1
|
Huff AD, Karlen-Amarante M, Oliveira LM, Ramirez JM. Chronic intermittent hypoxia reveals role of the Postinspiratory Complex in the mediation of normal swallow production. eLife 2024; 12:RP92175. [PMID: 38655918 PMCID: PMC11042803 DOI: 10.7554/elife.92175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Obstructive sleep apnea (OSA) is a prevalent sleep-related breathing disorder that results in multiple bouts of intermittent hypoxia. OSA has many neurological and systemic comorbidities, including dysphagia, or disordered swallow, and discoordination with breathing. However, the mechanism in which chronic intermittent hypoxia (CIH) causes dysphagia is unknown. Recently, we showed the postinspiratory complex (PiCo) acts as an interface between the swallow pattern generator (SPG) and the inspiratory rhythm generator, the preBötzinger complex, to regulate proper swallow-breathing coordination (Huff et al., 2023). PiCo is characterized by interneurons co-expressing transporters for glutamate (Vglut2) and acetylcholine (ChAT). Here we show that optogenetic stimulation of ChATcre:Ai32, Vglut2cre:Ai32, and ChATcre:Vglut2FlpO:ChR2 mice exposed to CIH does not alter swallow-breathing coordination, but unexpectedly disrupts swallow behavior via triggering variable swallow motor patterns. This suggests that glutamatergic-cholinergic neurons in PiCo are not only critical for the regulation of swallow-breathing coordination, but also play an important role in the modulation of swallow motor patterning. Our study also suggests that swallow disruption, as seen in OSA, involves central nervous mechanisms interfering with swallow motor patterning and laryngeal activation. These findings are crucial for understanding the mechanisms underlying dysphagia, both in OSA and other breathing and neurological disorders.
Collapse
Affiliation(s)
- Alyssa D Huff
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
| | - Marlusa Karlen-Amarante
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
| | - Luiz M Oliveira
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
- Department of Neurological Surgery, University of Washington School of MedicineSeattleUnited States
| |
Collapse
|
2
|
Huff A, Karlen-Amarante M, Oliveira LM, Ramirez JM. Chronic Intermittent Hypoxia reveals role of the Postinspiratory Complex in the mediation of normal swallow production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.26.559560. [PMID: 37808787 PMCID: PMC10557756 DOI: 10.1101/2023.09.26.559560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Obstructive sleep apnea (OSA) is a prevalent sleep-related breathing disorder that results in multiple bouts of intermittent hypoxia. OSA has many neurologic and systemic comorbidities including dysphagia, or disordered swallow, and discoordination with breathing. However, the mechanism in which chronic intermittent hypoxia (CIH) causes dysphagia is unknown. Recently we showed the Postinspiratory complex (PiCo) acts as an interface between the swallow pattern generator (SPG) and the inspiratory rhythm generator, the preBötzinger Complex, to regulate proper swallow-breathing coordination (Huff et al., 2023). PiCo is characterized by interneurons co-expressing transporters for glutamate (Vglut2) and acetylcholine (ChAT). Here we show that optogenetic stimulation of ChATcre:Ai32, Vglut2cre:Ai32, and ChATcre:Vglut2FlpO:ChR2 mice exposed to CIH does not alter swallow-breathing coordination, but unexpectedly disrupts swallow behavior via triggering variable swallow motor patterns. This suggests, glutamatergic-cholinergic neurons in PiCo are not only critical for the regulation of swallow-breathing coordination, but also play an important role in the modulation of swallow motor patterning. Our study also suggests that swallow disruption, as seen in OSA, involves central nervous mechanisms interfering with swallow motor patterning and laryngeal activation. These findings are crucial for understanding the mechanisms underlying dysphagia, both in OSA and other breathing and neurological disorders.
Collapse
Affiliation(s)
- Alyssa Huff
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, 98101
| | - Marlusa Karlen-Amarante
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, 98101
| | - Luiz Marcelo Oliveira
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, 98101
| | - Jan Marino Ramirez
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, 98101
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, USA, 98108
| |
Collapse
|
3
|
Gabryelska A, Turkiewicz S, Ditmer M, Gajewski A, Białasiewicz P, Strzelecki D, Chałubiński M, Sochal M. Evaluation of the Continuous Positive Airway Pressure Effect on Neurotrophins' Gene Expression and Protein Levels. Int J Mol Sci 2023; 24:16599. [PMID: 38068919 PMCID: PMC10706617 DOI: 10.3390/ijms242316599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Neurotrophins (NT) might be associated with the pathophysiology of obstructive sleep apnea (OSA) due to concurrent intermittent hypoxia and sleep fragmentation. Such a relationship could have implications for the health and overall well-being of patients; however, the literature on this subject is sparse. This study investigated the alterations in the serum protein concentration and the mRNA expression of the brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), neurotrophin-3 (NTF3), and neurotrophin-4 (NTF4) proteins following a single night of continuous positive airway pressure (CPAP) therapy. This study group consisted of 30 patients with OSA. Venous blood was collected twice after a diagnostic polysomnography (PSG) and PSG with CPAP treatment. Gene expression was assessed with a quantitative real-time polymerase chain reaction. An enzyme-linked immunosorbent assay was used to determine the protein concentrations. After CPAP treatment, BDNF, proBDNF, GDNF, and NTF4 protein levels decreased (p = 0.002, p = 0.003, p = 0.047, and p = 0.009, respectively), while NTF3 increased (p = 0.001). Sleep latency was correlated with ΔPSG + CPAP/PSG gene expression for BDNF (R = 0.387, p = 0.038), NTF3 (R = 0.440, p = 0.019), and NTF4 (R = 0.424, p = 0.025). OSA severity parameters were not associated with protein levels or gene expressions. CPAP therapy could have an impact on the posttranscriptional stages of NT synthesis. The expression of different NTs appears to be connected with sleep architecture but not with OSA severity.
Collapse
Affiliation(s)
- Agata Gabryelska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 90-419 Lodz, Poland
| | - Szymon Turkiewicz
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 90-419 Lodz, Poland
| | - Marta Ditmer
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 90-419 Lodz, Poland
| | - Adrian Gajewski
- Department of Immunology and Allergy, Medical University of Lodz, 90-419 Lodz, Poland
| | - Piotr Białasiewicz
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 90-419 Lodz, Poland
| | - Dominik Strzelecki
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 90-419 Lodz, Poland
| | - Maciej Chałubiński
- Department of Immunology and Allergy, Medical University of Lodz, 90-419 Lodz, Poland
| | - Marcin Sochal
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 90-419 Lodz, Poland
| |
Collapse
|
4
|
Gell LK, Vena D, Grace K, Azarbarzin A, Messineo L, Hess LB, Calianese N, Labarca G, Taranto-Montemurro L, White DP, Wellman A, Sands SA. Drive versus Pressure Contributions to Genioglossus Activity in Obstructive Sleep Apnea. Ann Am Thorac Soc 2023; 20:1326-1336. [PMID: 37411045 PMCID: PMC10502881 DOI: 10.1513/annalsats.202301-083oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023] Open
Abstract
Rationale: Loss of pharyngeal dilator muscle activity is a key determinant of respiratory events in obstructive sleep apnea (OSA). After the withdrawal of wakefulness stimuli to the genioglossus at sleep onset, mechanoreceptor negative pressure and chemoreceptor ventilatory drive feedback govern genioglossus activation during sleep, but the relative contributions of drive and pressure stimuli to genioglossus activity across progressive obstructive events remain unclear. We recently showed that drive typically falls during events, whereas negative pressures increase, providing a means to assess their individual contributions to the time course of genioglossus activity. Objectives: For the first time, we critically test whether the loss of drive could explain the loss of genioglossus activity observed within events in OSA. Methods: We examined the time course of genioglossus activity (EMGgg; intramuscular electromyography), ventilatory drive (intraesophageal diaphragm electromyography), and esophageal pressure during spontaneous respiratory events (using the ensemble-average method) in 42 patients with OSA (apnea-hypopnea index 5-91 events/h). Results: Multivariable regression demonstrated that the falling-then-rising time course of EMGgg may be well explained by falling-then-rising drive and rising negative pressure stimuli (model R = 0.91 [0.88-0.98] [95% confidence interval]). Overall, EMGgg was 2.9-fold (0.47-∞) more closely associated with drive than pressure stimuli (ratio of standardized coefficients, βdrive:βpressure; ∞ denotes absent pressure contribution). However, individual patient results were heterogeneous: approximately one-half (n = 22 of 42) exhibited drive-dominant responses (i.e., βdrive:βpressure > 2:1), and one-quarter (n = 11 of 42) exhibited pressure-dominant EMGgg responses (i.e., βdrive:βpressure < 1:2). Patients exhibiting more drive-dominant EMGgg responses experienced greater event-related EMGgg declines (12.9 [4.8-21.0] %baseline/standard deviation of βdrive:βpressure; P = 0.004, adjusted analysis). Conclusions: Loss of genioglossus activity precipitating events in patients with OSA is strongly associated with a contemporaneous loss of drive and is greatest in those whose activity tracks drive rather than pressure stimuli. These findings were upheld for events without prior arousal. Responding to falling drive rather than rising negative pressure during events may be deleterious; future therapeutic strategies whose aim is to sustain genioglossus activity by preferentially enhancing responses to rising pressure rather than falling drive are of interest.
Collapse
Affiliation(s)
- Laura K. Gell
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Daniel Vena
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Kevin Grace
- Department of Neurological Surgery, University of California, Davis, Sacramento, California
| | - Ali Azarbarzin
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Ludovico Messineo
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Lauren B. Hess
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Nicole Calianese
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Gonzalo Labarca
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Luigi Taranto-Montemurro
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - David P. White
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Andrew Wellman
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Scott A. Sands
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts; and
| |
Collapse
|
5
|
Calik MW, Carley DW. DMSO potentiates the suppressive effect of dronabinol on sleep apnea and REM sleep in rats. J Cannabis Res 2023; 5:30. [PMID: 37507813 PMCID: PMC10375672 DOI: 10.1186/s42238-023-00199-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
INTRODUCTION Dimethyl sulfoxide (DMSO) is an amphipathic molecule with innate biological activity that also is used to dissolve both polar and nonpolar compounds in preclinical and clinical studies. Recent investigations of dronabinol, a cannabinoid, dissolved in DMSO demonstrated decreased sleep apnea frequency and time spent in REM sleep in rats. Here, we tested the effects of dronabinol dissolved in 25% DMSO diluted in phosphate-buffered saline (PBS) to rule out potentiating effects of DMSO. METHODS Sprague-Dawley rats were anesthetized and implanted with bilateral stainless steel screws into the skull for electroencephalogram recording and bilateral wire electrodes into the nuchal muscles for electromyogram recording. Each animal was recorded by polysomnography. The study was a fully nested, repeated measures crossover design, such that each rat was recorded following each of 8 intraperitoneal injections separated by three days: vehicle (25% DMSO/PBS); vehicle and CB1 antagonist (AM 251); vehicle and CB2 antagonist (AM 630); vehicle and CB1/CB2 antagonist; dronabinol (CB1/CB2 agonist); dronabinol and CB1 antagonist; dronabinol and CB2 antagonist; and dronabinol and CB1/CB2 antagonists. Sleep was manually scored into NREM and REM stages, and sleep apneas were quantified. RESULTS Dronabinol dissolved in 25% DMSO did not suppress sleep apneas or modify sleep efficiency compared to vehicle controls, in contrast to previously published results. However, dronabinol did suppress REM sleep, which is in line with previously published results. CONCLUSIONS Dronabinol in 25% DMSO partially potentiated dronabinol's effects, suggesting a concomitant biological effect of DMSO on breathing during sleep.
Collapse
Affiliation(s)
- Michael W Calik
- Center for Sleep and Health Research, University of Illinois Chicago, Chicago, IL, USA.
- Department of Biobehavioral Nursing Science, University of Illinois Chicago, Chicago, IL, USA.
- Department of Biobehavioral Nursing Science, College of Nursing, University of Illinois Chicago, 845 South Damen Avenue (M/C 802), Room 740, IL, 60612, Chicago, USA.
| | - David W Carley
- Center for Sleep and Health Research, University of Illinois Chicago, Chicago, IL, USA
- Department of Biobehavioral Nursing Science, University of Illinois Chicago, Chicago, IL, USA
- Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| |
Collapse
|
6
|
Kalkanis A, Testelmans D, Papadopoulos D, Van den Driessche A, Buyse B. Insights into the Use of Point-of-Care Ultrasound for Diagnosing Obstructive Sleep Apnea. Diagnostics (Basel) 2023; 13:2262. [PMID: 37443656 DOI: 10.3390/diagnostics13132262] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/06/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Obstructive sleep apnea (OSA) is a sleeping disorder caused by complete or partial disturbance of breathing during the night. Existing screening methods include questionnaire-based evaluations which are time-consuming, vary in specificity, and are not globally adopted. Point-of-care ultrasound (PoCUS), on the other hand, is a painless, inexpensive, portable, and useful tool that has already been introduced for the evaluation of upper airways by anesthetists. PoCUS could also serve as a potential screening tool for the diagnosis of OSA by measuring different airway parameters, including retropalatal pharynx transverse diameter, tongue base thickness, distance between lingual arteries, lateral parapharyngeal wall thickness, palatine tonsil volume, and some non-airway parameters like carotid intima-media thickness, mesenteric fat thickness, and diaphragm characteristics. This study reviewed previously reported studies to highlight the importance of PoCUS as a potential screening tool for OSA.
Collapse
Affiliation(s)
- Alexandros Kalkanis
- Department of Respiratory Diseases, University Hospitals Leuven, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium
| | - Dries Testelmans
- Department of Respiratory Diseases, University Hospitals Leuven, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium
| | - Dimitrios Papadopoulos
- Department of Respiratory Diseases, University Hospitals Leuven, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium
| | | | - Bertien Buyse
- Department of Respiratory Diseases, University Hospitals Leuven, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium
| |
Collapse
|
7
|
Arias-Cavieres A, Garcia AJ. A consequence of immature breathing induces persistent changes in hippocampal synaptic plasticity and behavior: a role of prooxidant state and NMDA receptor imbalance. Front Mol Neurosci 2023; 16:1192833. [PMID: 37456523 PMCID: PMC10338931 DOI: 10.3389/fnmol.2023.1192833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/24/2023] [Indexed: 07/18/2023] Open
Abstract
Underdeveloped breathing results from premature birth and causes intermittent hypoxia during the early neonatal period. Neonatal intermittent hypoxia (nIH) is a condition linked to the increased risk of neurocognitive deficit later in life. However, the mechanistic basis of nIH-induced changes to neurophysiology remains poorly resolved. We investigated the impact of nIH on hippocampal synaptic plasticity and NMDA receptor (NMDAr) expression in neonatal mice. Our findings indicate that nIH induces a prooxidant state that leads to an imbalance in NMDAr subunit composition favoring GluN2B over GluN2A expression and impairs synaptic plasticity. These consequences persist in adulthood and coincide with deficits in spatial memory. Treatment with an antioxidant, manganese (III) tetrakis (1-methyl-4-pyridyl)porphyrin (MnTMPyP), during nIH effectively mitigated both immediate and long-term effects of nIH. However, MnTMPyP treatment post-nIH did not prevent long-lasting changes in either synaptic plasticity or behavior. In addition to demonstrating that the prooxidant state has a central role in nIH-mediated neurophysiological and behavioral deficits, our results also indicate that targeting the prooxidant state during a discrete therapeutic window may provide a potential avenue for mitigating long-term neurophysiological and behavioral outcomes that result from unstable breathing during early postnatal life.
Collapse
Affiliation(s)
- Alejandra Arias-Cavieres
- Institute for Integrative Physiology, The University of Chicago, Chicago, IL, United States
- Department of Medicine, Section of Emergency Medicine, The University of Chicago, Chicago, IL, United States
| | - Alfredo J. Garcia
- Institute for Integrative Physiology, The University of Chicago, Chicago, IL, United States
- Department of Medicine, Section of Emergency Medicine, The University of Chicago, Chicago, IL, United States
- University of Chicago Neuroscience Institute, University of Chicago, Chicago, IL, United States
| |
Collapse
|
8
|
Ramirez JM, Carroll MS, Burgraff N, Rand CM, Weese-Mayer DE. A narrative review of the mechanisms and consequences of intermittent hypoxia and the role of advanced analytic techniques in pediatric autonomic disorders. Clin Auton Res 2023; 33:287-300. [PMID: 37326924 DOI: 10.1007/s10286-023-00958-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/25/2023] [Indexed: 06/17/2023]
Abstract
Disorders of autonomic functions are typically characterized by disturbances in multiple organ systems. These disturbances are often comorbidities of common and rare diseases, such as epilepsy, sleep apnea, Rett syndrome, congenital heart disease or mitochondrial diseases. Characteristic of many autonomic disorders is the association with intermittent hypoxia and oxidative stress, which can cause or exaggerate a variety of other autonomic dysfunctions, making the treatment and management of these syndromes very complex. In this review we discuss the cellular mechanisms by which intermittent hypoxia can trigger a cascade of molecular, cellular and network events that result in the dysregulation of multiple organ systems. We also describe the importance of computational approaches, artificial intelligence and the analysis of big data to better characterize and recognize the interconnectedness of the various autonomic and non-autonomic symptoms. These techniques can lead to a better understanding of the progression of autonomic disorders, ultimately resulting in better care and management.
Collapse
Affiliation(s)
- Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA, 98101, USA.
- Departments of Neurological Surgery and Pediatrics, University of Washington School of Medicine, 1900 Ninth Avenue, Seattle, WA, 98101, USA.
| | - Michael S Carroll
- Data Analytics and Reporting, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Division of Autonomic Medicine, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Nicholas Burgraff
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA, 98101, USA
| | - Casey M Rand
- Division of Autonomic Medicine, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Debra E Weese-Mayer
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Division of Autonomic Medicine, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| |
Collapse
|
9
|
Arias-Cavieres A, Garcia AJ. A Consequence of Immature Breathing induces Persistent Changes in Hippocampal Synaptic Plasticity and Behavior: A Role of Pro-Oxidant State and NMDA Receptor Imbalance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.21.533692. [PMID: 36993632 PMCID: PMC10055328 DOI: 10.1101/2023.03.21.533692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Underdeveloped breathing results from premature birth and causes intermittent hypoxia during the early neonatal period. Neonatal intermittent hypoxia (nIH) is a condition linked to the increased risk of neurocognitive deficit later in life. However, the underlying mechanistic consequences nIH-induced neurophysiological changes remains poorly resolved. Here, we investigated the impact of nIH on hippocampal synaptic plasticity and NMDA receptor (NMDAr) expression in neonatal mice. Our findings indicate that nIH induces a pro-oxidant state, leading to an imbalance in NMDAr subunit composition that favors GluN2A over GluN2B expression, and subsequently impairs synaptic plasticity. These consequences persist in adulthood and coincide with deficits in spatial memory. Treatment with the antioxidant, manganese(III) tetrakis(1-methyl-4-pyridyl)porphyrin (MnTMPyP), during nIH effectively mitigated both immediate and long-term effects of nIH. However, MnTMPyP treatment post-nIH did not prevent the long-lasting changes in either synaptic plasticity or behavior. Our results underscore the central role of the pro-oxidant state in nIH-mediated neurophysiological and behavioral deficits and importance of stable oxygen homeostasis during early life. These findings suggest that targeting the pro-oxidant state during a discrete window may provide a potential avenue for mitigating long-term neurophysiological and behavioral outcomes when breathing is unstable during early postnatal life. Highlights Untreated immature breathing leads neonatal intermittent hypoxia (nIH).nIH promotes a pro-oxidant state associated with increased HIF1a activity and NOX upregulation.nIH-dependent pro-oxidant state leads to NMDAr remodeling of the GluN2 subunit to impair synaptic plasticity.Impaired synaptic plasticity and NMDAr remodeling caused by nIH persists beyond the critical period of development.A discrete window for antioxidant administration exists to effectively mitigate neurophysiological and behavioral consequences of nIH.
Collapse
Affiliation(s)
- Alejandra Arias-Cavieres
- Institute for Integrative Physiology, The University of Chicago
- Department of Medicine, Section of Emergency Medicine, The University of Chicago
| | - Alfredo J. Garcia
- Institute for Integrative Physiology, The University of Chicago
- Grossman Institute for Neuroscience, Quantitative Biology & Human Behavior, The University of Chicago
- Department of Medicine, Section of Emergency Medicine, The University of Chicago
| |
Collapse
|
10
|
Ganouna-Cohen G, Marcouiller F, Bairam A, Joseph V. Orchiectomy exacerbates sleep-disordered breathing induced by intermittent hypoxia in mice. Respir Physiol Neurobiol 2023; 313:104052. [PMID: 36990336 DOI: 10.1016/j.resp.2023.104052] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023]
Abstract
We tested the hypothesis that low testosterone levels alter the regulation of breathing in mice exposed to intermittent hypoxia (IH). We used orchiectomized (ORX) or control (Sham-operated) mice exposed to normoxia or IH (12h/day, 10 cycles/h, 6% O2) for 14 days. Breathing was measured by whole-body plethysmography to asses the stability of the breathing pattern (frequency distribution of total cycle time - Ttot) and the frequency and duration of spontaneous and post-sigh apneas (PSA). We characterized sighs as inducing one (S1) or more (S2) apnea and determined the sigh parameters (volume, peak inspiratory and expiratory flows, cycle times) associated with PSA. IH increased the frequency and duration of PSA and the proportion of S1 and S2 sighs. The PSA frequency was mostly related to the sigh expiratory time. The effects of IH on PSA frequency were amplified in ORX-IH mice. Our experiments using ORX support the hypothesis that testosterone is involved in the regulation of breathing in mice following IH.
Collapse
|
11
|
Ludwig K, Malatantis-Ewert S, Huppertz T, Bahr-Hamm K, Seifen C, Pordzik J, Matthias C, Simon P, Gouveris H. Central Apneic Event Prevalence in REM and NREM Sleep in OSA Patients: A Retrospective, Exploratory Study. BIOLOGY 2023; 12:298. [PMID: 36829574 PMCID: PMC9953334 DOI: 10.3390/biology12020298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
Patients with sleep-disordered breathing show a combination of different respiratory events (central, obstructive, mixed), with one type being predominant. We observed a reduced prevalence of central apneic events (CAEs) during REM sleep compared to NREM sleep in patients with predominant obstructive sleep apnea (OSA). The aim of this retrospective, exploratory study was to describe this finding and to suggest pathophysiological explanations. The polysomnography (PSG) data of 141 OSA patients were assessed for the prevalence of CAEs during REM and NREM sleep. On the basis of the apnea-hypopnea index (AHI), patients were divided into three OSA severity groups (mild: AHI < 15/h; moderate: AHI = 15-30/h; severe: AHI > 30/h). We compared the frequency of CAEs adjusted for the relative length of REM and NREM sleep time, and a significantly increased frequency of CAEs in NREM was found only in severely affected OSA patients. Given that the emergence of CAEs is strongly associated with the chemosensitivity of the brainstem nuclei regulating breathing mechanics in humans, a sleep-stage-dependent chemosensitivity is proposed. REM-sleep-associated neuronal circuits in humans may act protectively against the emergence of CAEs, possibly by reducing chemosensitivity. On the contrary, a significant increase in the chemosensitivity of the brainstem nuclei during NREM sleep is suggested.
Collapse
Affiliation(s)
- Katharina Ludwig
- Sleep Medicine Center, Department of Otorhinolaryngology, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Sebastian Malatantis-Ewert
- Sleep Medicine Center, Department of Otorhinolaryngology, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Tilman Huppertz
- Sleep Medicine Center, Department of Otorhinolaryngology, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Katharina Bahr-Hamm
- Sleep Medicine Center, Department of Otorhinolaryngology, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Christopher Seifen
- Sleep Medicine Center, Department of Otorhinolaryngology, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Johannes Pordzik
- Sleep Medicine Center, Department of Otorhinolaryngology, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Christoph Matthias
- Sleep Medicine Center, Department of Otorhinolaryngology, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Perikles Simon
- Department of Sport Medicine, Rehabilitation and Disease Prevention, Faculty of Social Science, Media and Sport, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Haralampos Gouveris
- Sleep Medicine Center, Department of Otorhinolaryngology, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| |
Collapse
|
12
|
Proceedings of the First Pediatric Coma and Disorders of Consciousness Symposium by the Curing Coma Campaign, Pediatric Neurocritical Care Research Group, and NINDS: Gearing for Success in Coma Advancements for Children and Neonates. Neurocrit Care 2023; 38:447-469. [PMID: 36759418 PMCID: PMC9910782 DOI: 10.1007/s12028-023-01673-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/03/2023] [Indexed: 02/11/2023]
Abstract
This proceedings article presents the scope of pediatric coma and disorders of consciousness based on presentations and discussions at the First Pediatric Disorders of Consciousness Care and Research symposium held on September 14th, 2021. Herein we review the current state of pediatric coma care and research opportunities as well as shared experiences from seasoned researchers and clinicians. Salient current challenges and opportunities in pediatric and neonatal coma care and research were identified through the contributions of the presenters, who were Jose I. Suarez, MD, Nina F. Schor, MD, PhD, Beth S. Slomine, PhD Erika Molteni, PhD, and Jan-Marino Ramirez, PhD, and moderated by Varina L. Boerwinkle, MD, with overview by Mark Wainwright, MD, and subsequent audience discussion. The program, executively planned by Varina L. Boerwinkle, MD, Mark Wainwright, MD, and Michelle Elena Schober, MD, drove the identification and development of priorities for the pediatric neurocritical care community.
Collapse
|
13
|
Qian L, Rawashdeh O, Kasas L, Milne MR, Garner N, Sankorrakul K, Marks N, Dean MW, Kim PR, Sharma A, Bellingham MC, Coulson EJ. Cholinergic basal forebrain degeneration due to sleep-disordered breathing exacerbates pathology in a mouse model of Alzheimer's disease. Nat Commun 2022; 13:6543. [PMID: 36323689 PMCID: PMC9630433 DOI: 10.1038/s41467-022-33624-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 09/26/2022] [Indexed: 11/07/2022] Open
Abstract
Although epidemiological studies indicate that sleep-disordered breathing (SDB) such as obstructive sleep apnea is a strong risk factor for the development of Alzheimer's disease (AD), the mechanisms of the risk remain unclear. Here we developed a method of modeling SDB in mice that replicates key features of the human condition: altered breathing during sleep, sleep disruption, moderate hypoxemia, and cognitive impairment. When we induced SDB in a familial AD model, the mice displayed exacerbation of cognitive impairment and the pathological features of AD, including increased levels of amyloid-beta and inflammatory markers, as well as selective degeneration of cholinergic basal forebrain neurons. These pathological features were not induced by chronic hypoxia or sleep disruption alone. Our results also revealed that the cholinergic neurodegeneration was mediated by the accumulation of nuclear hypoxia inducible factor 1 alpha. Furthermore, restoring blood oxygen levels during sleep to prevent hypoxia prevented the pathological changes induced by the SDB. These findings suggest a signaling mechanism whereby SDB induces cholinergic basal forebrain degeneration.
Collapse
Affiliation(s)
- Lei Qian
- grid.1003.20000 0000 9320 7537Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072 Australia ,grid.1003.20000 0000 9320 7537Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072 Australia ,grid.1003.20000 0000 9320 7537School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Oliver Rawashdeh
- grid.1003.20000 0000 9320 7537School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Leda Kasas
- grid.1003.20000 0000 9320 7537School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Michael R. Milne
- grid.1003.20000 0000 9320 7537Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072 Australia ,grid.1003.20000 0000 9320 7537Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072 Australia ,grid.1003.20000 0000 9320 7537School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Nicholas Garner
- grid.1003.20000 0000 9320 7537School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Kornraviya Sankorrakul
- grid.1003.20000 0000 9320 7537School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072 Australia ,grid.10223.320000 0004 1937 0490Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Thailand
| | - Nicola Marks
- grid.1003.20000 0000 9320 7537Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Matthew W. Dean
- grid.1003.20000 0000 9320 7537School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Pu Reum Kim
- grid.1003.20000 0000 9320 7537School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Aanchal Sharma
- grid.1003.20000 0000 9320 7537Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Mark C. Bellingham
- grid.1003.20000 0000 9320 7537School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Elizabeth J. Coulson
- grid.1003.20000 0000 9320 7537Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072 Australia ,grid.1003.20000 0000 9320 7537Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072 Australia ,grid.1003.20000 0000 9320 7537School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072 Australia
| |
Collapse
|
14
|
Shi Y, Feng Y, Chen X, Ma L, Cao Z, Shang L, Zhao B, She N, Zhang Y, Si C, Liu H, Zhao J, Ren X. Serum neurofilament light reflects cognitive dysfunctions in children with obstructive sleep apnea. BMC Pediatr 2022; 22:449. [PMID: 35879699 PMCID: PMC9316320 DOI: 10.1186/s12887-022-03514-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 07/21/2022] [Indexed: 12/03/2022] Open
Abstract
Background In children, obstructive sleep apnea (OSA) can cause cognitive dysfunctions. Amyloid-beta and tau are elevated in OSA. Neurofilament light (NfL) is a marker of neuro-axonal damage, but there are no reports of NfL for OSA. The objective was to investigate the serum levels of NfL and tau in children with or without OSA and explore their relationship with cognitive dysfunctions caused by OSA. Methods This retrospective case–control study included children diagnosed with adenoid tonsil hypertrophy from July 2017 to September 2019 at the Second Affiliated Hospital of Xi’an Jiaotong University. Correlations between cognitive scores and tau and NfL were examined. Results Fifty-six OSA and 49 non-OSA children were included. The serum NfL levels were higher in the OSA group (31.68 (27.29–36.07) pg/ml) than in the non-OSA group (19.13 (17.32–20.95) pg/ml) (P < 0.001). Moreover, NfL was correlated with the course of the disease, apnea–hypopnea index (AHI), obstructive apnea index (OAI), obstructive apnea–hypopnea index (OAHI), average oxygen saturation (SaO2), respiratory arousal index (RAI), and cognitive dysfunctions evaluated by the Chinese Wechsler Intelligence Scale for Children (C-WISC) (all P < 0.05). The area under the receiver operating characteristics curve (AUC) of NfL was 0.816 (95%CI: 0.736–0.897). Multiple regression analysis revealed that NfL was significantly associated with verbal intelligence quotient (VIQ), performance intelligence quotient (PIQ) and full-scale intelligence quotient (FIQ) (P < 0.001, respectively). Conclusions Serum NfL levels are associated with the severity of cognitive dysfunctions in children diagnosed with adenoid tonsil hypertrophy and might be a candidate noninvasive, objective marker to identify cognitive dysfunctions in children with OSA.
Collapse
Affiliation(s)
- Yewen Shi
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, People's Republic of China
| | - Yani Feng
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, People's Republic of China
| | - Xi Chen
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, People's Republic of China
| | - Lina Ma
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, People's Republic of China
| | - Zine Cao
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, People's Republic of China
| | - Lei Shang
- Department of Health Statistics, School of Public Health, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Bingjie Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, People's Republic of China
| | - Ningning She
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, People's Republic of China
| | - Yitong Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, People's Republic of China
| | - Chao Si
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, People's Republic of China
| | - Haiqin Liu
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, People's Republic of China
| | - Junjie Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, People's Republic of China.
| | - Xiaoyong Ren
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, People's Republic of China.
| |
Collapse
|
15
|
Mafa-dependent GABAergic activity promotes mouse neonatal apneas. Nat Commun 2022; 13:3284. [PMID: 35672398 PMCID: PMC9174494 DOI: 10.1038/s41467-022-30825-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 05/19/2022] [Indexed: 01/17/2023] Open
Abstract
While apneas are associated with multiple pathological and fatal conditions, the underlying molecular mechanisms remain elusive. We report that a mutated form of the transcription factor Mafa (Mafa4A) that prevents phosphorylation of the Mafa protein leads to an abnormally high incidence of breath holding apneas and death in newborn Mafa4A/4A mutant mice. This apneic breathing is phenocopied by restricting the mutation to central GABAergic inhibitory neurons and by activation of inhibitory Mafa neurons while reversed by inhibiting GABAergic transmission centrally. We find that Mafa activates the Gad2 promoter in vitro and that this activation is enhanced by the mutation that likely results in increased inhibitory drives onto target neurons. We also find that Mafa inhibitory neurons are absent from respiratory, sensory (primary and secondary) and pontine structures but are present in the vicinity of the hypoglossal motor nucleus including premotor neurons that innervate the geniohyoid muscle, to control upper airway patency. Altogether, our data reveal a role for Mafa phosphorylation in regulation of GABAergic drives and suggest a mechanism whereby reduced premotor drives to upper airway muscles may cause apneic breathing at birth. Apneas are associated with many pathological conditions. Here, the authors show in a mouse model that stabilization of the transcription factor Mafa in brainstem GABAergic neurons may contribute to apnea, by decreasing motor drive to muscles controlling the airways.
Collapse
|
16
|
Bishop M, Weinhold M, Turk AZ, Adeck A, SheikhBahaei S. An open-source tool for automated analysis of breathing behaviors in common marmosets and rodents. eLife 2022; 11:e71647. [PMID: 35049499 PMCID: PMC8856653 DOI: 10.7554/elife.71647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
The respiratory system maintains homeostatic levels of oxygen (O2) and carbon dioxide (CO2) in the body through rapid and efficient regulation of breathing frequency and depth (tidal volume). The commonly used methods of analyzing breathing data in behaving experimental animals are usually subjective, laborious, and time-consuming. To overcome these hurdles, we optimized an analysis toolkit for the unsupervised study of respiratory activities in animal subjects. Using this tool, we analyzed breathing behaviors of the common marmoset (Callithrix jacchus), a New World non-human primate model. Using whole-body plethysmography in room air as well as acute hypoxic (10% O2) and hypercapnic (6% CO2) conditions, we describe breathing behaviors in awake, freely behaving marmosets. Our data indicate that marmosets' exposure to acute hypoxia decreased metabolic rate and increased sigh rate. However, the hypoxic condition did not augment ventilation. Hypercapnia, on the other hand, increased both the frequency and depth (i.e., tidal volume) of breathing.
Collapse
Affiliation(s)
- Mitchell Bishop
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, United States
| | - Maximilian Weinhold
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, United States
| | - Ariana Z Turk
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, United States
| | - Afuh Adeck
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, United States
| | - Shahriar SheikhBahaei
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, United States
| |
Collapse
|
17
|
Ramirez JM, Karlen-Amarante M, Wang JDJ, Huff A, Burgraff N. Breathing disturbances in Rett syndrome. HANDBOOK OF CLINICAL NEUROLOGY 2022; 189:139-151. [PMID: 36031301 PMCID: PMC10029146 DOI: 10.1016/b978-0-323-91532-8.00018-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Rett Syndrome is an X-linked neurological disorder characterized by behavioral and neurological regression, seizures, motor deficits, and dysautonomia. A particularly prominent presentation includes breathing abnormalities characterized by breathing irregularities, hyperventilation, repetitive breathholding during wakefulness, obstructive and central apneas during sleep, and abnormal responses to hypoxia and hypercapnia. The condition and pathology of the respiratory system is further complicated by dysfunctions of breathing-motor coordination, which is reflected in dysphagia. The discovery of the X-linked mutations in the MECP2 gene has transformed our understanding of the cellular and molecular mechanisms that are at the root of various clinical phenotypes. However, the genotype-phenotype relationship is complicated by various factors which include not only X-inactivation but also consequences of the intermittent hypoxia and oxidative stress associated with the breathing abnormalities.
Collapse
Affiliation(s)
- Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States; Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, United States.
| | - Marlusa Karlen-Amarante
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Jia-Der Ju Wang
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Alyssa Huff
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Nicholas Burgraff
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| |
Collapse
|
18
|
Cinelli E, Mutolo D, Pantaleo T, Bongianni F. Neural mechanisms underlying respiratory regulation within the preBötzinger complex of the rabbit. Respir Physiol Neurobiol 2021; 293:103736. [PMID: 34224867 DOI: 10.1016/j.resp.2021.103736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 11/29/2022]
Abstract
The preBötzinger complex (preBötC) is a medullary area essential for normal breathing and widely recognized as necessary and sufficient to generate the inspiratory phase of respiration. It has been studied mainly in rodents. Here we report the main results of our studies revealing the characteristics of the rabbit preBötC identified by means of neuronal recordings, D,L-homocysteic acid microinjections and histological controls. A crucial role in the respiratory rhythmogenesis within this neural substrate is played by excitatory amino acids, but also GABA and glycine display important contributions. Increases in respiratory frequency are induced by microinjections of neurokinins, somatostatin as well by serotonin (5-HT) through an action on 5-HT1A and 5-HT3 receptors or the disinhibition of a GABAergic circuit. Respiratory depression is observed in response to microinjections of the μ-opioid receptor agonist DAMGO. Our results show similarities and differences with the rodent preBötC and emphasize the importance of comparative studies on the mechanisms underlying respiratory rhythmogenesis in different animal species.
Collapse
Affiliation(s)
- Elenia Cinelli
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università Degli Studi di Firenze, Viale G.B. Morgagni 63, Firenze, 50134, Italy
| | - Donatella Mutolo
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università Degli Studi di Firenze, Viale G.B. Morgagni 63, Firenze, 50134, Italy
| | - Tito Pantaleo
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università Degli Studi di Firenze, Viale G.B. Morgagni 63, Firenze, 50134, Italy
| | - Fulvia Bongianni
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università Degli Studi di Firenze, Viale G.B. Morgagni 63, Firenze, 50134, Italy.
| |
Collapse
|
19
|
Mehfooz N, Siraj F, Shabir A, Mantoo S, Shah TH, Hafiz U, Qadri M, Shah S, Jan R, Koul PA. Spirometric abnormalities in patients with sleep-related breathing disorders. J Family Med Prim Care 2021; 10:1009-1014. [PMID: 34041113 PMCID: PMC8138423 DOI: 10.4103/jfmpc.jfmpc_1018_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/09/2020] [Accepted: 09/20/2020] [Indexed: 11/10/2022] Open
Abstract
Introduction: Patients with sleep-related breathing disorders (SRBD) have various structural and functional abnormalities of the upper airway during sleep which may get reflected on their pulmonary function tests. The aim of the study was to find the correlation between the spirometric indices and snoring, grades of apnea–hypoapnea index (AHI), and STOPBANG. There is scarcity of literature showing correlation of STOP BANG with spirometric variables. Material and Methods: Patient with SRBD fulfilling the inclusion and exclusion criteria were enrolled. The pretest probability sleep score STOPBANG and polysomnography (PSG) were calculated for all the patients. Spirometric indices like forced expiratory volume in one sec (FEV1), forced vital capacity (FVC), postbronchodilator ratio FEVI/FVC (PBDR), and peak expiratory flow rate (PEFR) were studied. Their association with snoring, different grades of obstructive sleep apnea (OSA), and STOPBANG were evaluated using statistical analysis. Results: A total of 70 patients were enrolled. Abnormalities of spirometric indices were found to be common in patients with SRBD but their association with snoring, grades of OSA, and STOPBANG were not statistically significant. There is no statistically significant correlation between body mass index (BMI) and grades of AHI. Conclusion: This study found no statistically significant correlation between spirometric parameters and STOPBANG and degree of AHI. Primary care physicians should be aware that obstructive lung disease does coexist with the sleep disordered breathing but as per this study, their statistically significant association needs further validation.
Collapse
Affiliation(s)
- Nazia Mehfooz
- Department of Pulmonary Medicine, Sheri-Kashmir Institute of Medical Sciences, Soura, Srinagar, Jammu and Kashmir, India
| | - Farhana Siraj
- Department of Internal and Pulmonary Medicine, Sheri-Kashmir Institute of Medical Sciences, Soura, Srinagar, Jammu and Kashmir, India
| | - Afshan Shabir
- Department of Geriatrics, Sheri-Kashmir Institute of Medical Sciences, Soura, Srinagar, Jammu and Kashmir, India
| | - Suhail Mantoo
- Department of Internal and Pulmonary Medicine, Sheri-Kashmir Institute of Medical Sciences, Soura, Srinagar, Jammu and Kashmir, India
| | - Tajamul Hussain Shah
- Department of Internal and Pulmonary Medicine, Sheri-Kashmir Institute of Medical Sciences, Soura, Srinagar, Jammu and Kashmir, India
| | - Umar Hafiz
- Department of Geriatrics, Sheri-Kashmir Institute of Medical Sciences, Soura, Srinagar, Jammu and Kashmir, India
| | - Mudasir Qadri
- Department of Internal and Pulmonary Medicine, Sheri-Kashmir Institute of Medical Sciences, Soura, Srinagar, Jammu and Kashmir, India
| | - Sanaullah Shah
- Department of Internal and Pulmonary Medicine, Sheri-Kashmir Institute of Medical Sciences, Soura, Srinagar, Jammu and Kashmir, India
| | - Rafi Jan
- Department of Internal and Pulmonary Medicine, Sheri-Kashmir Institute of Medical Sciences, Soura, Srinagar, Jammu and Kashmir, India
| | - Parvaiz A Koul
- Department of Internal and Pulmonary Medicine, Sheri-Kashmir Institute of Medical Sciences, Soura, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
20
|
Hernández-Soto R, Villasana-Salazar B, Pinedo-Vargas L, Peña-Ortega F. Chronic intermittent hypoxia alters main olfactory bulb activity and olfaction. Exp Neurol 2021; 340:113653. [PMID: 33607078 DOI: 10.1016/j.expneurol.2021.113653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/02/2021] [Accepted: 02/14/2021] [Indexed: 02/08/2023]
Abstract
Olfactory dysfunction is commonly observed in patients with obstructive sleep apnea (OSA), which is related to chronic intermittent hypoxia (CIH). OSA patients exhibit alterations in discrimination, identification and odor detection threshold. These olfactory functions strongly rely on neuronal processing within the main olfactory bulb (MOB). However, a direct evaluation of the effects of controlled CIH on olfaction and MOB network activity has not been performed. Here, we used electrophysiological field recordings in vivo to evaluate the effects of 21-day-long CIH on MOB network activity and its response to odors. In addition, we assessed animals´ olfaction with the buried food and habituation/dishabituation tests. We found that mice exposed to CIH show alterations in MOB spontaneous activity in vivo, consisting of a reduction in beta and gamma frequency bands power along with an increase in the theta band power. Likewise, the MOB was less responsive to odor stimulation, since the proportional increase of the power of its population activity in response to four different odorants was smaller than the one observed in control animals. These CIH-induced MOB functional alterations correlate with a reduction in the ability to detect, habituate and discriminate olfactory stimuli. Our findings indicate that CIH generates alterations in the MOB neural network, which could be involved in the olfactory deterioration in patients with OSA.
Collapse
Affiliation(s)
- Rebeca Hernández-Soto
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Querétaro, Mexico
| | - Benjamín Villasana-Salazar
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Querétaro, Mexico
| | - Laura Pinedo-Vargas
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Querétaro, Mexico
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Querétaro, Mexico.
| |
Collapse
|
21
|
Parreira S, Antunes F, Coelho M, Bentes C, Peralta R. Sighs during sleep in multiple system atrophy. Sleep Med 2020; 78:75-80. [PMID: 33401147 DOI: 10.1016/j.sleep.2020.12.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/02/2020] [Accepted: 12/11/2020] [Indexed: 10/24/2022]
Abstract
Sighs are physiological phenomena and may occasionally occur during sleep in healthy young adults. Although inspiratory sighs are considered a diagnostic red flag for the parkinsonian form of multiple system atrophy (MSA), its frequency and characteristics are unclear. We aimed to define sigh frequency during sleep recordings in patients with MSA compared to Parkinson's disease (PD) patients, as well as evaluate possible associated breathing disorders or autonomic changes. We analyzed 9 polysomnography's from patients with MSA and 9 from matched PD patients. The proportion of MSA patients (both MSA-P and MSA-C) with sleep-related sighs was significantly higher than that of PD patients, and these occurred predominantly in stages N1 and N2. The median sigh index in sleep and wakefulness were also significantly higher in MSA, although with a significant inter-subject variability. Higher sigh indexes were not associated to other breathing disturbances or with longer disease duration. In MSA, 12% of sighs were associated with oxygen desaturation, while none of the events in PD patients presented with significant changes in oxygen saturation. Respiratory events followed 45% of sighs in MSA, predominantly central sleep apneas, and 29% of sighs in PD, predominantly hypopneas. Our data suggests that high sigh frequencies during sleep should also be considered a red flag for MSA, and future studies should aim to determine whether increased sighing frequency during sleep is specific for this disorder.
Collapse
Affiliation(s)
- Sara Parreira
- Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisboa, Portugal.
| | | | - Miguel Coelho
- Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisboa, Portugal; Univ Lisboa, Fac Med, Clin Univ Neurol, Lisboa, Portugal; Instituto de Medicina Molecular, Lisboa, Portugal
| | - Carla Bentes
- EEG/Sleep Laboratory, Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisboa, Portugal; Univ Lisboa, Fac Med, Clin Univ Neurol, Lisboa, Portugal; Centro de Referência para Epilepsias Refratárias Do CHULN, Member of ERN EpiCare, Portugal
| | - Rita Peralta
- EEG/Sleep Laboratory, Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisboa, Portugal; Univ Lisboa, Fac Med, Clin Univ Neurol, Lisboa, Portugal; Centro de Referência para Epilepsias Refratárias Do CHULN, Member of ERN EpiCare, Portugal
| |
Collapse
|
22
|
|
23
|
Gauda EB, Conde S, Bassi M, Zoccal DB, Almeida Colombari DS, Colombari E, Despotovic N. Leptin: Master Regulator of Biological Functions that Affects Breathing. Compr Physiol 2020; 10:1047-1083. [PMID: 32941688 DOI: 10.1002/cphy.c190031] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Obesity is a global epidemic in developed countries accounting for many of the metabolic and cardiorespiratory morbidities that occur in adults. These morbidities include type 2 diabetes, sleep-disordered breathing (SDB), obstructive sleep apnea, chronic intermittent hypoxia, and hypertension. Leptin, produced by adipocytes, is a master regulator of metabolism and of many other biological functions including central and peripheral circuits that control breathing. By binding to receptors on cells and neurons in the brainstem, hypothalamus, and carotid body, leptin links energy and metabolism to breathing. In this comprehensive article, we review the central and peripheral locations of leptin's actions that affect cardiorespiratory responses during health and disease, with a particular focus on obesity, SDB, and its effects during early development. Obesity-induced hyperleptinemia is associated with centrally mediated hypoventilation with decrease CO2 sensitivity. On the other hand, hyperleptinemia augments peripheral chemoreflexes to hypoxia and induces sympathoexcitation. Thus, "leptin resistance" in obesity is relative. We delineate the circuits responsible for these divergent effects, including signaling pathways. We review the unique effects of leptin during development on organogenesis, feeding behavior, and cardiorespiratory responses, and how undernutrition and overnutrition during critical periods of development can lead to cardiorespiratory comorbidities in adulthood. We conclude with suggestions for future directions to improve our understanding of leptin dysregulation and associated clinical diseases and possible therapeutic targets. Lastly, we briefly discuss the yin and the yang, specifically the contribution of relative adiponectin deficiency in adults with hyperleptinemia to the development of metabolic and cardiovascular disease. © 2020 American Physiological Society. Compr Physiol 10:1047-1083, 2020.
Collapse
Affiliation(s)
- Estelle B Gauda
- Division of Neonatology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Silvia Conde
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Lisboa, Portugal
| | - Mirian Bassi
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Daniel B Zoccal
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Debora Simoes Almeida Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Nikola Despotovic
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Lajoie AC, Lafontaine AL, Kimoff RJ, Kaminska M. Obstructive Sleep Apnea in Neurodegenerative Disorders: Current Evidence in Support of Benefit from Sleep Apnea Treatment. J Clin Med 2020; 9:E297. [PMID: 31973065 PMCID: PMC7073991 DOI: 10.3390/jcm9020297] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/17/2020] [Accepted: 01/19/2020] [Indexed: 12/13/2022] Open
Abstract
Obstructive sleep apnea (OSA) is a prevalent disorder characterized by recurrent upper airway obstruction during sleep resulting in intermittent hypoxemia and sleep fragmentation. Research has recently increasingly focused on the impact of OSA on the brain's structure and function, in particular as this relates to neurodegenerative diseases. This article reviews the links between OSA and neurodegenerative disease, focusing on Parkinson's disease, including proposed pathogenic mechanisms and current knowledge on the effects of treatment.
Collapse
Affiliation(s)
- Annie C. Lajoie
- Respiratory Epidemiology and Clinical Research Unit, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3S5, Canada; (A.C.L.); (R.J.K.)
| | - Anne-Louise Lafontaine
- Montreal Neurological Institute, McGill University Health Centre, Montreal, QC H3A 2B4, Canada;
| | - R. John Kimoff
- Respiratory Epidemiology and Clinical Research Unit, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3S5, Canada; (A.C.L.); (R.J.K.)
- Respiratory Division & Sleep Laboratory, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Marta Kaminska
- Respiratory Epidemiology and Clinical Research Unit, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3S5, Canada; (A.C.L.); (R.J.K.)
- Respiratory Division & Sleep Laboratory, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
25
|
Faizal WM, Ghazali NNN, Badruddin IA, Zainon MZ, Yazid AA, Ali MAB, Khor CY, Ibrahim NB, Razi RM. A review of fluid-structure interaction simulation for patients with sleep related breathing disorders with obstructive sleep. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2019; 180:105036. [PMID: 31430594 DOI: 10.1016/j.cmpb.2019.105036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/02/2019] [Accepted: 08/12/2019] [Indexed: 05/05/2023]
Abstract
Obstructive sleep apnea is one of the most common breathing disorders. Undiagnosed sleep apnea is a hidden health crisis to the patient and it could raise the risk of heart diseases, high blood pressure, depression and diabetes. The throat muscle (i.e., tongue and soft palate) relax narrows the airway and causes the blockage of the airway in breathing. To understand this phenomenon computational fluid dynamics method has emerged as a handy tool to conduct the modeling and analysis of airflow characteristics. The comprehensive fluid-structure interaction method provides the realistic visualization of the airflow and interaction with the throat muscle. Thus, this paper reviews the scientific work related to the fluid-structure interaction (FSI) for the evaluation of obstructive sleep apnea, using computational techniques. In total 102 articles were analyzed, each article was evaluated based on the elements related with fluid-structure interaction of sleep apnea via computational techniques. In this review, the significance of FSI for the evaluation of obstructive sleep apnea has been critically examined. Then the flow properties, boundary conditions and validation of the model are given due consideration to present a broad perspective of CFD being applied to study sleep apnea. Finally, the challenges of FSI simulation methods are also highlighted in this article.
Collapse
Affiliation(s)
- W M Faizal
- Department of Mechanical Engineering Technology, Faculty of Engineering Technology, University Malaysia Perlis,02100 Padang Besar, Perlis, Malaysia; Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - N N N Ghazali
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Irfan Anjum Badruddin
- Dept. of Mechanical Engineering, College of Engineering, King Khalid University, PO Box 394, Abha 61421. Kingdom of Saudi Arabia.
| | - M Z Zainon
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Aznijar Ahmad Yazid
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mohamad Azlin Bin Ali
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - C Y Khor
- Department of Mechanical Engineering Technology, Faculty of Engineering Technology, University Malaysia Perlis,02100 Padang Besar, Perlis, Malaysia
| | - Norliza Binti Ibrahim
- Department of Oral & Maxillofacial Clinical Science, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Roziana M Razi
- Department of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
26
|
Herkenrath SD, Randerath WJ. More than Heart Failure: Central Sleep Apnea and Sleep-Related Hypoventilation. Respiration 2019; 98:95-110. [PMID: 31291632 DOI: 10.1159/000500728] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 05/02/2019] [Indexed: 12/29/2022] Open
Abstract
Central sleep apnea (CSA) comprises a variety of breathing patterns and clinical entities. They can be classified into 2 categories based on the partial pressure of carbon dioxide in the arterial blood. Nonhypercapnic CSA is usually characterized by a periodic breathing pattern, while hypercapnic CSA is based on hypoventilation. The latter CSA form is associated with central nervous, neuromuscular, and rib cage disorders as well as obesity and certain medication or substance intake. In contrast, nonhypercapnic CSA is typically accompanied by an overshoot of the ventilation and often associated with heart failure, cerebrovascular diseases, and stay in high altitude. CSA and hypoventilation syndromes are often considered separately, but pathophysiological aspects frequently overlap. An integrative approach helps to recognize underlying pathophysiological mechanisms and to choose adequate therapeutic strategies. Research in the last decades improved our insights; nevertheless, diagnostic tools are not always appropriately chosen to perform comprehensive sleep studies. This supports misinterpretation and misclassification of sleep disordered breathing. The purpose of this article is to highlight unresolved problems, raise awareness for different pathophysiological components and to discuss the evidence for targeted therapeutic strategies.
Collapse
|
27
|
Bastianini S, Alvente S, Berteotti C, Bosi M, Lo Martire V, Silvani A, Valli A, Zoccoli G. Post-sigh sleep apneas in mice: Systematic review and data-driven definition. J Sleep Res 2019; 28:e12845. [PMID: 30920081 DOI: 10.1111/jsr.12845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 02/01/2019] [Accepted: 02/18/2019] [Indexed: 11/26/2022]
Abstract
Sleep apneas can be categorized as post-sigh (prevailing in non-rapid eye movement sleep) or spontaneous (prevailing in rapid eye movement sleep) according to whether or not they are preceded by an augmented breath (sigh). Notably, the occurrence of these apnea subtypes changes differently in hypoxic/hypercapnic environments and in some genetic diseases, highlighting the importance of an objective discrimination. We aim to: (a) systematically review the literature comparing the criteria used in categorizing mouse sleep apneas; and (b) provide data-driven criteria for this categorization, with the final goal of reducing experimental variability in future studies. Twenty-two wild-type mice, instrumented with electroencephalographic/electromyographic electrodes, were placed inside a whole-body plethysmographic chamber to quantify sleep apneas and sighs. Wake-sleep states were scored on 4-s epochs based on electroencephalographic/electromyographic signals. Literature revision showed that highly different criteria were used for post-sigh apnea definition, the intervals for apnea occurrence after sigh ranging from 1 breath up to 20 s. In our data, the apnea occurrence rate during non-rapid eye movement sleep was significantly higher than that calculated before the sigh only in the 1st and 2nd 4-s epochs following a sigh. These data suggest that, in mice, apneas should be categorized as post-sigh only if they start within 8 s from a sigh; the choice of shorter or longer time windows might underestimate or slightly overestimate their occurrence rate, respectively.
Collapse
Affiliation(s)
- Stefano Bastianini
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sara Alvente
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Chiara Berteotti
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Marcello Bosi
- ASL of Romagna, Department Thoracic Diseases, Pulmonary Operative Unit, Morgagni-Pierantoni Hospital, Forlì, Italy
| | - Viviana Lo Martire
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandro Silvani
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alice Valli
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giovanna Zoccoli
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
28
|
Abstract
Breathing is a vital rhythmic behavior that originates from neural networks within the brainstem. It is hypothesized that the breathing rhythm is generated by spatially distinct networks localized to discrete kernels or compartments. Here, we provide evidence that the functional boundaries of these compartments expand and contract dynamically based on behavioral or physiological demands. The ability of these rhythmic networks to change in size may allow the breathing rhythm to be very reliable, yet flexible enough to accommodate the large repertoire of mammalian behaviors that must be integrated with breathing. The ability of neuronal networks to reconfigure is a key property underlying behavioral flexibility. Networks with recurrent topology are particularly prone to reconfiguration through changes in synaptic and intrinsic properties. Here, we explore spatial reconfiguration in the reticular networks of the medulla that generate breathing. Combined results from in vitro and in vivo approaches demonstrate that the network architecture underlying generation of the inspiratory phase of breathing is not static but can be spatially redistributed by shifts in the balance of excitatory and inhibitory network influences. These shifts in excitation/inhibition allow the size of the active network to expand and contract along a rostrocaudal medullary column during behavioral or metabolic challenges to breathing, such as changes in sensory feedback, sighing, and gasping. We postulate that the ability of this rhythm-generating network to spatially reconfigure contributes to the remarkable robustness and flexibility of breathing.
Collapse
|
29
|
Thakre PP, Bellingham MC. Capsaicin causes robust reduction in glycinergic transmission to rat hypoglossal motor neurons via a TRPV1-independent mechanism. J Neurophysiol 2019; 121:1535-1542. [PMID: 30785813 DOI: 10.1152/jn.00059.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The effect of capsaicin on glycinergic synaptic transmission to juvenile rat hypoglossal motor neurons in acute brainstem slices was evaluated in the presence of TTX. Capsaicin caused a robust decrease in miniature IPSC frequency, amplitude, and half-width, showing that this effect is independent of action potential generation. In the presence of capsazepine, a classic TRPV1 antagonist, capsaicin was still able to reduce spontaneous inhibitory postsynaptic current (IPSC) amplitude and frequency. We further investigated whether the effect of capsaicin on glycinergic transmission to hypoglossal motor neurons is pre- or postsynaptic in nature by recording pairs of evoked IPSCs. Interestingly, capsaicin also reduced evoked IPSC amplitude without affecting paired-pulse ratio, indicating a postsynaptic mechanism of action. Significant reduction was also observed in evoked IPSC half-width, rise time, and decay tau. We also show that capsaicin does not have any effect on either transient (It) or sustained (Is) potassium currents. Finally, we also show that the hyperpolarization-activated cationic current (Ih) also remains unchanged after capsaicin application. NEW & NOTEWORTHY Capsaicin reduces the amplitude of quantal and evoked glycinergic inhibitory neurotransmission to brainstem motor neurons without altering activity-dependent transmitter release. This effect of capsaicin is not due to activation of TRPV1 receptors, as it is not blocked by capsazepine, a TRPV1 receptor antagonist. Capsaicin does not alter voltage-dependent potassium current or the hyperpolarization-activated cationic current in brainstem motor neurons.
Collapse
Affiliation(s)
- Prajwal P Thakre
- Faculty of Medicine, School of Biomedical Sciences, University of Queensland , Brisbane, Queensland , Australia
| | - Mark C Bellingham
- Faculty of Medicine, School of Biomedical Sciences, University of Queensland , Brisbane, Queensland , Australia
| |
Collapse
|
30
|
Iovino L, Mutolo D, Cinelli E, Contini M, Pantaleo T, Bongianni F. Breathing stimulation mediated by 5-HT1A and 5-HT3 receptors within the preBötzinger complex of the adult rabbit. Brain Res 2019; 1704:26-39. [DOI: 10.1016/j.brainres.2018.09.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/10/2018] [Accepted: 09/18/2018] [Indexed: 02/06/2023]
|
31
|
Lindsey BG, Nuding SC, Segers LS, Morris KF. Carotid Bodies and the Integrated Cardiorespiratory Response to Hypoxia. Physiology (Bethesda) 2019; 33:281-297. [PMID: 29897299 DOI: 10.1152/physiol.00014.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Advances in our understanding of brain mechanisms for the hypoxic ventilatory response, coordinated changes in blood pressure, and the long-term consequences of chronic intermittent hypoxia as in sleep apnea, such as hypertension and heart failure, are giving impetus to the search for therapies to "erase" dysfunctional memories distributed in the carotid bodies and central nervous system. We review current network models, open questions, sex differences, and implications for translational research.
Collapse
Affiliation(s)
- Bruce G Lindsey
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Sarah C Nuding
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Lauren S Segers
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Kendall F Morris
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida , Tampa, Florida
| |
Collapse
|
32
|
Lee KZ. Impact of cervical spinal cord contusion on the breathing pattern across the sleep-wake cycle in the rat. J Appl Physiol (1985) 2019; 126:111-123. [DOI: 10.1152/japplphysiol.00853.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The present study was designed to investigate breathing patterns across the sleep-wake state following a high cervical spinal injury in rats. The breathing patterns (e.g., respiratory frequency, tidal volume, and minute ventilation), neck electromyogram, and electroencephalography of unanesthetized adult male rats were measured at the acute (i.e., 1 day), subchronic (i.e., 2 wk), and/or chronic (i.e., 6 wk) injured stages after unilateral contusion of the second cervical spinal cord. Cervical spinal cord injury caused a long-term reduction in the tidal volume but did not influence the sleep-wake cycle duration. The minute ventilation during sleep was usually lower than that during the wake period in uninjured animals due to a decrease in respiratory frequency. However, this sleep-induced reduction in respiratory frequency was not observed in contused animals at the acute injured stage. By contrast, the tidal volume was significantly lower during sleep in contused animals but not uninjured animals from the acute to the chronic injured stage. Moreover, the frequency of sigh and postsigh apnea was elevated in acutely contused animals. These results indicated that high cervical spinal contusion is associated with exacerbated sleep-induced attenuation of the tidal volume and higher occurrence of sleep apnea, which may be detrimental to respiratory functional recovery after cervical spinal cord injury. NEW & NOTEWORTHY Cervical spinal injury is usually associated with sleep-disordered breathing. The present study investigated breathing patterns across sleep-wake state following cervical spinal injury in the rat. Unilateral cervical spinal contusion significantly impacted sleep-induced alteration of breathing patterns, showing a blunted frequency response and exacerbated attenuated tidal volume and occurrence of sleep apnea. The result enables us to investigate effects of cervical spinal injury on the pathogenesis of sleep-disordered breathing and evaluate potential therapies to improve respiration.
Collapse
Affiliation(s)
- Kun-Ze Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Center for Neuroscience, National Sun Yat-sen University, Kaohsiung, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, Taiwan
| |
Collapse
|
33
|
Rohatgi R, Gupta R, Ray R, Kalra V. Is obstructive sleep apnea the missing link between metabolic syndrome and second-generation antipsychotics: Preliminary study. Indian J Psychiatry 2018; 60:478-484. [PMID: 30581214 PMCID: PMC6278225 DOI: 10.4103/psychiatry.indianjpsychiatry_105_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Metabolic syndrome in individuals taking second-generation antipsychotics is thought to be mediated by antipsychotic-induced weight gain. However, recent literature challenges this notion, and theoretically, it may also be mediated through obstructive sleep apnea (OSA). This study explores the contribution of OSA in antipsychotic-induced metabolic syndrome. MATERIALS AND METHODS Forty-three participants suffering from schizophrenia spectrum disorder and major depressive disorder, taking second-generation antipsychotics were included in this study. Treatment history was taken in detail, and lifetime exposure to antipsychotics was converted to olanzapine-equivalent doses. Physical characteristics were noted. OSA was screened through the Hindi version of Berlin Questionnaire. Plasma glucose, serum total cholesterol, serum high-density lipoprotein, and serum triglyceride were measured after 12-h fasting. Adult treatment Panel-III criteria were used to diagnose metabolic syndrome. RESULTS Gender distribution was comparable in the study sample. About 27% had continuous illness, 25.6% of participants had metabolic syndrome, and 20.9% were at high risk for sleep apnea. Participants with and without metabolic syndrome were comparable with regard to demographic variables, duration of illness, and lifetime exposure to antipsychotics. Logistic regression depicted that OSA (odds ratio [OR] = 15.09), waist circumference (OR = 1.15), and fasting plasma glucose (OR = 1.21) increased the risk of metabolic syndrome. CONCLUSION Results of the present study suggest that metabolic syndrome in participants taking second-generation antipsychotics is mediated through OSA.
Collapse
Affiliation(s)
- Rupali Rohatgi
- Department of Psychiatry, Himalayan Institute of Medical Sciences, Dehradun, Uttarakhand, India
| | - Ravi Gupta
- Department of Psychiatry, Himalayan Institute of Medical Sciences, Dehradun, Uttarakhand, India
| | - Rajat Ray
- Department of Psychiatry, Himalayan Institute of Medical Sciences, Dehradun, Uttarakhand, India
| | - Vinita Kalra
- Department of Biochemistry, Himalayan Institute of Medical Sciences, Dehradun, Uttarakhand, India
| |
Collapse
|
34
|
Dubois CJ, Cardoit L, Schwarz V, Markkanen M, Airaksinen MS, Uvarov P, Simmers J, Thoby-Brisson M. Role of the K +-Cl - Cotransporter KCC2a Isoform in Mammalian Respiration at Birth. eNeuro 2018; 5:ENEURO.0264-18.2018. [PMID: 30406192 PMCID: PMC6220586 DOI: 10.1523/eneuro.0264-18.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/15/2018] [Accepted: 09/17/2018] [Indexed: 12/31/2022] Open
Abstract
In central respiratory circuitry, synaptic excitation is responsible for synchronizing neuronal activity in the different respiratory rhythm phases, whereas chloride-mediated inhibition is important for shaping the respiratory pattern itself. The potassium chloride cotransporter KCC2, which serves to maintain low intraneuronal Cl- concentration and thus render chloride-mediated synaptic signaling inhibitory, exists in two isoforms, KCC2a and KCC2b. KCC2 is essential for functional breathing motor control at birth, but the specific contribution of the KCC2a isoform remains unknown. Here, to address this issue, we investigated the respiratory phenotype of mice deficient for KCC2a. In vivo plethysmographic recordings revealed that KCC2a-deficient pups at P0 transiently express an abnormally low breathing rate and a high occurrence of apneas. Immunostainings confirmed that KCC2a is normally expressed in the brainstem neuronal groups involved in breathing (pre-Bötzinger complex, parafacial respiratory group, hypoglossus nucleus) and is absent in these regions in the KCC2a-/- mutant. However, in variously reduced in vitro medullary preparations, spontaneous rhythmic respiratory activity is similar to that expressed in wild-type preparations, as is hypoglossal motor output, and no respiratory pauses are detected, suggesting that the rhythm-generating networks are not intrinsically affected in mutants at P0. In contrast, inhibitory neuromodulatory influences exerted by the pons on respiratory rhythmogenesis are stronger in the mutant, thereby explaining the breathing anomalies observed in vivo. Thus, our results indicate that the KCC2a isoform is important for establishing proper breathing behavior at the time of birth, but by acting at sites that are extrinsic to the central respiratory networks themselves.
Collapse
Affiliation(s)
- Christophe J. Dubois
- Institut de Neurosciences Cognitives et Intégratives D’Aquitaine, CNRS UMR 5287, Université de Bordeaux, Bordeaux 33076, France
| | - Laura Cardoit
- Institut de Neurosciences Cognitives et Intégratives D’Aquitaine, CNRS UMR 5287, Université de Bordeaux, Bordeaux 33076, France
| | - Veronika Schwarz
- Institut de Neurosciences Cognitives et Intégratives D’Aquitaine, CNRS UMR 5287, Université de Bordeaux, Bordeaux 33076, France
| | - Marika Markkanen
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki Finland
| | - Matti S. Airaksinen
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki Finland
| | - Pavel Uvarov
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki Finland
| | - John Simmers
- Institut de Neurosciences Cognitives et Intégratives D’Aquitaine, CNRS UMR 5287, Université de Bordeaux, Bordeaux 33076, France
| | - Muriel Thoby-Brisson
- Institut de Neurosciences Cognitives et Intégratives D’Aquitaine, CNRS UMR 5287, Université de Bordeaux, Bordeaux 33076, France
| |
Collapse
|
35
|
Ramirez JM, Baertsch N. Defining the Rhythmogenic Elements of Mammalian Breathing. Physiology (Bethesda) 2018; 33:302-316. [PMID: 30109823 PMCID: PMC6230551 DOI: 10.1152/physiol.00025.2018] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 06/27/2018] [Accepted: 06/27/2018] [Indexed: 01/08/2023] Open
Abstract
Breathing's remarkable ability to adapt to changes in metabolic, environmental, and behavioral demands stems from a complex integration of its rhythm-generating network within the wider nervous system. Yet, this integration complicates identification of its specific rhythmogenic elements. Based on principles learned from smaller rhythmic networks of invertebrates, we define criteria that identify rhythmogenic elements of the mammalian breathing network and discuss how they interact to produce robust, dynamic breathing.
Collapse
Affiliation(s)
- Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine , Seattle, Washington
| | - Nathan Baertsch
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine , Seattle, Washington
| |
Collapse
|
36
|
Ramirez JM, Severs LJ, Ramirez SC, Agosto‐Marlin IM. Advances in cellular and integrative control of oxygen homeostasis within the central nervous system. J Physiol 2018; 596:3043-3065. [PMID: 29742297 PMCID: PMC6068258 DOI: 10.1113/jp275890] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 04/04/2018] [Indexed: 12/31/2022] Open
Abstract
Mammals must continuously regulate the levels of O2 and CO2 , which is particularly important for the brain. Failure to maintain adequate O2 /CO2 homeostasis has been associated with numerous disorders including sleep apnoea, Rett syndrome and sudden infant death syndrome. But, O2 /CO2 homeostasis poses major regulatory challenges, even in the healthy brain. Neuronal activities change in a differentiated, spatially and temporally complex manner, which is reflected in equally complex changes in O2 demand. This raises important questions: is oxygen sensing an emergent property, locally generated within all active neuronal networks, and/or the property of specialized O2 -sensitive CNS regions? Increasing evidence suggests that the regulation of the brain's redox state involves properties that are intrinsic to many networks, but that specialized regions in the brainstem orchestrate the integrated control of respiratory and cardiovascular functions. Although the levels of O2 in arterial blood and the CNS are very different, neuro-glial interactions and purinergic signalling are critical for both peripheral and CNS chemosensation. Indeed, the specificity of neuroglial interactions seems to determine the differential responses to O2 , CO2 and the changes in pH.
Collapse
Affiliation(s)
- Jan Marino Ramirez
- Center for Integrative Brain ResearchSeattle Children's Research InstituteDepartment of Neurological SurgeryUniversity of Washington School of MedicineSeattleWAUSA
- Department of Physiology and BiophysicsUniversity of WashingtonSeattleWAUSA
| | - Liza J. Severs
- Department of Physiology and BiophysicsUniversity of WashingtonSeattleWAUSA
| | - Sanja C. Ramirez
- Center for Integrative Brain ResearchSeattle Children's Research InstituteDepartment of Neurological SurgeryUniversity of Washington School of MedicineSeattleWAUSA
| | - Ibis M. Agosto‐Marlin
- Center for Integrative Brain ResearchSeattle Children's Research InstituteDepartment of Neurological SurgeryUniversity of Washington School of MedicineSeattleWAUSA
| |
Collapse
|
37
|
Abstract
Rhythmicity is a universal timing mechanism in the brain, and the rhythmogenic mechanisms are generally dynamic. This is illustrated for the neuronal control of breathing, a behavior that occurs as a one-, two-, or three-phase rhythm. Each breath is assembled stochastically, and increasing evidence suggests that each phase can be generated independently by a dedicated excitatory microcircuit. Within each microcircuit, rhythmicity emerges through three entangled mechanisms: ( a) glutamatergic transmission, which is amplified by ( b) intrinsic bursting and opposed by ( c) concurrent inhibition. This rhythmogenic triangle is dynamically tuned by neuromodulators and other network interactions. The ability of coupled oscillators to reconfigure and recombine may allow breathing to remain robust yet plastic enough to conform to nonventilatory behaviors such as vocalization, swallowing, and coughing. Lessons learned from the respiratory network may translate to other highly dynamic and integrated rhythmic systems, if approached one breath at a time.
Collapse
Affiliation(s)
- Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington 98101, USA;
| | - Nathan A Baertsch
- Center for Integrative Brain Research, Seattle Children's Research Institute, Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington 98101, USA;
| |
Collapse
|
38
|
Gabryelska A, Białasiewicz P. Is Autonomic Activation a Middleman Between Obstructive Sleep Apnea Syndrome and Psoriasis? J Clin Sleep Med 2018; 14:1087-1088. [PMID: 29852921 DOI: 10.5664/jcsm.7196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 05/09/2018] [Indexed: 11/13/2022]
Affiliation(s)
- Agata Gabryelska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, Poland
| | - Piotr Białasiewicz
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
39
|
Litvin DG, Dick TE, Smith CB, Jacono FJ. Lung-injury depresses glutamatergic synaptic transmission in the nucleus tractus solitarii via discrete age-dependent mechanisms in neonatal rats. Brain Behav Immun 2018; 70:398-422. [PMID: 29601943 PMCID: PMC6075724 DOI: 10.1016/j.bbi.2018.03.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/20/2018] [Accepted: 03/26/2018] [Indexed: 12/26/2022] Open
Abstract
Transition periods (TPs) are brief stages in CNS development where neural circuits can exhibit heightened vulnerability to pathologic conditions such as injury or infection. This susceptibility is due in part to specialized mechanisms of synaptic plasticity, which may become activated by inflammatory mediators released under pathologic conditions. Thus, we hypothesized that the immune response to lung injury (LI) mediated synaptic changes through plasticity-like mechanisms that depended on whether LI occurred just before or after a TP. We studied the impact of LI on brainstem 2nd-order viscerosensory neurons located in the nucleus tractus solitarii (nTS) during a TP for respiratory control spanning (postnatal day (P) 11-15). We injured the lungs of Sprague-Dawley rats by intratracheal instillation of Bleomycin (or saline) just before (P9-11) or after (P17-19) the TP. A week later, we prepared horizontal slices of the medulla and recorded spontaneous and evoked excitatory postsynaptic currents (sEPSCs/eEPSCs) in vitro from neurons in the nTS that received monosynaptic glutamatergic input from the tractus solitarii (TS). In rats injured before the TP (pre-TP), neurons exhibited blunted sEPSCs and TS-eEPSCs compared to controls. The decreased TS-eEPSCs were mediated by differences in postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic-acid receptors (AMPAR). Specifically, compared to controls, LI rats had more Ca2+-impermeable AMPARs (CI-AMPARs) as indicated by: 1) the absence of current-rectification, 2) decreased sensitivity to polyamine, 1-Naphthyl-acetyl-spermine-trihydrochloride (NASPM) and 3) augmented immunoreactive staining for the CI-AMPAR GluA2. Thus, pre-TP-LI acts postsynaptically to blunt glutamatergic transmission. The neuroimmune response to pre-TP-LI included microglia hyper-ramification throughout the nTS. Daily intraperitoneal administration of minocycline, an inhibitor of microglial/macrophage function prevented hyper-ramification and abolished the pre-TP-LI evoked synaptic changes. In contrast, rat-pups injured after the TP (post-TP) exhibited microglia hypo-ramification in the nTS and had increased sEPSC amplitudes/frequencies, and decreased TS-eEPSC amplitudes compared to controls. These synaptic changes were not associated with changes in CI-AMPARs, and instead involved greater TS-evoked use-dependent depression (reduced paired pulse ratio), which is a hallmark of presynaptic plasticity. Thus we conclude that LI regulates the efficacy of TS → nTS synapses through discrete plasticity-like mechanisms that are immune-mediated and depend on whether the injury occurs before or after the TP for respiratory control.
Collapse
Affiliation(s)
- David G Litvin
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Division of Pulmonary, Critical Care and Sleep Medicine, Louis Stokes VA Medical Center, Cleveland, OH 44106, United States
| | - Thomas E Dick
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States
| | - Corey B Smith
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States
| | - Frank J Jacono
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Division of Pulmonary, Critical Care and Sleep Medicine, Louis Stokes VA Medical Center, Cleveland, OH 44106, United States.
| |
Collapse
|
40
|
Calik MW, Carley DW. Effects of Cannabinoid Agonists and Antagonists on Sleep and Breathing in Sprague-Dawley Rats. Sleep 2018; 40:3926048. [PMID: 28934522 DOI: 10.1093/sleep/zsx112] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Study Objectives There are no pharmacological treatments for obstructive sleep apnea syndrome, but dronabinol showed promise in a small pilot study. In anesthetized rats, dronabinol attenuates reflex apnea via activation of cannabinoid (CB) receptors located on vagal afferents; an effect blocked by cannabinoid type 1 (CB1) and/or type 2 (CB2) receptor antagonists. Here, using a natural model of central sleep apnea, we examine the effects of dronabinol, alone and in combination with selective antagonists in conscious rats chronically instrumented to stage sleep and measure cessation of breathing. Methods Adult male Sprague-Dawley rats were anesthetized and implanted with bilateral stainless steel screws into the skull for electroencephalogram recording and bilateral wire electrodes into the nuchal muscles for electromyogram recording. Each animal was recorded by polysomnography on multiple occasions separated by at least 3 days. The study was a fully nested, repeated measures crossover design, such that each rat was recorded following each of 8 intraperitoneal injections: vehicle; vehicle and CB1 antagonist (AM 251); vehicle and CB2 antagonist (AM 630); vehicle and CB1/CB2 antagonist; dronabinol; dronabinol and CB1 antagonist; dronabinol and CB2 antagonist; and dronabinol and CB1/CB2 antagonist. Results Dronabinol decreased the percent time spent in rapid eye movement (REM) sleep. CB receptor antagonists did not reverse this effect. Dronabinol also decreased apneas during sleep, and this apnea suppression was reversed by CB1 or CB1/CB2 receptor antagonism. Conclusions Dronabinol's effects on apneas were dependent on CB1 receptor activation, while dronabinol's effects on REM sleep were CB receptor-independent.
Collapse
MESH Headings
- Animals
- Cannabinoid Receptor Agonists/pharmacology
- Cannabinoid Receptor Agonists/therapeutic use
- Cannabinoid Receptor Antagonists/pharmacology
- Cannabinoid Receptor Antagonists/therapeutic use
- Disease Models, Animal
- Dronabinol/pharmacology
- Dronabinol/therapeutic use
- Electroencephalography
- Electromyography
- Indoles/pharmacology
- Male
- Piperidines/pharmacology
- Polysomnography
- Pyrazoles/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/metabolism
- Respiration/drug effects
- Sleep/drug effects
- Sleep Apnea, Central/drug therapy
- Sleep Apnea, Central/physiopathology
- Sleep, REM/drug effects
- Vagus Nerve/physiology
Collapse
Affiliation(s)
- Michael W Calik
- Center for Narcolepsy, Sleep and Health Research, University of Illinois at Chicago, Chicago, IL
- Department of Biobehavioral Health Science, University of Illinois at Chicago, Chicago, IL
| | - David W Carley
- Center for Narcolepsy, Sleep and Health Research, University of Illinois at Chicago, Chicago, IL
- Department of Biobehavioral Health Science, University of Illinois at Chicago, Chicago, IL
- Department of Medicine, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
41
|
Liang J, Zhang X, Luo Y, Wang T, Sun L, Huang S. The Impact of Respiratory Events on the Autonomic Nervous System during Sleep. Int Heart J 2018. [DOI: 10.1536/ihj.16-429] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
| | - Xiangmin Zhang
- Sleep-Disordered Breathing Center of the 6th Affiliated Hospital of Sun Yat-Sen University
| | - Yuxi Luo
- School of Engineering, Sun Yat-Sen University
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-Sen University
| | | | - Lin Sun
- School of Engineering, Sun Yat-Sen University
| | | |
Collapse
|
42
|
Langer TM, Neumueller SE, Crumley E, Burgraff NJ, Talwar S, Hodges MR, Pan L, Forster HV. Ventilation and neurochemical changes during µ-opioid receptor activation or blockade of excitatory receptors in the hypoglossal motor nucleus of goats. J Appl Physiol (1985) 2017; 123:1532-1544. [PMID: 28839004 DOI: 10.1152/japplphysiol.00592.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Neuromodulator interdependence posits that changes in one or more neuromodulators are compensated by changes in other modulators to maintain stability in the respiratory control network. Herein, we studied compensatory neuromodulation in the hypoglossal motor nucleus (HMN) after chronic implantation of microtubules unilaterally ( n = 5) or bilaterally ( n = 5) into the HMN. After recovery, receptor agonists or antagonists in mock cerebrospinal fluid (mCSF) were dialyzed during the awake and non-rapid eye movement (NREM) sleep states. During day studies, dialysis of the µ-opioid inhibitory receptor agonist [d-Ala2, N-MePhe4, Gly-ol]enkephalin (DAMGO; 100 µM) decreased pulmonary ventilation (V̇i), breathing frequency ( f), and genioglossus (GG) muscle activity but did not alter neuromodulators measured in the effluent mCSF. However, neither unilateral dialysis of a broad spectrum muscarinic receptor antagonist (atropine; 50 mM) nor unilateral or bilateral dialysis of a mixture of excitatory receptor antagonists altered V̇i or GG activity, but all of these did increase HMN serotonin (5-HT) levels. Finally, during night studies, DAMGO and excitatory receptor antagonist decreased ventilatory variables during NREM sleep but not during wakefulness. These findings contrast with previous dialysis studies in the ventral respiratory column (VRC) where unilateral DAMGO or atropine dialysis had no effects on breathing and bilateral DAMGO or unilateral atropine increased V̇i and f and decreased GABA or increased 5-HT, respectively. Thus we conclude that the mechanisms of compensatory neuromodulation are less robust in the HMN than in the VRC under physiological conditions in adult goats, possibly because of site differences in the underlying mechanisms governing neuromodulator release and consequently neuronal activity, and/or responsiveness of receptors to compensatory neuromodulators. NEW & NOTEWORTHY Activation of inhibitory µ-opioid receptors in the hypoglossal motor nucleus decreased ventilation under physiological conditions and did not affect neurochemicals in effluent dialyzed mock cerebral spinal fluid. These findings contrast with studies in the ventral respiratory column where unilateral [d-Ala2, N-MePhe4, Gly-ol]enkephalin (DAMGO) had no effects on ventilation and bilateral DAMGO or unilateral atropine increased ventilation and decreased GABA or increased serotonin, respectively. Our data support the hypothesis that mechanisms that govern local compensatory neuromodulation within the brain stem are site specific under physiological conditions.
Collapse
Affiliation(s)
- Thomas M Langer
- Department of Physiology, Medical College of Wisconsin , Milwaukee, Wisconsin
| | | | - Emma Crumley
- Department of Physiology, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Nicholas J Burgraff
- Department of Physiology, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Sawan Talwar
- Department of Physiology, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Matthew R Hodges
- Department of Physiology, Medical College of Wisconsin , Milwaukee, Wisconsin.,Neuroscience Research Center, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Lawrence Pan
- Department of Physical Therapy, Marquette University , Milwaukee, Wisconsin
| | - Hubert V Forster
- Department of Physiology, Medical College of Wisconsin , Milwaukee, Wisconsin.,Neuroscience Research Center, Medical College of Wisconsin , Milwaukee, Wisconsin.,Zablocki Veterans Affairs Medical Center , Milwaukee, Wisconsin
| |
Collapse
|
43
|
Sheikhbahaei S, Gourine AV, Smith JC. Respiratory rhythm irregularity after carotid body denervation in rats. Respir Physiol Neurobiol 2017; 246:92-97. [PMID: 28782663 PMCID: PMC5637156 DOI: 10.1016/j.resp.2017.08.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 07/09/2017] [Accepted: 08/01/2017] [Indexed: 12/13/2022]
Abstract
Respiratory activity is controlled by inputs from the peripheral and central chemoreceptors. Since overactivity of the carotid bodies, the main peripheral chemoreceptors, is linked to the pathophysiology of disparate metabolic and cardiovascular diseases, carotid body denervation (CBD) has been proposed as a potential treatment. However, long-term effects of CBD on the respiratory rhythm and regularity of breathing remain unknown. Here, we show that five weeks after bilateral CBD in rats, the respiratory rhythm was slower and less regular. Ten weeks after bilateral CBD, the respiratory frequency was not different from the sham-operated group, but the regularity of the respiratory rhythm was still reduced. Increased frequency of randomly occurring apneas is likely to be responsible for the irregular breathing pattern after CBD. These results should be taken into consideration since any treatment that reduces the stability of the respiratory rhythm might exacerbate the cardio-respiratory instability and worsen the cardiovascular outcomes.
Collapse
Affiliation(s)
- Shahriar Sheikhbahaei
- Cellular and Systems Neurobiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA; Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E 6BT, UK.
| | - Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E 6BT, UK
| | - Jeffrey C Smith
- Cellular and Systems Neurobiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
44
|
Wu Q, Cunningham JT, Mifflin S. Transcription factor ΔFosB acts within the nucleus of the solitary tract to increase mean arterial pressure during exposures to intermittent hypoxia. Am J Physiol Heart Circ Physiol 2017; 314:H270-H277. [PMID: 29101166 DOI: 10.1152/ajpheart.00268.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
ΔFosB is a member of the activator protein-1 family of transcription factors. ΔFosB has low constitutive expression in the central nervous system and is induced after exposure of rodents to intermittent hypoxia (IH), a model of the arterial hypoxemia that accompanies sleep apnea. We hypothesized ΔFosB in the nucleus of the solitary tract (NTS) contributes to increased mean arterial pressure (MAP) during IH. The NTS of 11 male Sprague-Dawley rats was injected (3 sites, 100 nl/site) with a dominant negative construct against ΔFosB (ΔJunD) in an adeno-associated viral vector (AAV)-green fluorescent protein (GFP) reporter. The NTS of 10 rats was injected with AAV-GFP as sham controls. Two weeks after NTS injections, rats were exposed to IH for 8 h/day for 7 days, and MAP was recorded using telemetry. In the sham group, 7 days of IH increased MAP from 99.8 ± 1.1 to 107.3 ± 0.5 mmHg in the day and from 104.4 ± 1.1 to 109.8 ± 0.6 mmHg in the night. In the group that received ΔJunD, IH increased MAP during the day from 95.9 ± 1.7 to 101.3 ± 0.4 mmHg and from 100.9 ± 1.7 to 102.8 ± 0.5 mmHg during the night (both IH-induced changes in MAP were significantly lower than sham, P < 0.05). After injection of the dominant negative construct in the NTS, IH-induced ΔFosB immunoreactivity was decreased in the paraventricular nucleus ( P < 0.05); however, no change was observed in the rostral ventrolateral medulla. These data indicate that ΔFosB within the NTS contributes to the increase in MAP induced by IH exposure. NEW & NOTEWORTHY The results of this study provides new insights into the molecular mechanisms that mediate neuronal adaptations during exposures to intermittent hypoxia, a model of the hypoxemias that occur during sleep apnea. These adaptations are noteworthy as they contribute to the persistent increase in blood pressure induced by exposures to intermittent hypoxia.
Collapse
Affiliation(s)
- Qiong Wu
- Departments of Psychiatry and Biobehavioral Sciences and Neurobiology, The Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California
| | - J Thomas Cunningham
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort Worth, Texas
| | - Steve Mifflin
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort Worth, Texas
| |
Collapse
|
45
|
Garcia AJ, Dashevskiy T, Khuu MA, Ramirez JM. Chronic Intermittent Hypoxia Differentially Impacts Different States of Inspiratory Activity at the Level of the preBötzinger Complex. Front Physiol 2017; 8:571. [PMID: 28936176 PMCID: PMC5603985 DOI: 10.3389/fphys.2017.00571] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 07/24/2017] [Indexed: 11/13/2022] Open
Abstract
The preBötzinger complex (preBötC) is a medullary brainstem network crucially involved in the generation of different inspiratory rhythms. In the isolated brainstem slice, the preBötC reconfigures to produce different rhythms that we refer to as "fictive eupnea" under baseline conditions (i.e., carbogen), and "fictive gasping" in hypoxia. We recently demonstrated that fictive eupnea is irregular following exposure to chronic intermittent hypoxia (CIH). However, it is unknown how CIH impacts fictive gasping. To address this, brain slices containing the preBötC were prepared from control and CIH exposed mice. Electrophysiological recordings of rhythmogenesis were obtained during the perihypoxic interval. We examined how CIH affects various dynamic aspects of the rhythm characterized by: (1) the irregularity score (IrS), to assess burst-to-variability; (2) the fluctuation value (χ), to quantify the gain of oscillations throughout the time series; and (3) Sample Entropy (sENT), to characterize the pattern/structure of oscillations in the time series. In baseline conditions, CIH increased IrS of amplitude (0.21 ± 0.2) and χ of amplitude (0.34 ± 0.02) but did not affect sENT of amplitude. This indicated that CIH increased burst-to-burst irregularity and the gain of amplitude fluctuations but did not affect the overall pattern/structure of amplitude oscillations. During the transition to hypoxia, 33% of control rhythms whereas 64% of CIH-exposed rhythms showed no doubling of period, suggesting that the probability for stable rhythmogenesis during the transition to hypoxia was greater following CIH. While 29% of control rhythms maintained rhythmicity throughout hypoxia, all slices from CIH exposed mice exhibited rhythms throughout the hypoxic interval. During hypoxia, differences in χ for amplitude were no longer observed between groups. To test the contribution of the persistent sodium current, we examined how riluzole influenced rhythmogenesis following CIH. In networks exposed to CIH, riluzole reduced the IrS of amplitude (-24 ± 14%) yet increased IrS of period (+49 ± 17%). Our data indicate that CIH affects the preBötC, in a manner dependent on the state of the oxygenation. Along with known changes that CIH has on peripheral sensory organs, the effects of CIH on the preBötC may have important implications for sleep apnea, a condition characterized by rapid transitions between normoxia and hypoxia.
Collapse
Affiliation(s)
- Alfredo J. Garcia
- Institute for Integrative Physiology, The University of ChicagoChicago, IL, United States
- Department of Medicine, Section of Emergency Medicine, The University of ChicagoChicago, IL, United States
| | - Tatiana Dashevskiy
- Center for Integrative Brain Research, Seattle Children's Research InstituteSeattle, WA, United States
| | - Maggie A. Khuu
- Institute for Integrative Physiology, The University of ChicagoChicago, IL, United States
- Department of Medicine, Section of Emergency Medicine, The University of ChicagoChicago, IL, United States
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research InstituteSeattle, WA, United States
- Departments of Neurological Surgery and Pediatrics, University of WashingtonSeattle, WA, United States
| |
Collapse
|
46
|
Venegas-Mariño MA, Garcia JC. Fisiopatología del síndrome de apnea-hipopnea obstructiva del sueño (SAHOS). REVISTA DE LA FACULTAD DE MEDICINA 2017. [DOI: 10.15446/revfacmed.v65n1sup.60091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
El síndrome de apnea-hipopnea obstructiva del sueño (SAHOS) es una enfermedad caracterizada por la obstrucción recurrente de la vía aérea superior (VAS), con disminución en el flujo de aire, hipoxemia intermitente y despertares durante el sueño. En la fisiopatología del SAHOS se presentan dos factores esenciales: las alteraciones anatómicas y la disminución o ausencia del control neural.Durante el estudio del SAHOS se debe identificar el sitio o sitios de obstrucción de la VAS, que pueden ir desde las alas nasales hasta la hipofaringe. Otro factor importante en este síndrome es el influjo nervioso en el tono muscular de la hipofaringe, así como los cambios en el pH sanguíneo y secundarios a los microdespertares. La posición corporal y el estadio de sueño son factores determinantes de la severidad. La fisiopatología del SAHOS debe ser entendida para poder estudiar de forma adecuada a un paciente y darle la mejor opción de tratamiento.
Collapse
|
47
|
McLeod DE, Dolgov SB, Bitter RN, Garcia MN, Binz ED, Omran MT. Resolution of Peripheral Obstructive Sleep Apnea After Mandibular Torectomy. Clin Adv Periodontics 2017. [DOI: 10.1902/cap.2017.160041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
| | | | - Robert N. Bitter
- Department of Applied Dental Medicine, Section of Periodontics, Southern Illinois University School of Dental Medicine, Alton, IL
| | - M. Nathalia Garcia
- Department of Applied Dental Medicine, Section of Periodontics, Southern Illinois University School of Dental Medicine, Alton, IL
| | - Elizabeth D. Binz
- Center for Advanced Dental Education, Saint Louis University, Saint Louis, MO
| | - Mohamed T. Omran
- Department of Graduate Education, Section of Implantology, Southern Illinois University School of Dental Medicine
| |
Collapse
|
48
|
Abstract
Purpose of review Sleep disorders are among the most challenging non-motor features of Parkinson's disease (PD) and significantly affect quality of life. Research in this field has gained recent interest among clinicians and scientists and is rapidly evolving. This review is dedicated to sleep and circadian dysfunction associated with PD. Recent findings Most primary sleep disorders may co-exist with PD; majority of these disorders have unique features when expressed in the PD population. Summary We discuss the specific considerations related to the common sleep problems in Parkinson's disease including insomnia, rapid eye movement sleep behavior disorder, restless legs syndrome, sleep disordered breathing, excessive daytime sleepiness and circadian rhythm disorders. Within each of these sleep disorders, we present updated definitions, epidemiology, etiology, diagnosis, clinical implications and management. Furthermore, areas of potential interest for further research are outlined.
Collapse
|
49
|
Spinelli J, Collins-Praino L, Van Den Heuvel C, Byard RW. Evolution and significance of the triple risk model in sudden infant death syndrome. J Paediatr Child Health 2017; 53:112-115. [PMID: 28028890 DOI: 10.1111/jpc.13429] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/16/2016] [Indexed: 11/27/2022]
Abstract
Sudden infant death syndrome (SIDS) is a leading cause of death in infants, although the mechanisms leading to death remain unclear. Multiple theories have emerged over time, with one of the most influential hypotheses being the triple risk model. This model, first devised in 1972 and later revised in 1994 by Filiano and Kinney, is still widely used in assisting with conceptualising and understanding sudden death in infancy. This model has evolved over time, with each version stressing that SIDS is likely to occur when certain risk factors coincide, suggesting that the lethal mechanisms in SIDS are likely to be multifactorial. All versions of the triple risk model from 1972 to the present have emphasised the complexity of SIDS and serve as useful guides for current and future research into the enigma of sudden and unexpected death in infancy.
Collapse
Affiliation(s)
- Jade Spinelli
- School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | | | | | - Roger W Byard
- School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
50
|
Abstract
Sleep apnea, which is the periodic cessation of breathing during sleep, is a major health problem affecting over 10 million people in the United States and is associated with several sequelae, including hypertension and stroke. Clinical studies suggest that abnormal carotid body (CB) activity may be a driver of sleep apnea. Because gaseous molecules are important determinants of CB activity, aberrations in their signaling could lead to sleep apnea. Here, we report that mice deficient in heme oxygenase-2 (HO-2), which generates the gaseous molecule carbon monoxide (CO), exhibit sleep apnea characterized by high apnea and hypopnea indices during rapid eye movement (REM) sleep. Similar high apnea and hypopnea indices were also noted in prehypertensive spontaneously hypertensive (SH) rats, which are known to exhibit CB hyperactivity. We identified the gaseous molecule hydrogen sulfide (H2S) as the major effector molecule driving apneas. Genetic ablation of the H2S-synthesizing enzyme cystathionine-γ-lyase (CSE) normalized breathing in HO-2-/- mice. Pharmacologic inhibition of CSE with l-propargyl glycine prevented apneas in both HO-2-/- mice and SH rats. These observations demonstrate that dysregulated CO and H2S signaling in the CB leads to apneas and suggest that CSE inhibition may be a useful therapeutic intervention for preventing CB-driven sleep apnea.
Collapse
|