1
|
Lavezzi AM, Mehboob R, Piscioli F, Pusiol T. Involvement of the Superior Colliculus in SIDS Pathogenesis. Biomedicines 2023; 11:1689. [PMID: 37371784 DOI: 10.3390/biomedicines11061689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/25/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The aim of this study was to investigate the involvement of the mesencephalic superior colliculus (SC) in the pathogenetic mechanism of SIDS, a syndrome frequently ascribed to arousal failure from sleep. We analyzed the brains of 44 infants who died suddenly within the first 7 months of life, among which were 26 infants with SIDS and 18 controls. In-depth neuropathological investigations of serial sections of the midbrain showed the SC layered cytoarchitectural organization already well known in animals, as made up of seven distinct layers, but so far never highlighted in humans, albeit with some differences. In 69% of SIDS cases but never in the controls, we observed alterations of the laminar arrangement of the SC deep layers (precisely, an increased number of polygonal cells invading the superficial layers and an increased presence of intensely stained myelinated fibers). Since it has been demonstrated in experimental studies that the deep layers of the SC exert motor control including that of the head, their developmental disorder could lead to the failure of newborns who are in a prone position to resume regular breathing by moving their heads in the sleep-arousal phase. The SC anomalies highlighted here represent a new step in understanding the pathogenetic process that leads to SIDS.
Collapse
Affiliation(s)
- Anna M Lavezzi
- "Lino Rossi" Research Center for the Study and Prevention of Unexpected Perinatal Death and SIDS, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| | - Riffat Mehboob
- Lahore Medical Research Center and LMRC Laboratories, LLP, Lahore 54000, Pakistan
| | - Francesco Piscioli
- Provincial Health Care Services, Institute of Pathology, Santa Maria del Carmine Hospital, 38068 Rovereto, Italy
| | - Teresa Pusiol
- Provincial Health Care Services, Institute of Pathology, Santa Maria del Carmine Hospital, 38068 Rovereto, Italy
| |
Collapse
|
2
|
Lynch E, Dempsey B, Saleeba C, Monteiro E, Turner A, Burke PGR, Allen AM, Dampney RAL, Hildreth CM, Cornish JL, Goodchild AK, McMullan S. Descending pathways from the superior colliculus mediating autonomic and respiratory effects associated with orienting behaviour. J Physiol 2022; 600:5311-5332. [PMID: 36271640 PMCID: PMC10107157 DOI: 10.1113/jp283789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/14/2022] [Indexed: 01/05/2023] Open
Abstract
The ability to discriminate competing external stimuli and initiate contextually appropriate behaviours is a key brain function. Neurons in the deep superior colliculus (dSC) integrate multisensory inputs and activate descending projections to premotor pathways responsible for orienting, attention and defence, behaviours which involve adjustments to respiratory and cardiovascular parameters. However, the neural pathways that subserve the physiological components of orienting are poorly understood. We report that orienting responses to optogenetic dSC stimulation are accompanied by short-latency autonomic, respiratory and electroencephalographic effects in awake rats, closely mimicking those evoked by naturalistic alerting stimuli. Physiological responses were not accompanied by detectable aversion or fear, and persisted under urethane anaesthesia, indicating independence from emotional stress. Anterograde and trans-synaptic viral tracing identified a monosynaptic pathway that links the dSC to spinally projecting neurons in the medullary gigantocellular reticular nucleus (GiA), a key hub for the coordination of orienting and locomotor behaviours. In urethane-anaesthetized animals, sympathoexcitatory and cardiovascular, but not respiratory, responses to dSC stimulation were replicated by optogenetic stimulation of the dSC-GiA terminals, suggesting a likely role for this pathway in mediating the autonomic components of dSC-mediated responses. Similarly, extracellular recordings from putative GiA sympathetic premotor neurons confirmed short-latency excitatory inputs from the dSC. This pathway represents a likely substrate for autonomic components of orienting responses that are mediated by dSC neurons and suggests a mechanism through which physiological and motor components of orienting behaviours may be integrated without the involvement of higher centres that mediate affective components of defensive responses. KEY POINTS: Neurons in the deep superior colliculus (dSC) integrate multimodal sensory signals to elicit context-dependent innate behaviours that are accompanied by stereotypical cardiovascular and respiratory activities. The pathways responsible for mediating the physiological components of colliculus-mediated orienting behaviours are unknown. We show that optogenetic dSC stimulation evokes transient orienting, respiratory and autonomic effects in awake rats which persist under urethane anaesthesia. Anterograde tracing from the dSC identified projections to spinally projecting neurons in the medullary gigantocellular reticular nucleus (GiA). Stimulation of this pathway recapitulated autonomic effects evoked by stimulation of dSC neurons. Electrophysiological recordings from putative GiA sympathetic premotor neurons confirmed short latency excitatory input from dSC neurons. This disynaptic dSC-GiA-spinal sympathoexcitatory pathway may underlie autonomic adjustments to salient environmental cues independent of input from higher centres.
Collapse
Affiliation(s)
- Erin Lynch
- Macquarie Medical School, Faculty of Medicine, Health & Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Bowen Dempsey
- Macquarie Medical School, Faculty of Medicine, Health & Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Christine Saleeba
- Macquarie Medical School, Faculty of Medicine, Health & Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Eloise Monteiro
- Macquarie Medical School, Faculty of Medicine, Health & Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Anita Turner
- Macquarie Medical School, Faculty of Medicine, Health & Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Peter G R Burke
- Macquarie Medical School, Faculty of Medicine, Health & Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Andrew M Allen
- Department of Physiology, University of Melbourne, Victoria, Australia
| | - Roger A L Dampney
- School of Medical Sciences (Physiology), University of Sydney, Sydney, New South Wales, Australia
| | - Cara M Hildreth
- Macquarie Medical School, Faculty of Medicine, Health & Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Jennifer L Cornish
- Macquarie Medical School, Faculty of Medicine, Health & Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Ann K Goodchild
- Macquarie Medical School, Faculty of Medicine, Health & Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Simon McMullan
- Macquarie Medical School, Faculty of Medicine, Health & Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Chammas A, Bund C, Lersy F, Brisset JC, Ardellier FD, Kremer S, Namer IJ. Collicular Hyperactivation in Patients with COVID-19: A New Finding on Brain MRI and PET/CT. AJNR Am J Neuroradiol 2021; 42:1410-1414. [PMID: 34016586 PMCID: PMC8367604 DOI: 10.3174/ajnr.a7158] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/11/2021] [Indexed: 12/11/2022]
Abstract
Hyperactivation of the colliculi has been observed in some patients with coronavirus disease 2019.
Collapse
Affiliation(s)
- A Chammas
- From the Hôpitaux Universitaires de Strasbourg (A.C., F.L., F.-D.A, S.K.), Service d'Imagerie 2, Hôpital de Hautepierre, Strasbourg, France
| | - C Bund
- Service de Médecine Nucléaire (C.B., I.J.N.), Institut de Cancérologie Strasbourg Europe, Strasbourg, France
| | - F Lersy
- From the Hôpitaux Universitaires de Strasbourg (A.C., F.L., F.-D.A, S.K.), Service d'Imagerie 2, Hôpital de Hautepierre, Strasbourg, France
| | - J-C Brisset
- Observatoire Français de la Sclérose en Plaques (J.-C.B.), Lyon, France
| | - F-D Ardellier
- From the Hôpitaux Universitaires de Strasbourg (A.C., F.L., F.-D.A, S.K.), Service d'Imagerie 2, Hôpital de Hautepierre, Strasbourg, France
| | - S Kremer
- From the Hôpitaux Universitaires de Strasbourg (A.C., F.L., F.-D.A, S.K.), Service d'Imagerie 2, Hôpital de Hautepierre, Strasbourg, France
| | - I J Namer
- Service de Médecine Nucléaire (C.B., I.J.N.), Institut de Cancérologie Strasbourg Europe, Strasbourg, France
| |
Collapse
|
4
|
Chammas A, Namer IJ, Lersy F, Kremer S, Bund C. Inferior Colliculus's Hypermetabolism: A New Finding on Brain FDG PET and Perfusion MRI in a Patient With COVID-19. Clin Nucl Med 2021; 46:413-414. [PMID: 33675593 DOI: 10.1097/rlu.0000000000003592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
ABSTRACT We present the case of a 64-year-old man presenting an episode of confusion during SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection with a positive oropharyngeal swab polymerase chain reaction test. He was hospitalized for dyspnea related to pneumonia demonstrated on chest CT. FDG PET performed after the confusion phase, but still in the COVID-19 (coronavirus disease 2019)-positive phase, showed high glucose metabolism of the inferior colliculi. Morphological MRI was normal. The first-pass perfusion MRI shows hyperperfusion of the inferior colliculi, corresponding to FDG PET hypermetabolism.
Collapse
Affiliation(s)
- Agathe Chammas
- From the Service de Radiologie, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg
| | | | - François Lersy
- From the Service de Radiologie, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg
| | | | | |
Collapse
|
5
|
A coordinate-based meta-analysis of music-evoked emotions. Neuroimage 2020; 223:117350. [PMID: 32898679 DOI: 10.1016/j.neuroimage.2020.117350] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 08/04/2020] [Accepted: 09/01/2020] [Indexed: 12/19/2022] Open
Abstract
Since the publication of the first neuroscience study investigating emotion with music about two decades ago, the number of functional neuroimaging studies published on this topic has increased each year. This research interest is in part due to the ubiquity of music across cultures, and to music's power to evoke a diverse range of intensely felt emotions. To support a better understanding of the brain correlates of music-evoked emotions this article reports a coordinate-based meta-analysis of neuroimaging studies (n = 47 studies with n = 944 subjects). The studies employed a range of diverse experimental approaches (e.g., using music to evoke joy, sadness, fear, tension, frissons, surprise, unpleasantness, or feelings of beauty). The results of an activation likelihood estimation (ALE) indicate large clusters in a range of structures, including amygdala, anterior hippocampus, auditory cortex, and numerous structures of the reward network (ventral and dorsal striatum, anterior cingulate cortex, orbitofrontal cortex, secondary somatosensory cortex). The results underline the rewarding nature of music, the role of the auditory cortex as an emotional hub, and the role of the hippocampus in attachment-related emotions and social bonding.
Collapse
|
6
|
Yang CF, Kim EJ, Callaway EM, Feldman JL. Monosynaptic Projections to Excitatory and Inhibitory preBötzinger Complex Neurons. Front Neuroanat 2020; 14:58. [PMID: 33013329 PMCID: PMC7507425 DOI: 10.3389/fnana.2020.00058] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 08/04/2020] [Indexed: 01/01/2023] Open
Abstract
The key driver of breathing rhythm is the preBötzinger Complex (preBötC) whose activity is modulated by various functional inputs, e.g., volitional, physiological, and emotional. While the preBötC is highly interconnected with other regions of the breathing central pattern generator (bCPG) in the brainstem, there is no data about the direct projections to either excitatory and inhibitory preBötC subpopulations from other elements of the bCPG or from suprapontine regions. Using modified rabies tracing, we identified neurons throughout the brain that send monosynaptic projections to identified excitatory and inhibitory preBötC neurons in mice. Within the brainstem, neurons from sites in the bCPG, including the contralateral preBötC, Bötzinger Complex, the nucleus of the solitary tract (NTS), parafacial region (pF L /pF V ), and parabrachial nuclei (PB), send direct projections to both excitatory and inhibitory preBötC neurons. Suprapontine inputs to the excitatory and inhibitory preBötC neurons include the superior colliculus, red nucleus, amygdala, hypothalamus, and cortex; these projections represent potential direct pathways for volitional, emotional, and physiological control of breathing.
Collapse
Affiliation(s)
- Cindy F. Yang
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Euiseok J. Kim
- Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Edward M. Callaway
- Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Jack L. Feldman
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
7
|
Ventromedial medullary pathway mediating cardiac responses evoked from periaqueductal gray. Auton Neurosci 2020; 228:102716. [PMID: 32882606 DOI: 10.1016/j.autneu.2020.102716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/23/2020] [Accepted: 08/07/2020] [Indexed: 11/20/2022]
Abstract
Periaqueductal gray (PAG) is a midbrain region that projects to areas controlling behavioral and autonomic outputs and is involved in the behavioral and physiological components of defense reactions. Since Raphe Pallidus (RPa) is a medial medullary region comprising sympathetic premotor neurons governing heart function, it is worth considering the PAG-RPa path. We assessed: i) whether PAG projects to RPa; ii) the amplitude of cardiac responses evoked from PAG; iii) whether cardiovascular responses evoked from PAG rely on RPa. Experiments conducted in Wistar rats (±300 g) were approved by Ethics Committee CEUA-UFG (092/18). Firstly, (n = 3), monosynaptic retrograde tracer Retrobeads was injected into RPa; PAG slices were analyzed. Other two groups (n = 6 each) were anesthetized with urethane (1.4 g/kg) and chloralose (120 mg/kg) and underwent craniotomy, tracheostomy, catheterization of femoral artery and vein and of cardiac left ventricle. In one group, we injected the GABAA receptor antagonist, bicuculline methiodide (BMI - 40 pmol/100 nL) into lateral/dorsolateral PAG. Another group was injected (100 nL) with the GABAA receptor agonist muscimol (20 mM) into RPa, 20 min before BMI into PAG. The results were: i) retrogradely labelled neurons were found in PAG; ii) PAG activation by BMI caused positive chronotropism and inotropism, which were accompanied by afterload increases; iii) RPa inhibition with Muscimol reduced heart rate, arterial and ventricular pressures; iv) the subsequent PAG activation still increased arterial pressure, cardiac chronotropy and inotropy, but these responses were significantly attenuated. In conclusion, PAG activation increases cardiac chronotropy and inotropy, and these responses seem to rely on a direct pathway reaching ventromedial medullary RPa neurons.
Collapse
|
8
|
Mueller SG, Nei M, Bateman LM, Knowlton R, Laxer KD, Friedman D, Devinsky O, Goldman AM. Brainstem network disruption: A pathway to sudden unexplained death in epilepsy? Hum Brain Mapp 2018; 39:4820-4830. [PMID: 30096213 DOI: 10.1002/hbm.24325] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/05/2018] [Accepted: 07/12/2018] [Indexed: 12/16/2022] Open
Abstract
Observations in witnessed Sudden Unexpected Death in Epilepsy (SUDEP) suggest that a fatal breakdown of the central autonomic control could play a major role in SUDEP. A previous MR study found volume losses in the mesencephalon in focal epilepsy that were more severe and extended into the lower brainstem in two patients who later died of SUDEP. The aims of this study were to demonstrate an association (1) between brainstem volume loss and impaired autonomic control (reduced heart rate variability [HRV]); (2) between brainstem damage and time to SUDEP in patients who later died of SUDEP. Two populations were studied: (1) Autonomic system function population (ASF, 18 patients with focal epilepsy, 11 controls) with HRV measurements and standardized 3 T MR exams. (2) SUDEP population (26 SUDEP epilepsy patients) with clinical MRI 1-10 years before SUDEP. Deformation-based morphometry of the brainstem was used to generate profile similarity maps from the resulting Jacobian determinant maps that were further characterized by graph analysis to identify regions with excessive expansion indicating significant volume loss or atrophy. The total number of regions with excessive expansion in ASF was negatively correlated with HRV (r = -.37, p = .03), excessive volume loss in periaqueductal gray/medulla oblongata autonomic nuclei explained most of the HRV associated variation (r/r2 = -.82/.67, p < .001). The total number of regions with excessive expansion in SUDEP was negatively correlated with time to SUDEP (r = -.39, p = .03), excessive volume loss in the raphe/medulla oblongata at the obex level explained most of the variation of the time between MRI to SUDEP (r/r2 = -.60/.35,p = .001). Epilepsy is associated with brainstem atrophy that impairs autonomic control and can increase the risk for SUDEP if it expands into the mesencephalon.
Collapse
Affiliation(s)
- Susanne G Mueller
- Department of Radiology, University of California, San Francisco, California
| | - Maromi Nei
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | - Robert Knowlton
- Department of Neurology, University of California, San Francisco, California
| | - Kenneth D Laxer
- Pacific Epilepsy Program, California Pacific Medical Center, San Francisco, California
| | | | | | | |
Collapse
|
9
|
Dampney R. Emotion and the Cardiovascular System: Postulated Role of Inputs From the Medial Prefrontal Cortex to the Dorsolateral Periaqueductal Gray. Front Neurosci 2018; 12:343. [PMID: 29881334 PMCID: PMC5976784 DOI: 10.3389/fnins.2018.00343] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/02/2018] [Indexed: 12/15/2022] Open
Abstract
The midbrain periaqueductal gray (PAG) plays a major role in generating different types of behavioral responses to emotional stressors. This review focuses on the role of the dorsolateral (dl) portion of the PAG, which on the basis of anatomical and functional studies, appears to have a unique and distinctive role in generating behavioral, cardiovascular and respiratory responses to real and perceived emotional stressors. In particular, the dlPAG, but not other parts of the PAG, receives direct inputs from the primary auditory cortex and from the secondary visual cortex. In addition, there are strong direct inputs to the dlPAG, but not other parts of the PAG, from regions within the medial prefrontal cortex that in primates correspond to cortical areas 10 m, 25 and 32. I first summarise the evidence that the inputs to the dlPAG arising from visual, auditory and olfactory signals trigger defensive behavioral responses supported by appropriate cardiovascular and respiratory effects, when such signals indicate the presence of a real external threat, such as the presence of a predator. I then consider the functional roles of the direct inputs from the medial prefrontal cortex, and propose the hypothesis that these inputs are activated by perceived threats, that are generated as a consequence of complex cognitive processes. I further propose that the inputs from areas 10 m, 25 and 32 are activated under different circumstances. The input from cortical area 10 m is of special interest, because this cortical area exists only in primates and is much larger in the brain of humans than in all other primates.
Collapse
Affiliation(s)
- Roger Dampney
- School of Medical Sciences (Physiology) and Bosch Institute, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
10
|
Kommajosyula SP, Randall ME, Brozoski TJ, Odintsov BM, Faingold CL. Specific subcortical structures are activated during seizure-induced death in a model of sudden unexpected death in epilepsy (SUDEP): A manganese-enhanced magnetic resonance imaging study. Epilepsy Res 2017. [PMID: 28646692 DOI: 10.1016/j.eplepsyres.2017.05.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sudden unexpected death in epilepsy (SUDEP) is a major concern for patients with epilepsy. In most witnessed cases of SUDEP generalized seizures and respiratory failure preceded death, and pre-mortem neuroimaging studies in SUDEP patients observed changes in specific subcortical structures. Our study examined the role of subcortical structures in the DBA/1 mouse model of SUDEP using manganese-enhanced magnetic resonance imaging (MEMRI). These mice exhibit acoustically-evoked generalized seizures leading to seizure-induced respiratory arrest (S-IRA) that results in sudden death unless resuscitation is rapidly instituted. MEMRI data in the DBA/1 mouse brain immediately after acoustically-induced S-IRA were compared to data in C57 (control) mice that were exposed to the same acoustic stimulus that did not trigger seizures. The animals were anesthetized and decapitated immediately after seizure in DBA/1 mice and after an equivalent time in control mice. Comparative T1 weighted MEMRI images were evaluated using a 14T MRI scanner and quantified. We observed significant increases in activity in DBA/1 mice as compared to controls at previously-implicated auditory (superior olivary complex) and sensorimotor-limbic [periaqueductal gray (PAG) and amygdala] networks and also in structures in the respiratory network. The activity at certain raphe nuclei was also increased, suggesting activation of serotonergic mechanisms. These data are consistent with previous findings that enhancing the action of serotonin prevents S-IRA in this SUDEP model. Increased activity in the PAG and the respiratory and raphe nuclei suggest that compensatory mechanisms for apnea may have been activated by S-IRA, but they were not sufficient to prevent death. The present findings indicate that changes induced by S-IRA in specific subcortical structures in DBA/1 mice are consistent with human SUDEP findings. Understanding the changes in brain activity during seizure-induced death in animals may lead to improved approaches directed at prevention of human SUDEP.
Collapse
Affiliation(s)
- Srinivasa P Kommajosyula
- Department of Pharmacology, Southern Illinois University School of Medicine, P.O. Box 19629, Springfield, IL 62794-9629, United States
| | - Marcus E Randall
- Department of Pharmacology, Southern Illinois University School of Medicine, P.O. Box 19629, Springfield, IL 62794-9629, United States
| | - Thomas J Brozoski
- Department of Surgery/Otolaryngology, Southern Illinois University School of Medicine, P.O. Box 19629, Springfield, IL 62794-9629, United States
| | - Boris M Odintsov
- Beckman Institute, University of Illinois Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL, United States
| | - Carl L Faingold
- Department of Pharmacology, Southern Illinois University School of Medicine, P.O. Box 19629, Springfield, IL 62794-9629, United States.
| |
Collapse
|
11
|
Dampney RAL. Central neural control of the cardiovascular system: current perspectives. ADVANCES IN PHYSIOLOGY EDUCATION 2016; 40:283-296. [PMID: 27445275 DOI: 10.1152/advan.00027.2016] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/23/2016] [Indexed: 06/06/2023]
Abstract
This brief review, which is based on a lecture presented at the American Physiological Society Teaching Refresher Course on the Brain and Systems Control as part of the Experimental Biology meeting in 2015, aims to summarize current concepts of the principal mechanisms in the brain that regulate the autonomic outflow to the cardiovascular system. Such cardiovascular regulatory mechanisms do not operate in isolation but are closely coordinated with respiratory and other regulatory mechanisms to maintain homeostasis. The brain regulates the cardiovascular system by two general means: 1) feedforward regulation, often referred to as "central command," and 2) feedback or reflex regulation. In most situations (e.g., during exercise, defensive behavior, sleep, etc.), both of these general mechanisms contribute to overall cardiovascular homeostasis. The review first describes the mechanisms and central circuitry subserving the baroreceptor, chemoreceptor, and other reflexes that work together to regulate an appropriate level of blood pressure and blood oxygenation and then considers the brain mechanisms that defend the body against more complex environmental challenges, using dehydration and cold and heat stress as examples. The last section of the review considers the central mechanisms regulating cardiovascular function associated with different behaviors, with a specific focus on defensive behavior and exercise.
Collapse
Affiliation(s)
- Roger A L Dampney
- School of Medical Sciences (Physiology) and Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
12
|
Forcelli PA, DesJardin JT, West EA, Holmes AL, Elorette C, Wellman LL, Malkova L. Amygdala selectively modulates defensive responses evoked from the superior colliculus in non-human primates. Soc Cogn Affect Neurosci 2016; 11:2009-2019. [PMID: 27510499 DOI: 10.1093/scan/nsw111] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/22/2016] [Accepted: 08/03/2016] [Indexed: 11/14/2022] Open
Abstract
Brain circuitry underlying defensive behaviors includes forebrain modulatory sites, e.g. the amygdala and hypothalamus, and midbrain effector regions, such as the deep/intermediate layers of the superior colliculus (DLSC). When disinhibited, this network biases behavior towards reflexive defense reactions. While well characterized in rodent models, little is known about this system in the primate brain. Employing focal pharmacological manipulations, we have previously shown that activation of the DLSC triggers reflexive defensive responses, including cowering, escape behaviors and defensive vocalizations. Here, we show that activation of the DLSC also disrupts normal dyadic social interactions between familiar pairs of monkeys. When the basolateral complex of the amygdala (BLA) was inhibited concurrent with DLSC activation, cowering behavior was attenuated, whereas escape behaviors and defensive vocalizations were not. Moreover, inhibition of the BLA, previously shown to produce a profound increase in dyadic social interactions, was unable to normalize the decrease in social behavior resulting from DLSC activation. Together these data provide an understanding of forebrain-midbrain interactions in a species and circuit with translational relevance for the psychiatry of anxiety and post-traumatic stress disorders.
Collapse
Affiliation(s)
- Patrick A Forcelli
- Department of Pharmacology & Physiology and.,Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | - Elizabeth A West
- Department of Pharmacology & Physiology and.,Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Angela L Holmes
- Department of Pharmacology & Physiology and.,Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Catherine Elorette
- Department of Pharmacology & Physiology and.,Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Laurie L Wellman
- Department of Pharmacology & Physiology and.,Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Ludise Malkova
- Department of Pharmacology & Physiology and .,Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20007, USA
| |
Collapse
|
13
|
Pilowsky PM. Foreword. Respir Physiol Neurobiol 2016; 226:1-2. [PMID: 27305188 DOI: 10.1016/j.resp.2016.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Paul M Pilowsky
- University of Sydney, 7 Eliza St, Newtown, Sydney, NSW 2042, Australia.
| |
Collapse
|