1
|
Veternik M, Simera M, Martvon L, Cibulkova L, Kotmanova Z, Poliacek I. Effect of various modes of tracheal mechanical stimulation on the cough motor pattern. Respir Physiol Neurobiol 2025; 332:104367. [PMID: 39532210 DOI: 10.1016/j.resp.2024.104367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/15/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
The relationship between the level (rate) of stimulus and the characteristics of the cough response was studied on 15 spontaneously breathing anesthetized cats. Three modes of stimulation were used to elicit cough. 'High' vs. 'low' level of stimulation was accomplished: 1st mode by 1 vs. 4 penetrations of the soft catheter through the trachea (approximately 10 cm), 2nd mode by 2 penetrations with the soft catheter equipped with 4 fine cross nylon fibers vs. 4 penetrations by the stimulator with 8 fibers, and 3rd mode by a similar stimulator with 4 cross fibers probing 4 cm of the trachea either right below the larynx or deeper under the upper part of the sternum (data were pooled) vs. stimulating both areas at the same time. 'High' stimulation rate in each stimulation mode resulted in a higher number of coughs, increased cough efforts, and shortened several temporal cough features. Mechanical stimulation resulting in higher cough afferent drive induces more vigorous coughing with shorter temporal cough characteristics. Modulation of cough afferent input affects both spatial and temporal components of the cough motor pattern, representing a crucial point in cough management.
Collapse
Affiliation(s)
- Marcel Veternik
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Michal Simera
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia.
| | - Lukas Martvon
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia; Medical Education Support Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Lucia Cibulkova
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Zuzana Kotmanova
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Ivan Poliacek
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
2
|
Poliacek I, Veterník M, Martvon L, Simera M, Cibulkova L, Kotmanova Z, Berikova D, Bolser DC. Peripheral antitussives affect temporal features of tracheobronchial coughing in cats. J Appl Physiol (1985) 2025; 138:22-30. [PMID: 39561004 DOI: 10.1152/japplphysiol.00551.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/25/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024] Open
Abstract
The influence of peripheral antitussive drugs on spatiotemporal features of coughing has not been reported. We hypothesized that this class of compounds would alter the cough motor pattern, in part, by lengthening cough phases. Peripherally acting antitussives, 3-aminopropylphosphinic acid (3APPi, 5 mg/kg) and levodropropizine (Levo, 3 mg/kg) were injected intravenously in anesthetized spontaneously breathing cats (13 males, 2 females; 4.38 ± 0.19 kg). Spatio-temporal analysis of cough induced by mechanical stimulation of the trachea showed significant reductions in cough number and expiratory cough efforts after the administration of each drug. A significant reduction in inspiratory cough efforts occurred after Levo. Both drugs induced temporal changes in the cough motor pattern, including prolongations of inspiratory phase, inspiratory-expiratory transition, total cough diaphragm activity, and total cough cycle duration. Levo also significantly lengthened the expiratory phase of cough. A shortening of the overlap between diaphragm and abdominal activity and cough abdominal electromyogram (EMG) activity was observed after the administration of 3APPi. No significant changes in cardiorespiratory data were seen, with the exception of prolonged expiratory phase after 3APPi and lower blood pressure after Levo. Peripherally induced cough suppression is accompanied with changes in cough temporal characteristics that are not observed after the administration of centrally acting antitussives. The motor output produced by the cough central pattern generator differs significantly when coughing is perturbed by peripherally and centrally acting antitussives.NEW & NOTEWORTHY In a study on anesthetized cats, peripherally acting antitussives 3-aminopropylphosphinic acid (3APPi) and levodropropizine (Levo) significantly reduced cough number and expiratory efforts, with Levo also reducing inspiratory efforts. Both antitussives altered the cough motor pattern, extending various cough phases. 3APPi shortened diaphragm-abdominal activity overlap, whereas Levo decreased the respiratory rate. These changes contrast with those induced by centrally acting antitussives.
Collapse
Affiliation(s)
- Ivan Poliacek
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Marcel Veterník
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Lukas Martvon
- Medical Education Support Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Michal Simera
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Lucia Cibulkova
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Zuzana Kotmanova
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Denisa Berikova
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Donald C Bolser
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
3
|
Zhuang J, Gao X, Shi S, Xu F. Apneic response to fentanyl in adult rats: Role of laryngeal afferents. Physiol Rep 2024; 12:e15965. [PMID: 38444051 PMCID: PMC10915130 DOI: 10.14814/phy2.15965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/07/2024] Open
Abstract
Intravenous (systemic) bolus injection of fentanyl (FNT) reportedly induces an immediate vagal-mediated apnea; however, the precise origin of vagal afferents responsible for this apnea remains unknown. We tested whether intralaryngeal (local) application of FNT would also trigger an apnea and whether the apneic response to both local and systemic administration of FNT was laryngeal afferent-mediated. Cardiorespiratory responses to FNT were recorded in anesthetized male adult rats with and without bilateral sectioning of the superior laryngeal nerve (SLNx) or peri-SLN capsaicin treatment (SLNcap) to block local C-fiber signal conduction. Opioid mu-receptor (MOR)-immunoreactivity was detected in laryngeal C- and myelinated neurons. We found that local and systemic administration of FNT elicited an immediate apnea. SLNx, rather than SLNcap, abolished the apneic response to local FNT application though MORs were abundantly expressed in both laryngeal C- and myelinated neurons. Importantly, SLNx failed to affect the apneic response to systemic FNT administration. These results lead to the conclusion that laryngeal afferents' MORs are responsible for the apneic response to local, but not systemic, administration of FNT.
Collapse
Affiliation(s)
- Jianguo Zhuang
- Department of PhysiologyLovelace Biomedical Research InstituteAlbuquerqueNew MexicoUSA
| | - Xiuping Gao
- Department of PhysiologyLovelace Biomedical Research InstituteAlbuquerqueNew MexicoUSA
| | - Shan Shi
- Department of PhysiologyLovelace Biomedical Research InstituteAlbuquerqueNew MexicoUSA
| | - Fadi Xu
- Department of PhysiologyLovelace Biomedical Research InstituteAlbuquerqueNew MexicoUSA
| |
Collapse
|
4
|
Simera M, Veternik M, Martvon L, Kotmanova Z, Cibulkova L, Poliacek I. Differential inhibition of cough by GABA A and GABA B receptor antagonists in the nucleus of the solitary tract in cats. Respir Physiol Neurobiol 2023; 315:104115. [PMID: 37460080 DOI: 10.1016/j.resp.2023.104115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/28/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
Bicuculline and saclofen were microinjected into the rostral (rNTS) and caudal nucleus of the solitary tract (cNTS) in 17 anesthetized cats. Electromyograms (EMGs) of the diaphragm (DIA) and abdominal muscles (ABD), esophageal pressures (EP), and blood pressure were recorded and analyzed. Bilateral microinjections of 1 mM bicuculline in the rNTS significantly reduced the number of coughs (CN), amplitudes of DIA and ABD EMG, inspiratory and expiratory EP, and prolonged the duration of the cough expiratory phase (CTE) as well as the total cough cycle duration (CTtot). Bilateral microinjections of 2 mM saclofen reduced only cough expiratory efforts. Bilateral microinjection of bicuculline in the cNTS significantly reduced CN and amplitudes of ABD EMG and elongated CTE and CTtot. Bilateral microinjections of saclofen in cNTS had no significant effect on analyzed cough parameters. Our results confirm a different GABAergic inhibitory system in the rNTS and cNTS acting on mechanically induced cough in cats.
Collapse
Affiliation(s)
- Michal Simera
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, 03601 Martin, Slovakia
| | - Marcel Veternik
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, 03601 Martin, Slovakia.
| | - Lukas Martvon
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, 03601 Martin, Slovakia
| | - Zuzana Kotmanova
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, 03601 Martin, Slovakia
| | - Lucia Cibulkova
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, 03601 Martin, Slovakia
| | - Ivan Poliacek
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, 03601 Martin, Slovakia
| |
Collapse
|
5
|
Martvon L, Veternik M, Simera M, Kotmanova Z, Babalova L, Morris KF, Pitts T, Bolser DC, Poliacek I. Modeling and simulation of vagal afferent input of the cough reflex. Respir Physiol Neurobiol 2022; 301:103888. [PMID: 35307565 DOI: 10.1016/j.resp.2022.103888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 11/27/2022]
Abstract
We employed computational modeling to investigate previously conducted experiments of the effect of vagal afferent modulation on the cough reflex in an anesthetized cat animal model. Specifically, we simulated unilateral cooling of the vagus nerve and analyzed characteristics of coughs produced by a computational model of brainstem cough/respiratory neuronal network. Unilateral vagal cooling was simulated by a reduction of cough afferent input (corresponding to unilateral vagal cooling) to the cough network. All these attempts resulted in only mild decreases in investigated cough characteristics such as cough number, amplitudes of inspiratory and expiratory cough efforts in comparison with experimental data. Multifactorial alterations of model characteristics during cough simulations were required to approximate cough motor patterns that were observed during unilateral vagal cooling in vivo. The results support the plausibility of a more complex NTS processing system for cough afferent information than has been proposed.
Collapse
Affiliation(s)
- Lukas Martvon
- Medical Education Support Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia; Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Marcel Veternik
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia.
| | - Michal Simera
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Zuzana Kotmanova
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Lucia Babalova
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Kendall F Morris
- Department of Molecular Pharmacology and Physiology, College of Medicine, University of South Florida, Tampa, FL, USA
| | - Teresa Pitts
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
| | - Donald C Bolser
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Ivan Poliacek
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
6
|
Influence of intrathoracic vagotomy on the cough reflex in the anesthetized cat. Respir Physiol Neurobiol 2021; 296:103805. [PMID: 34678475 PMCID: PMC8742786 DOI: 10.1016/j.resp.2021.103805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 11/22/2022]
Abstract
Recurrent laryngeal afferent fibers are primarily responsible for cough in response to mechanical or chemical stimulation of the upper trachea and larynx in the guinea pig. Lower airway slowly adapting receptors have been proposed to have a permissive effect on the cough reflex. We hypothesized that vagotomy below the recurrent laryngeal nerve branch would depress mechanically or chemically induced cough. In anesthetized, bilaterally thoracotomized, artificially ventilated cats, thoracic vagotomy nearly eliminated cough induced by mechanical stimulation of the intrathoracic airway, significantly depressed mechanically stimulated laryngeal cough, and eliminated capsaicin-induced cough. These results support an important role of lower airway sensory feedback in the production of tracheobronchial and laryngeal cough in the cat. Further, at least some of this feedback is due to excitation from pulmonary volume-sensitive sensory receptors.
Collapse
|
7
|
Simera M, Veternik M, Martvon L, Kotmanova Z, Mostafavi S, Bosko O, Kralikova O, Poliacek I. Distinct modulation of tracheal and laryngopharyngeal cough via superior laryngeal nerve in cat. Respir Physiol Neurobiol 2021; 293:103716. [PMID: 34119702 DOI: 10.1016/j.resp.2021.103716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 11/26/2022]
Abstract
Unilateral and bilateral cooling and bilateral transsection of the superior laryngeal nerve (SLN) were employed to modulate mechanically induced tracheobronchial (TB) and laryngopharyngeal (LPh) cough in 12 anesthetized cats. There was little effect of SLN block or cut on TB. Bilateral SLN cooling reduced the number of LPh (<50 %, p < 0.05), amplitudes of diaphragm EMG activity (<55 %, p < 0.05), and cough expiratory efforts (<40 %, p < 0.01) during LPh. Effects after unilateral SLN cooling were less pronounced. Temporal analysis of LPh showed only shortening of diaphragm and abdominal muscles burst overlap in the inspiratory-expiratory transition after unilateral SLN cooling. Bilateral cooling reduced both expiratory phase and total cough cycle duration. There was no significant difference in the average effects of cooling left or right SLN on LPh or TB as well as no differences in contralateral and ipsilateral diaphragm and abdominal EMG amplitudes. Our results show that reduced afferent drive in the SLN markedly attenuates LPh with virtually no effect on TB.
Collapse
Affiliation(s)
- Michal Simera
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Malá Hora 4, 036 01 Martin, Slovak Republic.
| | - Marcel Veternik
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Malá Hora 4, 036 01 Martin, Slovak Republic
| | - Lukas Martvon
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Malá Hora 4, 036 01 Martin, Slovak Republic
| | - Zuzana Kotmanova
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Malá Hora 4, 036 01 Martin, Slovak Republic
| | - Soheil Mostafavi
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Malá Hora 4, 036 01 Martin, Slovak Republic
| | - Ondrej Bosko
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Malá Hora 4, 036 01 Martin, Slovak Republic
| | - Olga Kralikova
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Malá Hora 4, 036 01 Martin, Slovak Republic
| | - Ivan Poliacek
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Malá Hora 4, 036 01 Martin, Slovak Republic
| |
Collapse
|
8
|
Zanasi A, Morselli-Labate AM, Mazzolini M, Mastroroberto M, Dal Negro RW, Poliacek I, Morice AH, Maio S, Viegi G, Koufman J, Torresan F, Ioannou A, Mandolesi D, Liverani E, Montale A, Bazzoli F, Baldi F, Zompatori M, Fontana GA, Kantar A, Dicpinigaitis P, Page C, Birring SS, Tursi F. XII AIST 2018 Conference: “The thousand faces of cough: clinical and therapeutic updates”. Multidiscip Respir Med 2018. [PMCID: PMC6027558 DOI: 10.1186/s40248-018-0130-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
This paper summarizes the presentations submitted for publication of the 12th AIST National Congress (Associazione Italiana Studio Tosse/Italian Association for Cough Study) entitled “The thousand facets of cough. A clinical and therapeutic update”, which occurred last February 2nd-3rd, 2018 in Bologna (Italy). It summarizes the contributions from leading experts of the sector, who, as in the previous editions, also this year have analyzed a problem too often underestimated which still has many dark sides as regards both the diagnosis and the therapy of cough. The Scientific Committee has chosen topics that had less space in previous editions and these are topical subjects representing a concrete opportunity for learning and comparison of opinions, as well as indispensable elements for the correct management of the symptoms. Hereby we report the abstracts of the works submitted for publication in this Meeting report. The main topics have covered Cough relationship with nerve vagus, ATP, air pollution, GERD, imaging, COPD, pediatric and therapy. Of particular interest it is the preliminary data on cough hydration ratio that shows a highly significant correlation between dehydration and cough.
Collapse
|
9
|
Kotmanova Z, Simera M, Veternik M, Martvon L, Misek J, Jakus J, Shen TY, Musselwhite MN, Pitts T, Bolser DC, Poliacek I. GABA-ergic neurotransmission in the nucleus of the solitary tract modulates cough in the cat. Respir Physiol Neurobiol 2018; 257:100-106. [PMID: 29474953 DOI: 10.1016/j.resp.2018.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/26/2018] [Accepted: 02/16/2018] [Indexed: 12/27/2022]
Abstract
GABA, muscimol, and baclofen were microinjected into the rostral (rNTS) and caudal solitary tract nucleus (cNTS) in 24 anesthetized cats. Electromyograms (EMGs) of diaphragm (DIA) and abdominal muscles (ABD), blood pressure and esophageal pressure (EP) were recorded and analysed. Bilateral microinjections of 1 mM GABA (total 66 ± 4 nl), 1 mM baclofen (64 ± 4 nl) and unilateral microinjections of 0.5 mM muscimol (33 ± 1 nl) in the rNTS significantly reduced cough number (CN), amplitudes of ABD EMGs, expiratory EP, and prolonged the duration of the cough inspiratory phase. GABA microinjections decreased the amplitudes of cough-related DIA EMGs and inspiratory EP; muscimol microinjections decreased the cough DIA EMG on the contralateral side. Only microinjections of GABA into the cNTS suppressed CN. In some cases, microinjections prolonged the inspiratory phase, lowered respiratory rate, changed the depth of breathing, and increased blood pressure and heart rate. Our results confirm that GABA-ergic inhibitory mechanisms in the rNTS can regulate coughing in the anesthetized cat.
Collapse
Affiliation(s)
- Z Kotmanova
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovak Republic
| | - M Simera
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovak Republic.
| | - M Veternik
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovak Republic
| | - L Martvon
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovak Republic
| | - J Misek
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovak Republic
| | - J Jakus
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovak Republic
| | - T Y Shen
- Dept. of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - M N Musselwhite
- Dept. of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - T Pitts
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, University of Louisville, Louisville, KY, USA
| | - D C Bolser
- Dept. of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - I Poliacek
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovak Republic
| |
Collapse
|
10
|
Brainstem mechanisms underlying the cough reflex and its regulation. Respir Physiol Neurobiol 2017; 243:60-76. [DOI: 10.1016/j.resp.2017.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 12/12/2022]
|
11
|
Poliacek I, Simera M, Veternik M, Kotmanova Z, Bolser DC, Machac P, Jakus J. Role of the dorsomedial medulla in suppression of cough by codeine in cats. Respir Physiol Neurobiol 2017; 246:59-66. [PMID: 28778649 DOI: 10.1016/j.resp.2017.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/23/2017] [Accepted: 07/28/2017] [Indexed: 12/24/2022]
Abstract
The modulation of cough by microinjections of codeine in 3 medullary regions, the solitary tract nucleus rostral to the obex (rNTS), caudal to the obex (cNTS) and the lateral tegmental field (FTL) was studied. Experiments were performed on 27 anesthetized spontaneously breathing cats. Electromyograms (EMG) were recorded from the sternal diaphragm and expiratory muscles (transversus abdominis and/or obliquus externus; ABD). Repetitive coughing was elicited by mechanical stimulation of the intrathoracic airways. Bilateral microinjections of codeine (3.3 or 33mM, 54±16nl per injection) in the cNTS had no effect on cough, while those in the rNTS and in the FTL reduced coughing. Bilateral microinjections into the rNTS (3.3mM codeine, 34±1 nl per injection) reduced the number of cough responses by 24% (P<0.05), amplitudes of diaphragm EMG by 19% (P<0.01), of ABD EMG by 49% (P<0.001) and of expiratory esophageal pressure by 56% (P<0.001). Bilateral microinjections into the FTL (33mM codeine, 33±3 nl per injection) induced reductions in cough expiratory as well as inspiratory EMG amplitudes (ABD by 60% and diaphragm by 34%; P<0.01) and esophageal pressure amplitudes (expiratory by 55% and inspiratory by 26%; P<0.001 and 0.01, respectively). Microinjections of vehicle did not significantly alter coughing. Breathing was not affected by microinjections of codeine. These results suggest that: 1) codeine acts within the rNTS and the FTL to reduce cough in the cat, 2) the neuronal circuits in these target areas have unequal sensitivity to codeine and/or they have differential effects on spatiotemporal control of cough, 3) the cNTS has a limited role in the cough suppression induced by codeine in cats.
Collapse
Affiliation(s)
- Ivan Poliacek
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, 036 01, Martin, Slovakia
| | - Michal Simera
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, 036 01, Martin, Slovakia.
| | - Marcel Veternik
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, 036 01, Martin, Slovakia
| | - Zuzana Kotmanova
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, 036 01, Martin, Slovakia
| | - Donald C Bolser
- Dept. of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Peter Machac
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, 036 01, Martin, Slovakia
| | - Jan Jakus
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, 036 01, Martin, Slovakia
| |
Collapse
|