1
|
Fonseca EM, Janes TA, Fournier S, Gargaglioni LH, Kinkead R. Orexin-A inhibits fictive air breathing responses to respiratory stimuli in the bullfrog tadpole (Lithobates catesbeianus). J Exp Biol 2021; 224:239725. [PMID: 33914034 DOI: 10.1242/jeb.240804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/25/2021] [Indexed: 11/20/2022]
Abstract
In pre-metamorphic tadpoles, the neural network generating lung ventilation is present but actively inhibited; the mechanisms leading to the onset of air breathing are not well understood. Orexin (ORX) is a hypothalamic neuropeptide that regulates several homeostatic functions, including breathing. While ORX has limited effects on breathing at rest, it potentiates reflexive responses to respiratory stimuli mainly via ORX receptor 1 (OX1R). Here, we tested the hypothesis that OX1Rs facilitate the expression of the motor command associated with air breathing in pre-metamorphic bullfrog tadpoles (Lithobates catesbeianus). To do so, we used an isolated diencephalic brainstem preparation to determine the contributions of OX1Rs to respiratory motor output during baseline breathing, hypercapnia and hypoxia. A selective OX1R antagonist (SB-334867; 5-25 µmol l-1) or agonist (ORX-A; 200 nmol l-1 to 1 µmol l-1) was added to the superfusion media. Experiments were performed under basal conditions (media equilibrated with 98.2% O2 and 1.8% CO2), hypercapnia (5% CO2) or hypoxia (5-7% O2). Under resting conditions gill, but not lung, motor output was enhanced by the OX1R antagonist and ORX-A. Hypercapnia alone did not stimulate respiratory motor output, but its combination with SB-334867 increased lung burst frequency and amplitude, lung burst episodes, and the number of bursts per episode. Hypoxia alone increased lung burst frequency and its combination with SB-334867 enhanced this effect. Inactivation of OX1Rs during hypoxia also increased gill burst amplitude, but not frequency. In contrast with our initial hypothesis, we conclude that ORX neurons provide inhibitory modulation of the CO2 and O2 chemoreflexes in pre-metamorphic tadpoles.
Collapse
Affiliation(s)
- Elisa M Fonseca
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinary Sciences, São Paulo State University, Unesp. Jaboticabal, SP 14884-900, Brazil.,Department of Pediatrics, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada, G1V 4G5
| | - Tara A Janes
- Department of Pediatrics, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada, G1V 4G5
| | - Stéphanie Fournier
- Department of Pediatrics, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada, G1V 4G5
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinary Sciences, São Paulo State University, Unesp. Jaboticabal, SP 14884-900, Brazil
| | - Richard Kinkead
- Department of Pediatrics, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada, G1V 4G5
| |
Collapse
|
2
|
Adams S, Zubov T, Bueschke N, Santin JM. Neuromodulation or energy failure? Metabolic limitations silence network output in the hypoxic amphibian brainstem. Am J Physiol Regul Integr Comp Physiol 2021; 320:R105-R116. [PMID: 33175586 PMCID: PMC7948128 DOI: 10.1152/ajpregu.00209.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/10/2020] [Accepted: 11/02/2020] [Indexed: 11/22/2022]
Abstract
Hypoxia tolerance in the vertebrate brain often involves chemical modulators that arrest neuronal activity to conserve energy. However, in intact networks, it can be difficult to determine whether hypoxia triggers modulators to stop activity in a protective manner or whether activity stops because rates of ATP synthesis are insufficient to support network function. Here, we assessed the extent to which neuromodulation or metabolic limitations arrest activity in the respiratory network of bullfrogs-a circuit that survives moderate periods of oxygen deprivation, presumably, by activating an inhibitory noradrenergic pathway. We confirmed that hypoxia and norepinephrine (NE) reduce network output, consistent with the view that hypoxia may cause the release of NE to inhibit activity. However, these responses differed qualitatively; hypoxia, but not NE, elicited a large motor burst and silenced the network. The stereotyped response to hypoxia persisted in the presence of both NE and an adrenergic receptor blocker that eliminates sensitivity to NE, indicating that noradrenergic signaling does not cause the arrest. Pharmacological inhibition of glycolysis and mitochondrial respiration recapitulated all features of hypoxia on network activity, implying that reduced ATP synthesis underlies the effects of hypoxia. Finally, activating modulatory mechanisms that dampen neuronal excitability when ATP levels fall, KATP channels and AMP-dependent protein kinase, did not resemble the hypoxic response. These results suggest that energy failure-rather than inhibitory modulation-silences the respiratory network during hypoxia and emphasize the need to account for metabolic limitations before concluding that modulators arrest activity as an adaptation for energy conservation in the nervous system.
Collapse
Affiliation(s)
- Sasha Adams
- Department of Biology, The University of North Carolina at Greensboro, Greensboro, North Carolina
| | - Tanya Zubov
- Department of Biology, The University of North Carolina at Greensboro, Greensboro, North Carolina
| | - Nikolaus Bueschke
- Department of Biology, The University of North Carolina at Greensboro, Greensboro, North Carolina
| | - Joseph M Santin
- Department of Biology, The University of North Carolina at Greensboro, Greensboro, North Carolina
| |
Collapse
|
3
|
Dubois CJ, Pierrefiche O. Perinatal exposure to ethanol in rats induces permanent disturbances of breathing and chemosensitivity during adulthood. Neurosci Lett 2020; 735:135219. [PMID: 32615247 DOI: 10.1016/j.neulet.2020.135219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 11/26/2022]
Abstract
Perinatal exposure to drugs of abuse, including alcohol (ethanol), is known to impinge the development of respiratory function. However, most studies described the short-term effects of these exposures, focusing mostly on the early postnatal life. After exposure to ethanol during gestation and lactation we have previously shown that 3-4 week-old rat exhibit chronic hypoventilation and an altered response to hypoxia at the end of ethanol exposure. However, whether these deficits are reversible following ethanol withdrawal remained unknown. Here, we investigated through whole-body plethysmography the respiratory activity of 2 months-old rats exposed to ethanol from gestation to weaning followed by one month of ethanol withdrawal. After ethanol withdrawal, rats persistently exhibited a significant reduction in respiratory frequency without change in tidal volume associated to a lower arterial blood oxygen content. In addition, the response to hypoxia in these rats was reduced whereas the response to hypercapnia remained unaltered. In conclusion perinatal exposure to ethanol in rats, unlike exposure to cocaine, morphine or nicotine, is characterized by selective alterations of basal respiratory activity and chemosensitivity that persist long after withdrawal.
Collapse
Affiliation(s)
- Christophe J Dubois
- UPJV, INSERM UMR 1247 GRAP, Groupe de Recherche sur l'Alcool et les Pharmacodépendances, Centre Universitaire de Recherche en Santé (CURS), Amiens Cedex 1, France.
| | - Olivier Pierrefiche
- UPJV, INSERM UMR 1247 GRAP, Groupe de Recherche sur l'Alcool et les Pharmacodépendances, Centre Universitaire de Recherche en Santé (CURS), Amiens Cedex 1, France
| |
Collapse
|
4
|
Janes TA, Rousseau JP, Fournier S, Kiernan EA, Harris MB, Taylor BE, Kinkead R. Development of central respiratory control in anurans: The role of neurochemicals in the emergence of air-breathing and the hypoxic response. Respir Physiol Neurobiol 2019; 270:103266. [PMID: 31408738 PMCID: PMC7476778 DOI: 10.1016/j.resp.2019.103266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/10/2019] [Accepted: 08/05/2019] [Indexed: 01/08/2023]
Abstract
Physiological and environmental factors impacting respiratory homeostasis vary throughout the course of an animal's lifespan from embryo to adult and can shape respiratory development. The developmental emergence of complex neural networks for aerial breathing dates back to ancestral vertebrates, and represents the most important process for respiratory development in extant taxa ranging from fish to mammals. While substantial progress has been made towards elucidating the anatomical and physiological underpinnings of functional respiratory control networks for air-breathing, much less is known about the mechanisms establishing these networks during early neurodevelopment. This is especially true of the complex neurochemical ensembles key to the development of air-breathing. One approach to this issue has been to utilize comparative models such as anuran amphibians, which offer a unique perspective into early neurodevelopment. Here, we review the developmental emergence of respiratory behaviours in anuran amphibians with emphasis on contributions of neurochemicals to this process and highlight opportunities for future research.
Collapse
Affiliation(s)
- Tara A Janes
- Department of Pediatrics, Université Laval & Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| | - Jean-Philippe Rousseau
- Department of Pediatrics, Université Laval & Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| | - Stéphanie Fournier
- Department of Pediatrics, Université Laval & Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| | - Elizabeth A Kiernan
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison Wisconsin, USA
| | - Michael B Harris
- Department of Biological Sciences, California State University Long Beach, California, USA
| | - Barbara E Taylor
- Department of Biological Sciences, California State University Long Beach, California, USA
| | - Richard Kinkead
- Department of Pediatrics, Université Laval & Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada.
| |
Collapse
|
5
|
Reed MD, Iceman KE, Harris MB, Taylor BE. The rostral medulla of bullfrog tadpoles contains critical lung rhythmogenic and chemosensitive regions across metamorphosis. Comp Biochem Physiol A Mol Integr Physiol 2018; 225:7-15. [PMID: 29890210 DOI: 10.1016/j.cbpa.2018.05.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/14/2018] [Accepted: 05/30/2018] [Indexed: 11/18/2022]
Abstract
The development of amphibian breathing provides insight into vertebrate respiratory control mechanisms. Neural oscillators in the rostral and caudal medulla drive ventilation in amphibians, and previous reports describe ventilatory oscillators and CO2 sensitive regions arise during different stages of amphibian metamorphosis. However, inconsistent findings have been enigmatic, and make comparisons to potential mammalian counterparts challenging. In the current study we assessed amphibian central CO2 responsiveness and respiratory rhythm generation during two different developmental stages. Whole-nerve recordings of respiratory burst activity in cranial and spinal nerves were made from intact or transected brainstems isolated from tadpoles during early or late stages of metamorphosis. Brainstems were transected at the level of the trigeminal nerve, removing rostral structures including the nucleus isthmi, midbrain, and locus coeruleus, or transected at the level of the glossopharyngeal nerve, removing the putative buccal oscillator and caudal medulla. Removal of caudal structures stimulated the frequency of lung ventilatory bursts and revealed a hypercapnic response in normally unresponsive preparations derived from early stage tadpoles. In preparations derived from late stage tadpoles, removal of rostral or caudal structures reduced lung burst frequency, while CO2 responsiveness was retained. Our results illustrate that structures within the rostral medulla are capable of sensing CO2 throughout metamorphic development. Similarly, the region controlling lung ventilation appears to be contained in the rostral medulla throughout metamorphosis. This work offers insight into the consistency of rhythmic respiratory and chemosensitive capacities during metamorphosis.
Collapse
Affiliation(s)
- Mitchell D Reed
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK 99775, United States.
| | - Kimberly E Iceman
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK 99775, United States; Department of Biology, Valparaiso University, Valparaiso, IN 46383, United States
| | - Michael B Harris
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK 99775, United States; Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, United States; Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, United States
| | - Barbara E Taylor
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK 99775, United States; Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, United States; Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, United States
| |
Collapse
|
6
|
Braegelmann KM, Streeter KA, Fields DP, Baker TL. Plasticity in respiratory motor neurons in response to reduced synaptic inputs: A form of homeostatic plasticity in respiratory control? Exp Neurol 2016; 287:225-234. [PMID: 27456270 DOI: 10.1016/j.expneurol.2016.07.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 06/16/2016] [Accepted: 07/20/2016] [Indexed: 12/31/2022]
Abstract
For most individuals, the respiratory control system produces a remarkably stable and coordinated motor output-recognizable as a breath-from birth until death. Very little is understood regarding the processes by which the respiratory control system maintains network stability in the presence of changing physiological demands and network properties that occur throughout life. An emerging principle of neuroscience is that neural activity is sensed and adjusted locally to assure that neurons continue to operate in an optimal range, yet to date, it is unknown whether such homeostatic plasticity is a feature of the neurons controlling breathing. Here, we review the evidence that local mechanisms sense and respond to perturbations in respiratory neural activity, with a focus on plasticity in respiratory motor neurons. We discuss whether these forms of plasticity represent homeostatic plasticity in respiratory control. We present new analyses demonstrating that reductions in synaptic inputs to phrenic motor neurons elicit a compensatory enhancement of phrenic inspiratory motor output, a form of plasticity termed inactivity-induced phrenic motor facilitation (iPMF), that is proportional to the magnitude of activity deprivation. Although the physiological role of iPMF is not understood, we hypothesize that it has an important role in protecting the drive to breathe during conditions of prolonged or intermittent reductions in respiratory neural activity, such as following spinal cord injury or during central sleep apnea.
Collapse
Affiliation(s)
- K M Braegelmann
- Department of Comparative Biosciences, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, United States
| | - K A Streeter
- Department of Comparative Biosciences, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, United States
| | - D P Fields
- Department of Comparative Biosciences, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, United States
| | - T L Baker
- Department of Comparative Biosciences, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, United States.
| |
Collapse
|
7
|
Jaiswal SJ, Wollman LB, Harrison CM, Pilarski JQ, Fregosi RF. Developmental nicotine exposure enhances inhibitory synaptic transmission in motor neurons and interneurons critical for normal breathing. Dev Neurobiol 2015; 76:337-54. [PMID: 26097160 DOI: 10.1002/dneu.22318] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 04/06/2015] [Accepted: 06/05/2015] [Indexed: 11/06/2022]
Abstract
Nicotine exposure in utero negatively affects neuronal growth, differentiation, and synaptogenesis. We used rhythmic brainstems slices and immunohistochemistry to determine how developmental nicotine exposure (DNE) alters inhibitory neurotransmission in two regions essential to normal breathing, the hypoglossal motor nucleus (XIIn), and preBötzinger complex (preBötC). We microinjected glycine or muscimol (GABAA agonist) into the XIIn or preBötC of rhythmic brainstem slices from neonatal rats while recording from XII nerve roots to obtain XII motoneuron population activity. Injection of glycine or muscimol into the XIIn reduced XII nerve burst amplitude, while injection into the preBötC altered nerve burst frequency. These responses were exaggerated in preparations from DNE animals. Quantitative immunohistochemistry revealed a significantly higher GABAA receptor density on XII motoneurons from DNE pups. There were no differences in GABAA receptor density in the preBötC, and there were no differences in glycine receptor expression in either region. Nicotine, in the absence of other chemicals in tobacco smoke, alters normal development of brainstem circuits that are critical for normal breathing.
Collapse
Affiliation(s)
- Stuti J Jaiswal
- Department of Neuroscience, The University of Arizona, Tucson, Arizona, 85721
| | - Lila Buls Wollman
- Department of Physiology, The University of Arizona, Tucson, Arizona, 85724
| | - Caitlyn M Harrison
- Department of Physiology, The University of Arizona, Tucson, Arizona, 85724
| | - Jason Q Pilarski
- Department of Physiology, The University of Arizona, Tucson, Arizona, 85724
| | - Ralph F Fregosi
- Department of Neuroscience, The University of Arizona, Tucson, Arizona, 85721.,Department of Physiology, The University of Arizona, Tucson, Arizona, 85724
| |
Collapse
|