1
|
Liggieri F, Chiodaroli E, Pellegrini M, Puuvuori E, Sigfridsson J, Velikyan I, Chiumello D, Ball L, Pelosi P, Stramaglia S, Antoni G, Eriksson O, Perchiazzi G. Regional distribution of mechanical strain and macrophage-associated lung inflammation after ventilator-induced lung injury: an experimental study. Intensive Care Med Exp 2024; 12:77. [PMID: 39225817 PMCID: PMC11371987 DOI: 10.1186/s40635-024-00663-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Alveolar macrophages activation to the pro-inflammatory phenotype M1 is pivotal in the pathophysiology of Ventilator-Induced Lung Injury (VILI). Increased lung strain is a known determinant of VILI, but a direct correspondence between regional lung strain and macrophagic activation remains unestablished. [68Ga]Ga-DOTA-TATE is a Positron Emission Tomography (PET) radiopharmaceutical with a high affinity for somatostatin receptor subtype 2 (SSTR2), which is overexpressed by pro-inflammatory-activated macrophages. Aim of the study was to determine, in a porcine model of VILI, whether mechanical strain correlates topographically with distribution of activated macrophages detected by [68Ga]Ga-DOTA-TATE uptake. METHODS Seven anesthetized pigs underwent VILI, while three served as control. Lung CT scans were acquired at incremental tidal volumes, simultaneously recording lung mechanics. [68Ga]Ga-DOTA-TATE was administered, followed by dynamic PET scans. Custom MatLab scripts generated voxel-by-voxel gas volume and strain maps from CT slices at para-diaphragmatic (Para-D) and mid-thoracic (Mid-T) levels. Analysis of regional Voxel-associated Normal Strain (VoStrain) and [68Ga]Ga-DOTA-TATE uptake was performed and a measure of the statistical correlation between these two variables was quantified using the linear mutual information (LMI) method. RESULTS Compared to controls, the VILI group exhibited statistically significant higher VoStrain and Standardized Uptake Value Ratios (SUVR) both at Para-D and Mid-T levels. Both VoStrain and SUVR increased along the gravitational axis with an increment described by statistically different regression lines between VILI and healthy controls and reaching the peak in the dependent regions of the lung (for strain in VILI vs. control was at Para-D: 760 ± 210 vs. 449 ± 106; at Mid-T level 497 ± 373 vs. 193 ± 160; for SUVR, in VILI vs. control was at Para-D: 2.2 ± 1.3 vs. 1.3 ± 0.1; at Mid-T level 1.3 ± 1.0 vs. 0.6 ± 0.03). LMI in both Para-D and Mid-T was statistically significantly higher in VILI than in controls. CONCLUSIONS In this porcine model of VILI, we found a topographical correlation between lung strain and [68Ga]Ga-DOTA-TATE uptake at voxel level, suggesting that mechanical alteration and specific activation of inflammatory cells are strongly linked in VILI. This study represents the first voxel-by-voxel examination of this relationship in a multi-modal imaging analysis.
Collapse
Affiliation(s)
- Francesco Liggieri
- The Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Akademiska Sjukhuset-Ing. 40, Tr. 3, 75185, Uppsala, Sweden
- Dipartimento di Scienze Diagnostiche e Chirurgiche Integrate, Università di Genova, Genoa, Italy
| | - Elena Chiodaroli
- The Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Akademiska Sjukhuset-Ing. 40, Tr. 3, 75185, Uppsala, Sweden
- Department of Anesthesia and Intensive Care, ASST Santi Paolo e Carlo, San Paolo University Hospital, Milan, Italy
| | - Mariangela Pellegrini
- The Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Akademiska Sjukhuset-Ing. 40, Tr. 3, 75185, Uppsala, Sweden
- Department of Anesthesia and Intensive Care Medicine, Uppsala University Hospital, Uppsala, Sweden
| | - Emmi Puuvuori
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Jonathan Sigfridsson
- PET Center, Center for Medical Imaging, Uppsala University Hospital, Uppsala, Sweden
| | - Irina Velikyan
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Davide Chiumello
- Department of Anesthesia and Intensive Care, ASST Santi Paolo e Carlo, San Paolo University Hospital, Milan, Italy
- Department of Health Sciences, University of Milan, Milan, Italy
- Coordinated Research Center on Respiratory Failure, University of Milan, Milan, Italy
| | - Lorenzo Ball
- Dipartimento di Scienze Diagnostiche e Chirurgiche Integrate, Università di Genova, Genoa, Italy
| | - Paolo Pelosi
- Dipartimento di Scienze Diagnostiche e Chirurgiche Integrate, Università di Genova, Genoa, Italy
| | - Sebastiano Stramaglia
- Department of Physics, National Institute for Nuclear Physics, University of Bari Aldo Moro, Bari, Italy
| | - Gunnar Antoni
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
- PET Center, Center for Medical Imaging, Uppsala University Hospital, Uppsala, Sweden
| | - Olof Eriksson
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Gaetano Perchiazzi
- The Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Akademiska Sjukhuset-Ing. 40, Tr. 3, 75185, Uppsala, Sweden.
- Department of Anesthesia and Intensive Care Medicine, Uppsala University Hospital, Uppsala, Sweden.
| |
Collapse
|
2
|
Puuvuori E, Chiodaroli E, Estrada S, Cheung P, Lubenow N, Sigfridsson J, Romelin H, Ingvast S, Elgland M, Liggieri F, Korsgren O, Perchiazzi G, Eriksson O, Antoni G. PET Imaging of Neutrophil Elastase with 11C-GW457427 in Acute Respiratory Distress Syndrome in Pigs. J Nucl Med 2023; 64:423-429. [PMID: 36109184 PMCID: PMC10071803 DOI: 10.2967/jnumed.122.264306] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Today, there is a lack of clinically available imaging techniques to detect and quantify specific immune cell populations. Neutrophils are one of the first immune cells at the site of inflammation, and they secrete the serine protease neutrophil elastase (NE), which is crucial in the fight against pathogens. However, the prolonged lifespan of neutrophils increases the risk that patients will develop severe complications, such as acute respiratory distress syndrome (ARDS). Here, we evaluated the novel radiolabeled NE inhibitor 11C-GW457427 in a pig model of ARDS, for detection and quantification of neutrophil activity in the lungs. Methods: ARDS was induced by intravenous administration of oleic acid to 5 farm pigs, and 4 were considered healthy controls. The severity of ARDS was monitored by clinical parameters of lung function and plasma biomarkers. Each pig was studied with 11C-GW457427 and PET/CT, before and after pretreatment with the NE inhibitor GW311616 to determine in vivo binding specificity. PET image data were analyzed as SUVs and correlated with immunohistochemical staining for NE in biopsies. Results: The binding of 11C-GW457427 was increased in pig lungs with induced ARDS (median SUVmean, 1.91; interquartile range [IQR], 1.67-2.55) compared with healthy control pigs (P < 0.05 and P = 0.03, respectively; median SUVmean, 1.04; IQR, 0.66-1.47). The binding was especially strong in lung regions with high levels of NE and ongoing inflammation, as verified by immunohistochemistry. The binding was successfully blocked by pretreatment of an NE inhibitor drug, which demonstrated the in vivo specificity of 11C-GW457427 (P < 0.05 and P = 0.04, respectively; median SUVmean, 0.60; IQR, 0.58-0.77). The binding in neutrophil-rich tissues such as bone marrow (P < 0.05 and P = 0.04, respectively; baseline median SUVmean, 5.01; IQR, 4.48-5.49; block median SUVmean, 1.57; IQR, 0.95-1.85) and spleen (median SUVmean, 2.14; IQR, 1.19-2.36) was also high in all pigs. Conclusion: 11C-GW457427 binds to NE in a porcine model of oleic acid-induced lung inflammation in vivo, with a specific increase in regional lung, bone marrow, and spleen SUV. 11C-GW457427 is a promising tool for localizing, tracking, and quantifying neutrophil-facilitated inflammation in clinical diagnostics and drug development.
Collapse
Affiliation(s)
- Emmi Puuvuori
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Elena Chiodaroli
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala Sweden
| | - Sergio Estrada
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Pierre Cheung
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Norbert Lubenow
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden; and
| | - Jonathan Sigfridsson
- PET Center, Center for Medical Imaging, Uppsala University Hospital, Uppsala, Sweden
| | - Hampus Romelin
- PET Center, Center for Medical Imaging, Uppsala University Hospital, Uppsala, Sweden
| | - Sofie Ingvast
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden; and
| | - Mathias Elgland
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
- PET Center, Center for Medical Imaging, Uppsala University Hospital, Uppsala, Sweden
| | - Francesco Liggieri
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala Sweden
| | - Olle Korsgren
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden; and
| | - Gaetano Perchiazzi
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala Sweden
| | - Olof Eriksson
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden;
| | - Gunnar Antoni
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden;
- PET Center, Center for Medical Imaging, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
3
|
Perchiazzi G, Larina A, Hansen T, Frithiof R, Hultström M, Lipcsey M, Pellegrini M. Chest dual-energy CT to assess the effects of steroids on lung function in severe COVID-19 patients. Crit Care 2022; 26:328. [PMID: 36284360 PMCID: PMC9595078 DOI: 10.1186/s13054-022-04200-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 10/12/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Steroids have been shown to reduce inflammation, hypoxic pulmonary vasoconstriction (HPV) and lung edema. Based on evidence from clinical trials, steroids are widely used in severe COVID-19. However, the effects of steroids on pulmonary gas volume and blood volume in this group of patients are unexplored. OBJECTIVE Profiting by dual-energy computed tomography (DECT), we investigated the relationship between the use of steroids in COVID-19 and distribution of blood volume as an index of impaired HPV. We also investigated whether the use of steroids influences lung weight, as index of lung edema, and how it affects gas distribution. METHODS Severe COVID-19 patients included in a single-center prospective observational study at the intensive care unit at Uppsala University Hospital who had undergone DECT were enrolled in the current study. Patients' cohort was divided into two groups depending on the administration of steroids. From each patient's DECT, 20 gas volume maps and the corresponding 20 blood volume maps, evenly distributed along the cranial-caudal axis, were analyzed. As a proxy for HPV, pulmonary blood volume distribution was analyzed in both the whole lung and the hypoinflated areas. Total lung weight, index of lung edema, was estimated. RESULTS Sixty patients were analyzed, whereof 43 received steroids. Patients not exposed to steroids showed a more extensive non-perfused area (19% vs 13%, p < 0.01) and less homogeneous pulmonary blood volume of hypoinflated areas (kurtosis: 1.91 vs 2.69, p < 0.01), suggesting a preserved HPV compared to patients treated with steroids. Moreover, patients exposed to steroids showed a significantly lower lung weight (953 gr vs 1140 gr, p = 0.01). A reduction in alveolar-arterial difference of oxygen followed the treatment with steroids (322 ± 106 mmHg at admission vs 267 ± 99 mmHg at DECT, p = 0.04). CONCLUSIONS The use of steroids might cause impaired HPV and might reduce lung edema in severe COVID-19. This is consistent with previous findings in other diseases. Moreover, a reduced lung weight, as index of decreased lung edema, and a more homogeneous distribution of gas within the lung were shown in patients treated with steroids. TRIAL REGISTRATION Clinical Trials ID: NCT04316884, Registered March 13, 2020.
Collapse
Affiliation(s)
- Gaetano Perchiazzi
- grid.8993.b0000 0004 1936 9457Anesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden ,grid.8993.b0000 0004 1936 9457Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Akademiska Sjukhuset, Ing 40, 3 tr, 751 85 Uppsala, Sweden ,grid.412354.50000 0001 2351 3333Department of Anesthesia, Operation and Intensive Care, Uppsala University Hospital, Uppsala, Sweden
| | - Aleksandra Larina
- grid.8993.b0000 0004 1936 9457Anesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden ,grid.412354.50000 0001 2351 3333Department of Anesthesia, Operation and Intensive Care, Uppsala University Hospital, Uppsala, Sweden
| | - Tomas Hansen
- grid.8993.b0000 0004 1936 9457Section of Radiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Robert Frithiof
- grid.8993.b0000 0004 1936 9457Anesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden ,grid.412354.50000 0001 2351 3333Department of Anesthesia, Operation and Intensive Care, Uppsala University Hospital, Uppsala, Sweden
| | - Michael Hultström
- grid.8993.b0000 0004 1936 9457Anesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden ,grid.412354.50000 0001 2351 3333Department of Anesthesia, Operation and Intensive Care, Uppsala University Hospital, Uppsala, Sweden ,grid.8993.b0000 0004 1936 9457Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Miklos Lipcsey
- grid.8993.b0000 0004 1936 9457Anesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden ,grid.8993.b0000 0004 1936 9457Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Akademiska Sjukhuset, Ing 40, 3 tr, 751 85 Uppsala, Sweden ,grid.412354.50000 0001 2351 3333Department of Anesthesia, Operation and Intensive Care, Uppsala University Hospital, Uppsala, Sweden
| | - Mariangela Pellegrini
- grid.8993.b0000 0004 1936 9457Anesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden ,grid.8993.b0000 0004 1936 9457Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Akademiska Sjukhuset, Ing 40, 3 tr, 751 85 Uppsala, Sweden ,grid.412354.50000 0001 2351 3333Department of Anesthesia, Operation and Intensive Care, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
4
|
Girard M, Roy Cardinal MH, Chassé M, Garneau S, Cavayas YA, Cloutier G, Denault AY. Regional pleural strain measurements during mechanical ventilation using ultrasound elastography: A randomized, crossover, proof of concept physiologic study. Front Med (Lausanne) 2022; 9:935482. [PMID: 36186794 PMCID: PMC9520064 DOI: 10.3389/fmed.2022.935482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Background Mechanical ventilation is a common therapy in operating rooms and intensive care units. When ill-adapted, it can lead to ventilator-induced lung injury (VILI), which is associated with poor outcomes. Excessive regional pulmonary strain is thought to be a major mechanism responsible for VILI. Scarce bedside methods exist to measure regional pulmonary strain. We propose a novel way to measure regional pleural strain using ultrasound elastography. The objective of this study was to assess the feasibility and reliability of pleural strain measurement by ultrasound elastography and to determine if elastography parameters would correlate with varying tidal volumes. Methods A single-blind randomized crossover proof of concept study was conducted July to October 2017 at a tertiary care referral center. Ten patients requiring general anesthesia for elective surgery were recruited. After induction, patients received tidal volumes of 6, 8, 10, and 12 mL.kg–1 in random order, while pleural ultrasound cineloops were acquired at 4 standardized locations. Ultrasound radiofrequency speckle tracking allowed computing various pleural translation, strain and shear components. We screened 6 elastography parameters (lateral translation, lateral absolute translation, lateral strain, lateral absolute strain, lateral absolute shear and Von Mises Strain) to identify those with the best dose-response with tidal volumes using linear mixed effect models. Goodness-of-fit was assessed by the coefficient of determination. Intraobserver, interobserver and test-retest reliability were calculated using intraclass correlation coefficients. Results Analysis was possible in 90.7% of ultrasound cineloops. Lateral absolute shear, lateral absolute strain and Von Mises strain varied significantly with tidal volume and offered the best dose-responses and data modeling fits. Point estimates for intraobserver reliability measures were excellent for all 3 parameters (0.94, 0.94, and 0.93, respectively). Point estimates for interobserver (0.84, 0.83, and 0.77, respectively) and test-retest (0.85, 0.82, and 0.76, respectively) reliability measures were good. Conclusion Strain imaging is feasible and reproducible. Future studies will have to investigate the clinical relevance of this novel imaging modality. Clinical trial registration www.Clinicaltrials.gov, identifier NCT03092557.
Collapse
Affiliation(s)
- Martin Girard
- Department of Anesthesiology, University of Montreal Hospital, Montréal, QC, Canada
- Division of Critical Care, Department of Medicine, University of Montreal Hospital, Montréal, QC, Canada
- University of Montreal Hospital Research Center, Montréal, QC, Canada
- *Correspondence: Martin Girard,
| | - Marie-Hélène Roy Cardinal
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center, Montréal, QC, Canada
| | - Michaël Chassé
- Division of Critical Care, Department of Medicine, University of Montreal Hospital, Montréal, QC, Canada
- Department of Medicine, University of Montreal, Montréal, QC, Canada
| | - Sébastien Garneau
- Department of Anesthesiology, University of Montreal Hospital, Montréal, QC, Canada
| | | | - Guy Cloutier
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center, Montréal, QC, Canada
- Department of Radiology, Radio-Oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal, Montréal, QC, Canada
| | - André Y. Denault
- Department of Anesthesiology, Montreal Heart Institute, Montréal, QC, Canada
| |
Collapse
|
5
|
Puuvuori E, Liggieri F, Velikyan I, Chiodaroli E, Sigfridsson J, Romelin H, Ingvast S, Korsgren O, Hulsart-Billström G, Perchiazzi G, Eriksson O. PET-CT imaging of pulmonary inflammation using [ 68Ga]Ga-DOTA-TATE. EJNMMI Res 2022; 12:19. [PMID: 35394238 PMCID: PMC8994000 DOI: 10.1186/s13550-022-00892-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/28/2022] [Indexed: 12/21/2022] Open
Abstract
PURPOSE In the characterization of severe lung diseases, early detection of specific inflammatory cells could help to monitor patients' response to therapy and increase chances of survival. Macrophages contribute to regulating the resolution and termination of inflammation and have increasingly been of interest for targeted therapies. [68Ga]Ga-DOTA-TATE is an established clinical radiopharmaceutical targeting somatostatin receptor subtype 2 (SSTR 2). Since activated macrophages (M1) overexpress SSTR 2, the aim of this study was to investigate the applicability of [68Ga]Ga-DOTA-TATE for positron emission tomography (PET) imaging of M1 macrophages in pulmonary inflammation. METHODS Inflammation in the pig lungs was induced by warm saline lavage followed by injurious ventilation in farm pigs (n = 7). Healthy pigs (n = 3) were used as control. A 60-min dynamic PET scan over the lungs was performed after [68Ga]Ga-DOTA-TATE injection and [18F]FDG scan was executed afterward for comparison. The uptake of both tracers was assessed as mean standardized uptake values (SUVmean) 30-60-min post-injection. The PET scans were followed by computed tomography (CT) scans, and the Hounsfield units (HU) were quantified of the coronal segments. Basal and apical segments of the lungs were harvested for histology staining. A rat lung inflammation model was also studied for tracer specificity using lipopolysaccharides (LPS) by oropharyngeal aspiration. Organ biodistribution, ex vivo autoradiography (ARG) and histology samples were conducted on LPS treated, octreotide induced blocking and control healthy rats. RESULTS The accumulation of [68Ga]Ga-DOTA-TATE on pig lavage model was prominent in the more severely injured dorsal segments of the lungs (SUVmean = 0.91 ± 0.56), compared with control animals (SUVmean = 0.27 ± 0.16, p < 0.05). The tracer uptake corresponded to the damaged areas assessed by CT and histology and were in line with HU quantification. The [68Ga]Ga-DOTA-TATE uptake in LPS treated rat lungs could be blocked and was significantly higher compared with control group. CONCLUSION The feasibility of the noninvasive assessment of tissue macrophages using [68Ga]Ga-DOTA-TATE/PET was demonstrated in both porcine and rat lung inflammation models. [68Ga]Ga-DOTA-TATE has a great potential to be used to study the role and presence of macrophages in humans in fight against severe lung diseases.
Collapse
Affiliation(s)
- Emmi Puuvuori
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Dag Hammarskjölds väg 14C, 3tr, 751 83, Uppsala, Sweden
| | - Francesco Liggieri
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Irina Velikyan
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Dag Hammarskjölds väg 14C, 3tr, 751 83, Uppsala, Sweden
| | - Elena Chiodaroli
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Jonathan Sigfridsson
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Hampus Romelin
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Sofie Ingvast
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Olle Korsgren
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Gry Hulsart-Billström
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Dag Hammarskjölds väg 14C, 3tr, 751 83, Uppsala, Sweden
| | - Gaetano Perchiazzi
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Olof Eriksson
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Dag Hammarskjölds väg 14C, 3tr, 751 83, Uppsala, Sweden.
| |
Collapse
|
6
|
Perchiazzi G, Lipcsey M, Malinovschi A. Göran Hedenstierna (1941-2021). Clin Physiol Funct Imaging 2022; 42:146-147. [PMID: 35128789 DOI: 10.1111/cpf.12743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/12/2021] [Accepted: 01/03/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Gaetano Perchiazzi
- Anesthesiology and Intensive Care, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.,Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Miklos Lipcsey
- Anesthesiology and Intensive Care, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.,Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Andrei Malinovschi
- Clinical Physiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
Widing H, Chiodaroli E, Liggieri F, Mariotti PS, Hallén K, Perchiazzi G. Homogenizing effect of PEEP on tidal volume distribution during neurally adjusted ventilatory assist: study of an animal model of acute respiratory distress syndrome. Respir Res 2022; 23:324. [PMID: 36419132 PMCID: PMC9685871 DOI: 10.1186/s12931-022-02228-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/26/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The physiological response and the potentially beneficial effects of positive end-expiratory pressure (PEEP) for lung protection and optimization of ventilation during spontaneous breathing in patients with acute respiratory distress syndrome (ARDS) are not fully understood. The aim of the study was to compare the effect of different PEEP levels on tidal volume distribution and on the ventilation of dependent lung region during neurally adjusted ventilatory assist (NAVA). METHODS ARDS-like lung injury was induced by using saline lavage in 10 anesthetized and spontaneously breathing farm-bred pigs. The animals were ventilated in NAVA modality and tidal volume distribution as well as dependent lung ventilation were assessed using electric impedance tomography during the application of PEEP levels from 0 to 15 cmH20, in steps of 3 cmH20. Tidal volume distribution and dependent fraction of ventilation were analysed using Wilcoxon signed rank test. Furthermore, airway, esophageal and transpulmonary pressure, as well as airway flow and delivered volume, were continuously measured during the assisted spontaneous breathing. RESULTS Increasing PEEP improved oxygenation and re-distributed tidal volume. Specifically, ventilation distribution changed from a predominant non-dependent to a more even distribution between non-dependent and dependent areas of the lung. Dependent fraction of ventilation reached 47 ± 9% at PEEP 9 cmH20. Further increasing PEEP led to a predominant dependent ventilation. CONCLUSION During assisted spontaneous breathing in this model of induced ARDS, PEEP modifies the distribution of ventilation and can achieve a homogenizing effect on its spatial arrangement. The study indicates that PEEP is an important factor during assisted spontaneous breathing and that EIT can be of valuable interest when titrating PEEP level during spontaneous breathing, by indicating the most homogeneous distribution of gas volumes throughout the PEEP spectrum.
Collapse
Affiliation(s)
- Hannes Widing
- grid.8993.b0000 0004 1936 9457Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Akademiska Sjukhuset, Ing 40, 3 Tr, 751 85 Uppsala, Sweden ,grid.1649.a000000009445082XDepartment of Anaesthesiology and Intensive Care Medicine, Region Västra Götaland, Sahlgrenska University Hospital/Östra, Gothenburg, Sweden
| | - Elena Chiodaroli
- grid.8993.b0000 0004 1936 9457Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Akademiska Sjukhuset, Ing 40, 3 Tr, 751 85 Uppsala, Sweden ,grid.415093.a0000 0004 1793 3800Department of Anesthesia and Intensive Care, ASST Santi Paolo e Carlo, San Paolo University Hospital, Via Di Rudinì 8, Milan, Italy
| | - Francesco Liggieri
- grid.8993.b0000 0004 1936 9457Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Akademiska Sjukhuset, Ing 40, 3 Tr, 751 85 Uppsala, Sweden ,Division of Anesthesia and Intensive Care, San Martino Policlinic University Hospital, 16132 Genoa, Italy
| | - Paola Sara Mariotti
- grid.8993.b0000 0004 1936 9457Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Akademiska Sjukhuset, Ing 40, 3 Tr, 751 85 Uppsala, Sweden ,grid.10796.390000000121049995Department of Medical and Surgical Sciences, Anesthesia and Intensive Care Unit, University of Foggia, Foggia, Italy
| | - Katarina Hallén
- grid.1649.a000000009445082XDepartment of Anaesthesiology and Intensive Care Medicine, Region Västra Götaland, Sahlgrenska University Hospital/Östra, Gothenburg, Sweden
| | - Gaetano Perchiazzi
- grid.8993.b0000 0004 1936 9457Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Akademiska Sjukhuset, Ing 40, 3 Tr, 751 85 Uppsala, Sweden ,grid.412354.50000 0001 2351 3333Department of Anesthesia, Operation and Intensive Care, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
8
|
Abstract
Today's management of the ventilated patient still relies on the measurement of old parameters such as airway pressures and flow. Graphical presentations reveal the intricacies of patient-ventilator interactions in times of supporting the patient on the ventilator instead of fully ventilating the heavily sedated patient. This opens a new pathway for several bedside technologies based on basic physiologic knowledge; however, it may increase the complexity of measurements. The spread of the COVID-19 infection has confronted the anesthesiologist and intensivist with one of the most severe pulmonary pathologies of the last decades. Optimizing the patient at the bedside is an old and newly required skill for all physicians in the intensive care unit, supported by mobile technologies such as lung ultrasound and electrical impedance tomography. This review summarizes old knowledge and presents a brief insight into extended monitoring options.
Collapse
Affiliation(s)
- Ralph Gertler
- Department of Anaesthesiology and Intensive Care, HELIOS Klinikum München West, Teaching Hospital of the Ludwig-Maximilians-Universität, Steinerweg 5, München 85241, Germany.
| |
Collapse
|
9
|
Herrmann J, Gerard SE, Shao W, Xin Y, Cereda M, Reinhardt JM, Christensen GE, Hoffman EA, Kaczka DW. Effects of Lung Injury on Regional Aeration and Expiratory Time Constants: Insights From Four-Dimensional Computed Tomography Image Registration. Front Physiol 2021; 12:707119. [PMID: 34393824 PMCID: PMC8355819 DOI: 10.3389/fphys.2021.707119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/30/2021] [Indexed: 11/13/2022] Open
Abstract
Rationale: Intratidal changes in regional lung aeration, as assessed with dynamic four-dimensional computed tomography (CT; 4DCT), may indicate the processes of recruitment and derecruitment, thus portending atelectrauma during mechanical ventilation. In this study, we characterized the time constants associated with deaeration during the expiratory phase of pressure-controlled ventilation in pigs before and after acute lung injury using respiratory-gated 4DCT and image registration. Methods: Eleven pigs were mechanically ventilated in pressure-controlled mode under baseline conditions and following an oleic acid model of acute lung injury. Dynamic 4DCT scans were acquired without interrupting ventilation. Automated segmentation of lung parenchyma was obtained by a convolutional neural network. Respiratory structures were aligned using 4D image registration. Exponential regression was performed on the time-varying CT density in each aligned voxel during exhalation, resulting in regional estimates of intratidal aeration change and deaeration time constants. Regressions were also performed for regional and total exhaled gas volume changes. Results: Normally and poorly aerated lung regions demonstrated the largest median intratidal aeration changes during exhalation, compared to minimal changes within hyper- and non-aerated regions. Following lung injury, median time constants throughout normally aerated regions within each subject were greater than respective values for poorly aerated regions. However, parametric response mapping revealed an association between larger intratidal aeration changes and slower time constants. Lower aeration and faster time constants were observed for the dependent lung regions in the supine position. Regional gas volume changes exhibited faster time constants compared to regional density time constants, as well as better correspondence to total exhaled volume time constants. Conclusion: Mechanical time constants based on exhaled gas volume underestimate regional aeration time constants. After lung injury, poorly aerated regions experience larger intratidal changes in aeration over shorter time scales compared to normally aerated regions. However, the largest intratidal aeration changes occur over the longest time scales within poorly aerated regions. These dynamic 4DCT imaging data provide supporting evidence for the susceptibility of poorly aerated regions to ventilator-induced lung injury, and for the functional benefits of short exhalation times during mechanical ventilation of injured lungs.
Collapse
Affiliation(s)
- Jacob Herrmann
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Sarah E Gerard
- Department of Radiology, University of Iowa, Iowa City, IA, United States
| | - Wei Shao
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - Yi Xin
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Maurizio Cereda
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, United States
| | - Joseph M Reinhardt
- Department of Radiology, University of Iowa, Iowa City, IA, United States.,Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| | - Gary E Christensen
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA, United States.,Department of Radiation Oncology, University of Iowa, Iowa City, IA, United States
| | - Eric A Hoffman
- Department of Radiology, University of Iowa, Iowa City, IA, United States.,Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States.,Department of Internal Medicine, University of Iowa, Iowa City, IA, United States
| | - David W Kaczka
- Department of Radiology, University of Iowa, Iowa City, IA, United States.,Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States.,Department of Anesthesia, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
10
|
Regional Gas Transport During Conventional and Oscillatory Ventilation Assessed by Xenon-Enhanced Computed Tomography. Ann Biomed Eng 2021; 49:2377-2388. [PMID: 33948747 DOI: 10.1007/s10439-021-02767-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 03/12/2021] [Indexed: 01/16/2023]
Abstract
Enhanced intrapulmonary gas transport enables oscillatory ventilation modalities to support gas exchange using extremely low tidal volumes at high frequencies. However, it is unknown whether gas transport rates can be improved by combining multiple frequencies of oscillation simultaneously. The goal of this study was to investigate distributed gas transport in vivo during multi-frequency oscillatory ventilation (MFOV) as compared with conventional mechanical ventilation (CMV) or high-frequency oscillatory ventilation (HFOV). We hypothesized that MFOV would result in more uniform rates of gas transport compared to HFOV, measured using contrast-enhanced CT imaging during wash-in of xenon gas. In 13 pigs, xenon wash-in equilibration rates were comparable between CMV and MFOV, but 21 to 39% slower for HFOV. By contrast, the root-mean-square delivered volume was lowest for MFOV, increased by 70% during HFOV and 365% during CMV. Overall gas transport heterogeneity was similar across all modalities, but gravitational gradients and regional patchiness of specific ventilation contributed to regional ventilation heterogeneity, depending on ventilator modality. We conclude that MFOV combines benefits of low lung stretch, similar to HFOV, but with fast rates of gas transport, similar to CMV.
Collapse
|
11
|
Parsons D, Donnelley M. Will Airway Gene Therapy for Cystic Fibrosis Improve Lung Function? New Imaging Technologies Can Help Us Find Out. Hum Gene Ther 2020; 31:973-984. [PMID: 32718206 DOI: 10.1089/hum.2020.153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The promise of genetic therapies has turned into reality in recent years, with new first-line treatments for fatal diseases now available to patients. The development and testing of genetic therapies for respiratory diseases such as cystic fibrosis (CF) has also progressed. The addition of gene editing to the genetic agent toolbox, and its early success in other organ systems, suggests we will see rapid expansion of gene correction options for CF in the future. Although substantial progress has been made in creating techniques and genetic agents that can be highly effective for CF correction in vitro, physiologically relevant functional in vivo changes have been largely prevented by poor delivery efficiency within the lungs. Somewhat hidden from view, however, is the absence of reliable, accurate, detailed, and noninvasive outcome measures that can detect subtle disease and treatment effects in the lungs of humans or animal models. The ability to measure the fundamental function of the lung-ventilation, the effective transport of air throughout the lung-has been constrained by the available measurement technologies. Without sensitive measurement methods, it is difficult to quantify the effectiveness of genetic therapies for CF. The mainstays of lung health assessment are spirometry, which cannot provide adequate disease localization and is not sensitive enough to detect small early changes in disease; and computed tomography, which provides structural rather than functional information. Magnetic resonance imaging using hyperpolarized gases is increasingly useful for lung ventilation assessment, and it removes the radiation risk that accompanies X-ray methods. A new lung imaging technique, X-ray velocimetry, can now offer highly detailed regional lung ventilation information well suited to the diagnosis, treatment, and monitoring needs of CF lung disease, particularly after the application of genetic therapies. In this review, we discuss the options now available for imaging-based lung function measurement in the generation and use of genetic and other therapies for treating CF lung disease.
Collapse
Affiliation(s)
- David Parsons
- Robinson Research Institute, University of Adelaide, Adelaide, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, Australia.,Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, Australia
| | - Martin Donnelley
- Robinson Research Institute, University of Adelaide, Adelaide, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, Australia.,Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, Australia
| |
Collapse
|
12
|
Quantification of muco-obstructive lung disease variability in mice via laboratory X-ray velocimetry. Sci Rep 2020; 10:10859. [PMID: 32616726 PMCID: PMC7331693 DOI: 10.1038/s41598-020-67633-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 05/29/2020] [Indexed: 11/08/2022] Open
Abstract
To effectively diagnose, monitor and treat respiratory disease clinicians should be able to accurately assess the spatial distribution of airflow across the fine structure of lung. This capability would enable any decline or improvement in health to be located and measured, allowing improved treatment options to be designed. Current lung function assessment methods have many limitations, including the inability to accurately localise the origin of global changes within the lung. However, X-ray velocimetry (XV) has recently been demonstrated to be a sophisticated and non-invasive lung function measurement tool that is able to display the full dynamics of airflow throughout the lung over the natural breathing cycle. In this study we present two developments in XV analysis. Firstly, we show the ability of laboratory-based XV to detect the patchy nature of cystic fibrosis (CF)-like disease in β-ENaC mice. Secondly, we present a technique for numerical quantification of CF-like disease in mice that can delineate between two major modes of disease symptoms. We propose this analytical model as a simple, easy-to-interpret approach, and one capable of being readily applied to large quantities of data generated in XV imaging. Together these advances show the power of XV for assessing local airflow changes. We propose that XV should be considered as a novel lung function measurement tool for lung therapeutics development in small animal models, for CF and for other muco-obstructive diseases.
Collapse
|
13
|
Herrmann J, Gerard SE, Shao W, Hawley ML, Reinhardt JM, Christensen GE, Hoffman EA, Kaczka DW. Quantifying Regional Lung Deformation Using Four-Dimensional Computed Tomography: A Comparison of Conventional and Oscillatory Ventilation. Front Physiol 2020; 11:14. [PMID: 32153417 PMCID: PMC7044245 DOI: 10.3389/fphys.2020.00014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/13/2020] [Indexed: 01/14/2023] Open
Abstract
Mechanical ventilation strategies that reduce the heterogeneity of regional lung stress and strain may reduce the risk of ventilator-induced lung injury (VILI). In this study, we used registration of four-dimensional computed tomographic (4DCT) images to assess regional lung aeration and deformation in 10 pigs under baseline conditions and following acute lung injury induced with oleic acid. CT images were obtained via dynamic axial imaging (Siemens SOMATOM Force) during conventional pressure-controlled mechanical ventilation (CMV), as well as high-frequency and multi-frequency oscillatory ventilation modalities (HFOV and MFOV, respectively). Our results demonstrate that oscillatory modalities reduce intratidal strain throughout the lung in comparison to conventional ventilation, as well as the spatial gradients of dynamic strain along the dorsal-ventral axis. Harmonic distortion of parenchymal deformation was observed during HFOV with a single discrete sinusoid delivered at the airway opening, suggesting inherent mechanical nonlinearity of the lung tissues. MFOV may therefore provide improved lung-protective ventilation by reducing strain magnitudes and spatial gradients of strain compared to either CMV or HFOV.
Collapse
Affiliation(s)
- Jacob Herrmann
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States.,Department of Anesthesia, University of Iowa, Iowa City, IA, United States.,OscillaVent, Inc., Iowa City, IA, United States
| | - Sarah E Gerard
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| | - Wei Shao
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA, United States
| | | | - Joseph M Reinhardt
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States.,Department of Radiology, University of Iowa, Iowa City, IA, United States
| | - Gary E Christensen
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA, United States.,Department of Radiation Oncology, University of Iowa, Iowa City, IA, United States
| | - Eric A Hoffman
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States.,Department of Radiology, University of Iowa, Iowa City, IA, United States.,Department of Internal Medicine, University of Iowa, Iowa City, IA, United States
| | - David W Kaczka
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States.,Department of Anesthesia, University of Iowa, Iowa City, IA, United States.,OscillaVent, Inc., Iowa City, IA, United States.,Department of Radiology, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
14
|
Gerard SE, Herrmann J, Kaczka DW, Musch G, Fernandez-Bustamante A, Reinhardt JM. Multi-resolution convolutional neural networks for fully automated segmentation of acutely injured lungs in multiple species. Med Image Anal 2020; 60:101592. [PMID: 31760194 PMCID: PMC6980773 DOI: 10.1016/j.media.2019.101592] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 08/09/2019] [Accepted: 10/25/2019] [Indexed: 12/27/2022]
Abstract
Segmentation of lungs with acute respiratory distress syndrome (ARDS) is a challenging task due to diffuse opacification in dependent regions which results in little to no contrast at the lung boundary. For segmentation of severely injured lungs, local intensity and texture information, as well as global contextual information, are important factors for consistent inclusion of intrapulmonary structures. In this study, we propose a deep learning framework which uses a novel multi-resolution convolutional neural network (ConvNet) for automated segmentation of lungs in multiple mammalian species with injury models similar to ARDS. The multi-resolution model eliminates the need to tradeoff between high-resolution and global context by using a cascade of low-resolution to high-resolution networks. Transfer learning is used to accommodate the limited number of training datasets. The model was initially pre-trained on human CT images, and subsequently fine-tuned on canine, porcine, and ovine CT images with lung injuries similar to ARDS. The multi-resolution model was compared to both high-resolution and low-resolution networks alone. The multi-resolution model outperformed both the low- and high-resolution models, achieving an overall mean Jacaard index of 0.963 ± 0.025 compared to 0.919 ± 0.027 and 0.950 ± 0.036, respectively, for the animal dataset (N=287). The multi-resolution model achieves an overall average symmetric surface distance of 0.438 ± 0.315 mm, compared to 0.971 ± 0.368 mm and 0.657 ± 0.519 mm for the low-resolution and high-resolution models, respectively. We conclude that the multi-resolution model produces accurate segmentations in severely injured lungs, which is attributed to the inclusion of both local and global features.
Collapse
Affiliation(s)
- Sarah E Gerard
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | - Jacob Herrmann
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA; Department of Anesthesia, University of Iowa, Iowa City, IA, USA
| | - David W Kaczka
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA; Department of Radiology, University of Iowa, Iowa City, IA, USA; Department of Anesthesia, University of Iowa, Iowa City, IA, USA
| | - Guido Musch
- Department of Anesthesiology, Washington University, St. Louis, MO, USA
| | | | - Joseph M Reinhardt
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA; Department of Radiology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
15
|
Real-time in vivo imaging of regional lung function in a mouse model of cystic fibrosis on a laboratory X-ray source. Sci Rep 2020; 10:447. [PMID: 31949224 PMCID: PMC6965186 DOI: 10.1038/s41598-019-57376-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 11/15/2019] [Indexed: 12/23/2022] Open
Abstract
Most measures of lung health independently characterise either global lung function or regional lung structure. The ability to measure airflow and lung function regionally would provide a more specific and physiologically focused means by which to assess and track lung disease in both pre-clinical and clinical settings. One approach for achieving regional lung function measurement is via phase contrast X-ray imaging (PCXI), which has been shown to provide highly sensitive, high-resolution images of the lungs and airways in small animals. The detailed images provided by PCXI allow the application of four-dimensional X-ray velocimetry (4DxV) to track lung tissue motion and provide quantitative information on regional lung function. However, until recently synchrotron facilities were required to produce the highly coherent, high-flux X-rays that are required to achieve lung PCXI at a high enough frame rate to capture lung motion. This paper presents the first translation of 4DxV technology from a synchrotron facility into a laboratory setting by using a liquid-metal jet microfocus X-ray source. This source can provide the coherence required for PCXI and enough X-ray flux to image the dynamics of lung tissue motion during the respiratory cycle, which enables production of images compatible with 4DxV analysis. We demonstrate the measurements that can be captured in vivo in live mice using this technique, including regional airflow and tissue expansion. These measurements can inform physiological and biomedical research studies in small animals and assist in the development of new respiratory treatments.
Collapse
|
16
|
Scaramuzzo G, Broche L, Pellegrini M, Porra L, Derosa S, Tannoia AP, Marzullo A, Borges JB, Bayat S, Bravin A, Larsson A, Perchiazzi G. The Effect of Positive End-Expiratory Pressure on Lung Micromechanics Assessed by Synchrotron Radiation Computed Tomography in an Animal Model of ARDS. J Clin Med 2019; 8:E1117. [PMID: 31357677 PMCID: PMC6723999 DOI: 10.3390/jcm8081117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/17/2019] [Accepted: 07/25/2019] [Indexed: 02/06/2023] Open
Abstract
Modern ventilatory strategies are based on the assumption that lung terminal airspaces act as isotropic balloons that progressively accommodate gas. Phase contrast synchrotron radiation computed tomography (PCSRCT) has recently challenged this concept, showing that in healthy lungs, deflation mechanisms are based on the sequential de-recruitment of airspaces. Using PCSRCT scans in an animal model of acute respiratory distress syndrome (ARDS), this study examined whether the numerosity (ASnum) and dimension (ASdim) of lung airspaces change during a deflation maneuver at decreasing levels of positive end-expiratory pressure (PEEP) at 12, 9, 6, 3, and 0 cmH2O. Deflation was associated with significant reduction of ASdim both in the whole lung section (passing from from 13.1 ± 2.0 at PEEP 12 to 7.6 ± 4.2 voxels at PEEP 0) and in single concentric regions of interest (ROIs). However, the regression between applied PEEP and ASnum was significant in the whole slice (ranging from 188 ± 52 at PEEP 12 to 146.4 ± 96.7 at PEEP 0) but not in the single ROIs. This mechanism of deflation in which reduction of ASdim is predominant, differs from the one observed in healthy conditions, suggesting that the peculiar alveolar micromechanics of ARDS might play a role in the deflation process.
Collapse
Affiliation(s)
- Gaetano Scaramuzzo
- Department of Morphology, Surgery and Experimental Medicine, Ferrara University, 44121 Ferrara, Italy
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, 75185 Uppsala, Sweden
| | - Ludovic Broche
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, 75185 Uppsala, Sweden
| | - Mariangela Pellegrini
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, 75185 Uppsala, Sweden
- Department of Anesthesia and Intensive Care, Uppsala University Hospital, 75185 Uppsala, Sweden
| | - Liisa Porra
- Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland
- Helsinki University Hospital, FI-00029 Helsinki, Finland
| | - Savino Derosa
- Department of Emergency and Organ Transplant, Bari University, 70124 Bari, Italy
| | | | - Andrea Marzullo
- Department of Emergency and Organ Transplant, Bari University, 70124 Bari, Italy
| | - João Batista Borges
- Centre for Human and Applied Physiological Sciences, Faculty of Sciences and Medicine, King's College, London WC2R 2LS, UK
| | - Sam Bayat
- The European Synchrotron Radiation Facility, 38043 Grenoble, France
- INSERM UA7, Synchrotron Radiation for Biomedicine (STROBE) Laboratory, University of Grenoble Alpes, 38043 Grenoble, France
| | - Alberto Bravin
- The European Synchrotron Radiation Facility, 38043 Grenoble, France
| | - Anders Larsson
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, 75185 Uppsala, Sweden
| | - Gaetano Perchiazzi
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, 75185 Uppsala, Sweden.
- Department of Anesthesia and Intensive Care, Uppsala University Hospital, 75185 Uppsala, Sweden.
| |
Collapse
|
17
|
Scaramuzzo G, Broche L, Pellegrini M, Porra L, Derosa S, Tannoia AP, Marzullo A, Borges JB, Bayat S, Bravin A, Larsson A, Perchiazzi G. Regional Behavior of Airspaces During Positive Pressure Reduction Assessed by Synchrotron Radiation Computed Tomography. Front Physiol 2019; 10:719. [PMID: 31231245 PMCID: PMC6567926 DOI: 10.3389/fphys.2019.00719] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 05/23/2019] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION The mechanisms of lung inflation and deflation are only partially known. Ventilatory strategies to support lung function rely upon the idea that lung alveoli are isotropic balloons that progressively inflate or deflate and that lung pressure/volume curves derive only by the interplay of critical opening pressures, critical closing pressures, lung history, and position of alveoli inside the lung. This notion has been recently challenged by subpleural microscopy, magnetic resonance, and computed tomography (CT). Phase-contrast synchrotron radiation CT (PC-SRCT) can yield in vivo images at resolutions higher than conventional CT. OBJECTIVES We aimed to assess the numerosity (ASden) and the extension of the surface of airspaces (ASext) in healthy conditions at different volumes, during stepwise lung deflation, in concentric regions of the lung. METHODS The study was conducted in seven anesthetized New Zealand rabbits. They underwent PC-SRCT scans (resolution of 47.7 μm) of the lung at five decreasing positive end expiratory pressure (PEEP) levels of 12, 9, 6, 3, and 0 cmH2O during end-expiratory holds. Three concentric regions of interest (ROIs) of the lung were studied: subpleural, mantellar, and core. The images were enhanced by phase contrast algorithms. ASden and ASext were computed by using the Image Processing Toolbox for MatLab. Statistical tests were used to assess any significant difference determined by PEEP or ROI on ASden and ASext. RESULTS When reducing PEEP, in each ROI the ASden significantly decreased. Conversely, ASext variation was not significant except for the core ROI. In the latter, the angular coefficient of the regression line was significantly low. CONCLUSION The main mechanism behind the decrease in lung volume at PEEP reduction is derecruitment. In our study involving lung regions laying on isogravitational planes and thus equally influenced by gravitational forces, airspace numerosity and extension of surface depend on the local mechanical properties of the lung.
Collapse
Affiliation(s)
- Gaetano Scaramuzzo
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Ludovic Broche
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- The European Synchrotron Radiation Facility, Grenoble, France
- INSERM UA7, Synchrotron Radiation for Biomedicine (STROBE) Laboratory, Grenoble Alpes University, Amiens, France
| | - Mariangela Pellegrini
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Department of Anesthesia and Intensive Care, Uppsala University Hospital, Uppsala, Sweden
| | - Liisa Porra
- Department of Physics, Faculty of Mathematics and Natural Sciences, University of Helsinki, Helsinki, Finland
- Helsinki University Central Hospital, Helsinki, Finland
| | - Savino Derosa
- Department of Emergency and Organ Transplant, University of Bari Aldo Moro, Bari, Italy
| | | | - Andrea Marzullo
- Department of Emergency and Organ Transplant, University of Bari Aldo Moro, Bari, Italy
| | - Joao Batista Borges
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Centre for Human and Applied Physiological Sciences, Faculty of Sciences and Medicine, King’s College London, London, United Kingdom
| | - Sam Bayat
- INSERM UA7, Synchrotron Radiation for Biomedicine (STROBE) Laboratory, Grenoble Alpes University, Amiens, France
| | - Alberto Bravin
- The European Synchrotron Radiation Facility, Grenoble, France
| | - Anders Larsson
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Gaetano Perchiazzi
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Department of Anesthesia and Intensive Care, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
18
|
Hedenstierna G. Unstable Inflation Is Harmful and More Common Supine Than Prone. Am J Respir Crit Care Med 2018; 198:146-147. [DOI: 10.1164/rccm.201802-0313ed] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
19
|
Larsson A, Guerin C. Monitoring of lung function in acute respiratory distress syndrome. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:284. [PMID: 28828359 DOI: 10.21037/atm.2017.06.56] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Monitoring of lung function is essential to assess changes in the lung condition, and to correct and improve ventilator and adjuvant therapies in acute respiratory distress syndrome (ARDS). In this review we discuss the use of monitoring of gas exchange, lung mechanics and shortly on lung imaging in this condition.
Collapse
Affiliation(s)
- Anders Larsson
- Hedenstierna laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Claude Guerin
- Réanimation Médicale, Hôpital de la Croix Rousse, Lyon, France
| |
Collapse
|
20
|
Borges JB, Porra L, Pellegrini M, Tannoia A, Derosa S, Larsson A, Bayat S, Perchiazzi G, Hedenstierna G. Zero expiratory pressure and low oxygen concentration promote heterogeneity of regional ventilation and lung densities. Acta Anaesthesiol Scand 2016; 60:958-68. [PMID: 27000315 PMCID: PMC5071663 DOI: 10.1111/aas.12719] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 01/20/2016] [Accepted: 02/11/2016] [Indexed: 12/26/2022]
Abstract
Background It is not well known what is the main mechanism causing lung heterogeneity in healthy lungs under mechanical ventilation. We aimed to investigate the mechanisms causing heterogeneity of regional ventilation and parenchymal densities in healthy lungs under anesthesia and mechanical ventilation. Methods In a small animal model, synchrotron imaging was used to measure lung aeration and regional‐specific ventilation (sV̇). Heterogeneity of ventilation was calculated as the coefficient of variation in sV̇ (CVsV̇). The coefficient of variation in lung densities (CVD) was calculated for all lung tissue, and within hyperinflated, normally and poorly aerated areas. Three conditions were studied: zero end‐expiratory pressure (ZEEP) and FIO2 0.21; ZEEP and FIO2 1.0; PEEP 12 cmH2O and FIO21.0 (Open Lung‐PEEP = OLP). Results The mean tissue density at OLP was lower than ZEEP‐1.0 and ZEEP‐0.21. There were larger subregions with low sV̇ and poor aeration at ZEEP‐0.21 than at OLP: 12.9 ± 9.0 vs. 0.6 ± 0.4% in the non‐dependent level, and 17.5 ± 8.2 vs. 0.4 ± 0.1% in the dependent one (P = 0.041). The CVsV̇ of the total imaged lung at PEEP 12 cmH2O was significantly lower than on ZEEP, regardless of FIO2, indicating more heterogeneity of ventilation during ZEEP (0.23 ± 0.03 vs. 0.54 ± 0.37, P = 0.049). CVD changed over the different mechanical ventilation settings (P = 0.011); predominantly, CVD increased during ZEEP. The spatial distribution of the CVD calculated for the poorly aerated density category changed with the mechanical ventilation settings, increasing in the dependent level during ZEEP. Conclusion ZEEP together with low FIO2 promoted heterogeneity of ventilation and lung tissue densities, fostering a greater amount of airway closure and ventilation inhomogeneities in poorly aerated regions.
Collapse
Affiliation(s)
- J. B. Borges
- Hedenstierna Laboratory Department of Surgical Sciences Section of Anaesthesiology & Critical Care Uppsala University Uppsala Sweden
- Pulmonary Divison Heart Institute (Incor) Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo Brazil
| | - L. Porra
- Department of Physics University of Helsinki Helsinki Finland
- Helsinki University Central Hospital Helsinki Finland
| | - M. Pellegrini
- Department of Emergency and Organ Transplant Bari University Italy
| | - A. Tannoia
- Department of Emergency and Organ Transplant Bari University Italy
| | - S. Derosa
- Department of Emergency and Organ Transplant Bari University Italy
| | - A. Larsson
- Hedenstierna Laboratory Department of Surgical Sciences Section of Anaesthesiology & Critical Care Uppsala University Uppsala Sweden
| | - S. Bayat
- Inserm UMR1105 and Pediatric Lung Function Laboratory CHU Amiens Université de Picardie Jules Verne Amiens France
| | - G. Perchiazzi
- Hedenstierna Laboratory Department of Surgical Sciences Section of Anaesthesiology & Critical Care Uppsala University Uppsala Sweden
- Department of Emergency and Organ Transplant Bari University Italy
| | - G. Hedenstierna
- Hedenstierna Laboratory Department of Medical Sciences Clinical Physiology Uppsala University Uppsala Sweden
| |
Collapse
|
21
|
Effects of superimposed tissue weight on regional compliance of injured lungs. Respir Physiol Neurobiol 2016; 228:16-24. [PMID: 26976688 DOI: 10.1016/j.resp.2016.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 03/06/2016] [Accepted: 03/06/2016] [Indexed: 11/21/2022]
Abstract
Computed tomography (CT), together with image analysis technologies, enable the construction of regional volume (VREG) and local transpulmonary pressure (PTP,REG) maps of the lung. Purpose of this study is to assess the distribution of VREG vs PTP,REG along the gravitational axis in healthy (HL) and experimental acute lung injury conditions (eALI) at various positive end-expiratory pressures (PEEPs) and inflation volumes. Mechanically ventilated pigs underwent inspiratory hold maneuvers at increasing volumes simultaneously with lung CT scans. eALI was induced via the iv administration of oleic acid. We computed voxel-level VREG vs PTP,REG curves into eleven isogravitational planes by applying polynomial regressions. Via F-test, we determined that VREG vs PTP,REG curves derived from different anatomical planes (p-values<1.4E-3), exposed to different PEEPs (p-values<1.5E-5) or subtending different lung status (p-values<3E-3) were statistically different (except for two cases of adjacent planes). Lung parenchyma exhibits different elastic behaviors based on its position and the density of superimposed tissue which can increase during lung injury.
Collapse
|
22
|
Open Lung in Lateral Decubitus With Differential Selective Positive End-Expiratory Pressure in an Experimental Model of Early Acute Respiratory Distress Syndrome. Crit Care Med 2015; 43:e404-11. [PMID: 26131598 DOI: 10.1097/ccm.0000000000001143] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE After lung recruitment, lateral decubitus and differential lung ventilation may enable the titration and application of optimum-selective positive end-expiratory pressure values for the dependent and nondependent lungs. We aimed at compare the effects of optimum-selective positive end-expiratory pressure with optimum global positive end-expiratory pressure on regional collapse and aeration distribution in an experimental model of acute respiratory distress syndrome. DESIGN Prospective laboratory investigation. SETTING University animal research laboratory. SUBJECTS Seven piglets. INTERVENTIONS A one-hit injury acute respiratory distress syndrome model was established by repeated lung lavages. After replacing the tracheal tube by a double-lumen one, we initiated lateral decubitus and differential ventilation. After maximum-recruitment maneuver, decremental positive end-expiratory pressure titration was performed. The positive end-expiratory pressure corresponding to maximum dynamic compliance was defined globally (optimum global positive end-expiratory pressure) and for each individual lung (optimum-selective positive end-expiratory pressure). After new maximum-recruitment maneuver, two steps were performed in randomized order (15 min each): ventilation applying the optimum global positive end-expiratory pressure and the optimum-selective positive end-expiratory pressure. CT scans were acquired at end expiration and end inspiration. MEASUREMENTS AND MAIN RESULTS Aeration homogeneity was evaluated as a nondependent/dependent ratio (percent of total gas content in upper lung/percent of total gas content in lower lung) and tidal recruitment as the difference in the percent mass of nonaerated tissue between expiration and inspiration. At the end of the 15-minute optimum-selective positive end-expiratory pressure, compared with the optimum global positive end-expiratory pressure, resulted in 1) decrease in the percent mass of collapse in the lower lung at expiratory CT (19% ± 15% vs 4% ± 5%; p = 0.03); 2) decrease in the nondependent/dependent ratio between the optimum global positive end-expiratory pressure-expiratory-CT and optimum-selective positive end-expiratory pressure-expiratory-CT (3.7 ± 1.2 vs 0.8 ± 0.5; p = 0.01); 3) decrease in the nondependent/dependent ratio between the optimum global positive end-expiratory pressure-inspiratory-CT and optimum-selective positive end-expiratory pressure-inspiratory-CT (2.8 ± 1.1 vs 0.6 ± 0.3; p = 0.01); and 4) less tidal recruitment (p = 0.049). CONCLUSIONS After maximum lung recruitment, lateral decubitus and differential lung ventilation enabled the titration of optimum-selective positive end-expiratory pressure values for the dependent and the nondependent lungs, made possible the application of an optimized regional open lung approach, promoted better aeration distribution, and minimized lung tissue inhomogeneities.
Collapse
|