DR. These observations may explain the neuroprotective effect of the forehead stimulation. Data demonstrate that SVA does not directly participate in the autonomic adjustments accompanying DR; however, it is involved in diving-evoked modulation of EEG. We suggest that forehead stimulation can be employed as a stimulus capable of triggering oxygen-conserving DR and can be used for neuroprotective therapy.
Collapse
Affiliation(s)
- Eugene V. Golanov
- Department of Neurosurgery, The Houston Methodist Hospital, Houston, TX, USA
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, MS, USA
| | - James M. Shiflett
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, MS, USA
| | - Gavin W. Britz
- Department of Neurosurgery, The Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
4
|
McCulloch PF, Warren EA, DiNovo KM. Repetitive Diving in Trained Rats Still Increases Fos Production in Brainstem Neurons after Bilateral Sectioning of the Anterior Ethmoidal Nerve. Front Physiol 2016; 7:148. [PMID: 27148082 PMCID: PMC4838619 DOI: 10.3389/fphys.2016.00148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 04/05/2016] [Indexed: 12/19/2022] Open
Abstract
This research was designed to investigate the role of the anterior ethmoidal nerve (AEN) during repetitive trained diving in rats, with specific attention to activation of afferent and efferent brainstem nuclei that are part of this reflexive response. The AEN innervates the nose and nasal passages and is thought to be an important component of the afferent limb of the diving response. Male Sprague-Dawley rats (N = 24) were trained to swim and dive through a 5 m underwater maze. Some rats (N = 12) had bilateral sectioning of the AEN, others a Sham surgery (N = 12). Twelve rats (6 AEN cut and 6 Sham) had 24 post-surgical dive trials over 2 h to activate brainstem neurons to produce Fos, a neuronal activation marker. Remaining rats were non-diving controls. Diving animals had significantly more Fos-positive neurons than non-diving animals in the caudal pressor area, ventral medullary dorsal horn, ventral paratrigeminal nucleus, nucleus tractus solitarius, rostral ventrolateral medulla, Raphe nuclei, A5, Locus Coeruleus, and Kölliker-Fuse area. There were no significant differences in brainstem Fos labeling in rats diving with and without intact AENs. Thus, the AENs are not required for initiation of the diving response. Other nerve(s) that innervate the nose and nasal passages, and/or suprabulbar activation of brainstem neurons, may be responsible for the pattern of neuronal activation observed during repetitive trained diving in rats. These results help define the central neuronal circuitry of the mammalian diving response.
Collapse
Affiliation(s)
- Paul F McCulloch
- Department of Physiology, Chicago College of Osteopathic Medicine, Midwestern University Downers Grove, IL, USA
| | - Erik A Warren
- Department of Physiology, Chicago College of Osteopathic Medicine, Midwestern University Downers Grove, IL, USA
| | - Karyn M DiNovo
- Department of Physiology, Chicago College of Osteopathic Medicine, Midwestern University Downers Grove, IL, USA
| |
Collapse
|
5
|
Abstract
BACKGROUND Trigeminocardiac reflex (TCR) consists of bradycardia or asystole along with hypotension and apnea coinciding with stimulation of the trigeminal nerve. During rhinoplasty procedures, we noticed that local anesthetic solution (LAS) application to the columellar area results in bradycardia. We planned to conduct a randomized prospective study on 47 patients undergoing rhinoplasty to demonstrate the characteristics of TCR arising from the columella. METHOD Local anesthetic solution containing 2% prilocaine with 1:80,000 adrenaline was applied under standard general anesthesia protocol. In group 1 (study group, n = 24), 2 mL of LAS was applied to the columella. In group 2 (control group, n = 23), 2 mL of LAS was applied to the nasal dorsum. In group 3 (control group, n = 20), after LAS was applied to nasal dorsum in group 2, we waited for 10 minutes. Then, 2 mL of LAS was applied to the columella. Here, recordings were taken for the columella.Heart rate (HR) and blood pressure (BP) were recorded just before needle insertion (baseline level), at the time of needle insertion (NIT) to the columella or dorsum, and after the 1st, 5th, 10th, 30th, and 60th seconds. RESULTS Transient bradycardia (≥20% drop in HR) was observed in 33% of the patients in group 1.Decrease in HR compared to the baseline level in group 1 was significantly greater than that of groups 2 and 3 at all times (P ≤ 0.05).Systolic BP in NIT and in 60th second in group 1, only in NIT in group 2 was significantly lower than that of baseline levels (P ≤ 0.05). CONCLUSIONS We concluded that stimulation of a sensory branch of the trigeminal nerve in the columellar area leads to TCR under general anesthesia by eliciting clinical hypotension with a drop in systolic BP and in HR of more than 20% compared to the baseline level.Knowing the existence of a certain TCR area will be helpful to the surgeon and anesthesiologist to exercise extra vigilance and to make continuous and meticulous monitoring of the electrocardiogram, HR, and BP during which the TCR may be precipitated such as local anesthetic infiltration to the columellar area in rhinoseptoplasty operations.
Collapse
|
6
|
Nasal Chemesthesis: Similarities Between Humans and Rats Observed in In Vivo Experiments. CHEMOSENS PERCEPT 2015. [DOI: 10.1007/s12078-015-9189-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Lemaitre F, Chowdhury T, Schaller B. The trigeminocardiac reflex - a comparison with the diving reflex in humans. Arch Med Sci 2015; 11:419-26. [PMID: 25995761 PMCID: PMC4424259 DOI: 10.5114/aoms.2015.50974] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/03/2013] [Accepted: 06/30/2013] [Indexed: 12/21/2022] Open
Abstract
The trigeminocardiac reflex (TCR) has previously been described in the literature as a reflexive response of bradycardia, hypotension, and gastric hypermotility seen upon mechanical stimulation in the distribution of the trigeminal nerve. The diving reflex (DR) in humans is characterized by breath-holding, slowing of the heart rate, reduction of limb blood flow and a gradual rise in the mean arterial blood pressure. Although the two reflexes share many similarities, their relationship and especially their functional purpose in humans have yet to be fully elucidated. In the present review, we have tried to integrate and elaborate these two phenomena into a unified physiological concept. Assuming that the TCR and the DR are closely linked functionally and phylogenetically, we have also highlighted the significance of these reflexes in humans.
Collapse
Affiliation(s)
- Frederic Lemaitre
- Faculty of Sports Sciences, University of Rouen, Mont-Saint-Aignan, France
| | - Tumul Chowdhury
- Department of Anesthesia and Perioperative Medicine, University of Manitoba, Winnipeg, Canada
| | - Bernhard Schaller
- Department of Neurosurgery, University Hospital Paris, Paris, France
| |
Collapse
|
8
|
|
9
|
Abstract
The G-protein-coupled receptor molecules and downstream effectors that are used by taste buds to detect sweet, bitter, and savory tastes are also utilized by chemoresponsive cells of the airways to detect irritants. Here, we describe the different cell types in the airways that utilize taste-receptor signaling to trigger protective epithelial and neural responses to potentially dangerous toxins and bacterial infection.
Collapse
Affiliation(s)
- Marco Tizzano
- Department of Cell & Developmental Biology, Rocky Mountain Taste & Smell Center, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | |
Collapse
|
10
|
Panneton WM. The mammalian diving response: an enigmatic reflex to preserve life? Physiology (Bethesda) 2014; 28:284-97. [PMID: 23997188 DOI: 10.1152/physiol.00020.2013] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mammalian diving response is a remarkable behavior that overrides basic homeostatic reflexes. It is most studied in large aquatic mammals but is seen in all vertebrates. Pelagic mammals have developed several physiological adaptations to conserve intrinsic oxygen stores, but the apnea, bradycardia, and vasoconstriction is shared with those terrestrial and is neurally mediated. The adaptations of aquatic mammals are reviewed here as well as the neural control of cardiorespiratory physiology during diving in rodents.
Collapse
Affiliation(s)
- W Michael Panneton
- Department of Pharmacological and Physiological Science, St. Louis University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
11
|
Chowdhury T, Sandu N, Meuwly C, Cappellani RB, Schaller B. Trigeminocardiac reflex: differential behavior and risk factors in the course of the trigeminal nerve. FUTURE NEUROLOGY 2014. [DOI: 10.2217/fnl.13.62] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT; The trigeminocardiac reflex (TCR) is a brainstem reflex describing the acute hemodynamic perturbations in neurosurgical patients. The roles of different anatomic locations of this reflex arc on end responses have been found to be variable. In this article, we have highlighted the role and importance of different TCR pathway (peripheral vs central) mechanisms, their manifestations and the various risk factors associated with these. In addition, new insights into various other non-neurosurgical conditions, in special relation to neurointerventional procedures, are also presented in this article. This study is a narrative review based on a PubMed/Google search (from 1 January 1970 to 31 March 2013) on this topic. The common manifestations, such as hypotension and bradycardia, are vagal-dominated responses; however, unusual manifestations, such as hypertension and tachycardia, signify the involvement of the sympathetic nervous system. In addition, there is a complex interaction of the various sensory receptors at the Gasserian ganglion, and this is responsible for the different presentations. There are many surgical as well as nonsurgical risk factors associated with TCR. Interestingly, TCR may affect functional outcome and has been found to be involved in some normal physiological mechanisms, including bruxism. TCR is a complex neurophysiological reflex and there are variable presentations depending upon the peripheral or central stimulation surrounding the Gasserian ganglion. We suggest, for the first time, that if the TCR is initiated at the Gasserian ganglion, it reacts in a different manner from the better-known central or peripheral TCR.
Collapse
Affiliation(s)
- Tumul Chowdhury
- Department of Anesthesia & Perioperative Medicine, University of Manitoba, 820 Sherbrook Street, Winnipeg, MB R3A 1R9, Canada
| | - Nora Sandu
- Research University of Southampton, South Academic Block, Tremona Road, Southampton, SO16 6YD, UK
| | - Cyrill Meuwly
- University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Ronald B Cappellani
- Department of Anesthesia & Perioperative Medicine, University of Manitoba, 820 Sherbrook Street, Winnipeg, MB R3A 1R9, Canada
| | - Bernhard Schaller
- Research University of Southampton, South Academic Block, Tremona Road, Southampton, SO16 6YD, UK
| |
Collapse
|
12
|
Chowdhury T, Sandu N, Sadr-Eshkevari P, Meuwly C, Schaller B. Trigeminocardiac reflex: current trends. Expert Rev Cardiovasc Ther 2013; 12:9-11. [PMID: 24308808 DOI: 10.1586/14779072.2014.862498] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Since the first introduction of the trigeminocardiac reflex (TCR) in 1999, substantial new knowledge about this brainstem reflex has been created. First, by different clinical case reports and case studies, and second, from basic research that gives inputs from bench to bedside. In the present work, the authors therefore introduce the molecular/anatomical knowledge of the TCR and show its different connections to clinical aspects. Special reference is given to prevention and treatment of the TCR; but always with a link to knowledge of the basis sciences. In such a context different topics of future interest are introduced.
Collapse
Affiliation(s)
- Tumul Chowdhury
- Department of Anesthesiology and Perioperative Medicine, University of Manitoba, Winnipeg, Canada
| | | | | | | | | |
Collapse
|
13
|
Panneton WM, Gan Q, Le J, Livergood RS, Clerc P, Juric R. Activation of brainstem neurons by underwater diving in the rat. Front Physiol 2012; 3:111. [PMID: 22563319 PMCID: PMC3342523 DOI: 10.3389/fphys.2012.00111] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 04/04/2012] [Indexed: 01/10/2023] Open
Abstract
The mammalian diving response is a powerful autonomic adjustment to underwater submersion greatly affecting heart rate, arterial blood pressure, and ventilation. The bradycardia is mediated by the parasympathetic nervous system, arterial blood pressure is mediated via the sympathetic system and still other circuits mediate the respiratory changes. In the present study we investigate the cardiorespiratory responses and the brainstem neurons activated by voluntary diving of trained rats, and, compare them to control and swimming animals which did not dive. We show that the bradycardia and increase in arterial blood pressure induced by diving were significantly different than that induced by swimming. Neuronal activation was calculated after immunohistochemical processing of brainstem sections for Fos protein. Labeled neurons were counted in the caudal pressor area, the medullary dorsal horn, subnuclei of the nucleus tractus solitarii (NTS), the nucleus raphe pallidus (RPa), the rostroventrolateral medulla, the A5 area, the nucleus locus coeruleus, the Kölliker–Fuse area, and the external lateral and superior lateral subnuclei of the parabrachial nucleus. All these areas showed significant increases in Fos labeling when data from voluntary diving rats were compared to control rats and all but the commissural subnucleus of the NTS, A5 area, and RPa were significantly different from swimming rats. These data provide a substrate for more precise experiments to determine the role of these nuclei in the reflex circuits driving the diving response.
Collapse
Affiliation(s)
- W Michael Panneton
- Department of Pharmacological and Physiological Science, St. Louis University School of Medicine St. Louis, MO, USA
| | | | | | | | | | | |
Collapse
|