1
|
Michalik K, Danek N. Submaximal Verification Test to Exhaustion Confirms Maximal Oxygen Uptake: Roles of Anaerobic Performance and Respiratory Muscle Strength. J Clin Med 2024; 13:5758. [PMID: 39407817 PMCID: PMC11477199 DOI: 10.3390/jcm13195758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Background: The incremental exercise test is commonly used to measure maximal oxygen uptake (VO2max), but an additional verification test is often recommended as the "gold standard" to confirm the true VO2max. Therefore, the aim of this study was to compare the peak oxygen uptake (VO2peak) obtained in the ramp incremental exercise test and that in the verification test performed on different days at submaximal intensity. Additionally, we examined the roles of anaerobic performance and respiratory muscle strength. Methods: Sixteen physically active men participated in the study, with an average age of 22.7 ± 2.4 (years), height of 178.0 ± 7.4 (cm), and weight of 77.4 ± 7.3 (kg). They performed the three following tests on a cycle ergometer: the Wingate Anaerobic Test (WAnT), the ramp incremental exercise test (IETRAMP), and the verification test performed at an intensity of 85% (VER85) maximal power, which was obtained during the IETRAMP. Results: No significant difference was observed in the peak oxygen uptake between the IETRAMP and VER85 (p = 0.51). The coefficient of variation was 3.1% and the Bland-Altman analysis showed a high agreement. We found significant correlations between the total work performed in the IETRAMP, the anaerobic peak power (r = 0.52, p ≤ 0.05), and the total work obtained in the WAnT (r = 0.67, p ≤ 0.01). There were no significant differences in post-exercise changes in the strength of the inspiratory and expiratory muscles after the IETRAMP and the VER85. Conclusions: The submaximal intensity verification test performed on different days provided reliable values that confirmed the real VO2max, which was not limited by respiratory muscle fatigue. This verification test may be suggested for participants with a lower anaerobic mechanical performance.
Collapse
Affiliation(s)
- Kamil Michalik
- Department of Human Motor Skills, Faculty of Physical Education and Sport, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland
| | - Natalia Danek
- Department of Physiology and Biochemistry, Faculty of Physical Education and Sport, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland;
| |
Collapse
|
2
|
Qin L, Liu S, Hu S, Feng L, Wang H, Gong X, Xuan W, Lu T. The Effect of Inspiratory Muscle Training on Health-Related Fitness in College Students. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1088. [PMID: 39200697 PMCID: PMC11354152 DOI: 10.3390/ijerph21081088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024]
Abstract
In an era characterized by rapid economic growth and evolving lifestyles, college students encounter numerous challenges, encompassing academic pressures and professional competition. The respiratory muscle endurance capability is important for college students during prolonged aerobic exercise. Therefore, it is of great significance to explore an effective intervention to enhance the endurance level of college students. This study explores the transformative potential of inspiratory muscle training (IMT) to improve the physical functions of college students. This research comprised a group of 20 participants who underwent IMT integrated into their daily physical education classes or regular training sessions over an 8-week period, with 18 participants forming the control group. The IMT group adhered to the manufacturer's instructions for utilizing the PowerBreathe device. The findings indicated a significant positive effect on inspiratory muscle strength (p < 0.001), showing improvements in pulmonary function, exercise tolerance, cardiac function, and overall athletic performance. These results revealed the substantial benefits of IMT in enhancing physical fitness and promoting health maintenance among college students.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wei Xuan
- Department of Physical Education, Sports and Health Research Center, Tongji University, Shanghai 200092, China; (L.Q.); (S.L.); (S.H.); (L.F.); (H.W.); (X.G.)
| | - Tianfeng Lu
- Department of Physical Education, Sports and Health Research Center, Tongji University, Shanghai 200092, China; (L.Q.); (S.L.); (S.H.); (L.F.); (H.W.); (X.G.)
| |
Collapse
|
3
|
Haddad T, Mons V, Meste O, Dempsey JA, Abbiss CR, Brisswalter J, Blain GM. Breathing a low-density gas reduces respiratory muscle force development and marginally improves exercise performance in master athletes. Eur J Appl Physiol 2024; 124:651-665. [PMID: 37973652 DOI: 10.1007/s00421-023-05346-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023]
Abstract
INTRODUCTION We tested the hypothesis that breathing heliox, to attenuate the mechanical constraints accompanying the decline in pulmonary function with aging, improves exercise performance. METHODS Fourteen endurance-trained older men (67.9 ± 5.9 year, [Formula: see text]O2max: 50.8 ± 5.8 ml/kg/min; 151% predicted) completed two cycling 5-km time trials while breathing room air (i.e., 21% O2-79% N2) or heliox (i.e., 21% O2-79% He). Maximal flow-volume curves (MFVC) were determined pre-exercise to characterize expiratory flow limitation (EFL, % tidal volume intersecting the MFVC). Respiratory muscle force development was indirectly determined as the product of the time integral of inspiratory and expiratory mouth pressure (∫Pmouth) and breathing frequency. Maximal inspiratory and expiratory pressure maneuvers were performed pre-exercise and post-exercise to estimate respiratory muscle fatigue. RESULTS Exercise performance time improved (527.6 ± 38 vs. 531.3 ± 36.9 s; P = 0.017), and respiratory muscle force development decreased during inspiration (- 22.8 ± 11.6%, P < 0.001) and expiration (- 10.8 ± 11.4%, P = 0.003) with heliox compared with room air. EFL tended to be lower with heliox (22 ± 23 vs. 30 ± 23% tidal volume; P = 0.054). Minute ventilation normalized to CO2 production ([Formula: see text]E/[Formula: see text]CO2) increased with heliox (28.6 ± 2.7 vs. 25.1 ± 1.8; P < 0.001). A reduction in MIP and MEP was observed post-exercise vs. pre-exercise but was not different between conditions. CONCLUSIONS Breathing heliox has a limited effect on performance during a 5-km time trial in master athletes despite a reduction in respiratory muscle force development.
Collapse
Affiliation(s)
- Toni Haddad
- LAMHESS, Sciences et Techniques des Activités Physiques et Sportives, Université Côte d'Azur, 261 Bd du Mercantour, 06200, Nice, France.
- Centre VADER, Université Côte d'Azur, Nice, France.
- Centre for Exercise and Sport Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.
| | - Valentin Mons
- LAMHESS, Sciences et Techniques des Activités Physiques et Sportives, Université Côte d'Azur, 261 Bd du Mercantour, 06200, Nice, France
- Centre VADER, Université Côte d'Azur, Nice, France
- LJAD, Université Côte d'Azur, CNRS, Nice, France
| | - Olivier Meste
- Lab I3S, Université Côte d'Azur, CNRS, Sophia Antipolis, Nice, France
| | - Jerome A Dempsey
- John Rankin Laboratory of Pulmonary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Chris R Abbiss
- Centre for Exercise and Sport Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Jeanick Brisswalter
- LAMHESS, Sciences et Techniques des Activités Physiques et Sportives, Université Côte d'Azur, 261 Bd du Mercantour, 06200, Nice, France
- Centre VADER, Université Côte d'Azur, Nice, France
| | - Gregory M Blain
- LAMHESS, Sciences et Techniques des Activités Physiques et Sportives, Université Côte d'Azur, 261 Bd du Mercantour, 06200, Nice, France
- Centre VADER, Université Côte d'Azur, Nice, France
| |
Collapse
|
4
|
Shei RJ, Paris HL, Sogard AS, Mickleborough TD. Time to Move Beyond a "One-Size Fits All" Approach to Inspiratory Muscle Training. Front Physiol 2022; 12:766346. [PMID: 35082689 PMCID: PMC8784843 DOI: 10.3389/fphys.2021.766346] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Inspiratory muscle training (IMT) has been studied as a rehabilitation tool and ergogenic aid in clinical, athletic, and healthy populations. This technique aims to improve respiratory muscle strength and endurance, which has been seen to enhance respiratory pressure generation, respiratory muscle weakness, exercise capacity, and quality of life. However, the effects of IMT have been discrepant between populations, with some studies showing improvements with IMT and others not. This may be due to the use of standardized IMT protocols which are uniformly applied to all study participants without considering individual characteristics and training needs. As such, we suggest that research on IMT veer away from a standardized, one-size-fits-all intervention, and instead utilize specific IMT training protocols. In particular, a more personalized approach to an individual's training prescription based upon goals, needs, and desired outcomes of the patient or athlete. In order for the coach or practitioner to adjust and personalize a given IMT prescription for an individual, factors, such as frequency, duration, and modality will be influenced, thus inevitably affecting overall training load and adaptations for a projected outcome. Therefore, by integrating specific methods based on optimization, periodization, and personalization, further studies may overcome previous discrepancies within IMT research.
Collapse
Affiliation(s)
- Ren-Jay Shei
- Global Medical Department, Mallinckrodt Pharmaceuticals Company, Hampton, NJ, United States
| | - Hunter L Paris
- Department of Sports Medicine, Pepperdine University, Malibu, CA, United States
| | - Abigail S Sogard
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, IN, United States
| | - Timothy D Mickleborough
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, IN, United States
| |
Collapse
|
5
|
Razak S, Justine M, Mohan V. Relationship between anthropometric characteristics and aerobic fitness among Malaysian men and women. J Exerc Rehabil 2021; 17:52-58. [PMID: 33728289 PMCID: PMC7939982 DOI: 10.12965/jer.2142026.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 01/24/2021] [Indexed: 11/22/2022] Open
Abstract
This cross-sectional study evaluated the relationships between anthropometric and aerobic fitness (rate of perceived exertion [RPE] and predicted maximal oxygen uptake [VO2max]) among 228 participants (age: 23.78±4.42 years). RPE and predicted VO2max were determined during the cycle ergometer exercise test. Data were also obtained for height, weight, body mass index (BMI), hip and waist (WC) circumferences. Data analysis revealed VO2max is correlated with WC (r=−0.571), weight (r=−0.521), waist-to-height ratio (WHtR) (r=−0.516), waist-to-hip ratio (WHR) (r=−0.487), and BMI (r=−0.47) in men, while, in women with WC (r=−0.581), weight (r=−0.571), WHtR (r=−0.545), BMI (r=−0.545), WHR (r=−0.473), and height (r=−0.287) (all P<0.05). Regression analysis showed WC was a significant predictor for VO2max in men and women (r2=32.6% vs. 33.7%). The receiver operating characteristic curve of WC showed 0.786 and 0.831 for men and women, respectively. WC or abdominal obesity is the strongest predictor for VO2max, which is an indicator of aerobic fitness in Malaysian adults.
Collapse
Affiliation(s)
- Syazni Razak
- Centre for Physiotherapy Studies, Faculty of Health Sciences, Universiti Teknologi MARA Selangor, Puncak Alam Campus, Selangor, Malaysia
| | - Maria Justine
- Centre for Physiotherapy Studies, Faculty of Health Sciences, Universiti Teknologi MARA Selangor, Puncak Alam Campus, Selangor, Malaysia
| | - Vikram Mohan
- Department of Rehabilitation and Sports Sciences, Faculty of Health and Social Science, Bournemouth University, Bournemouth, UK
| |
Collapse
|
6
|
Wedel J, Steinmann P, Štrakl M, Hriberšek M, Ravnik J. Risk Assessment of Infection by Airborne Droplets and Aerosols at Different Levels of Cardiovascular Activity. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING : STATE OF THE ART REVIEWS 2021; 28:4297-4316. [PMID: 34226815 PMCID: PMC8246442 DOI: 10.1007/s11831-021-09613-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/05/2021] [Indexed: 05/09/2023]
Abstract
Since end of 2019 the COVID-19 pandemic, caused by the SARS-CoV-2 virus, is threatening humanity. Despite the fact that various scientists across the globe try to shed a light on this new respiratory disease, it is not yet fully understood. Unlike many studies on the geographical spread of the pandemic, including the study of external transmission routes, this work focuses on droplet and aerosol transport and their deposition inside the human airways. For this purpose, a digital replica of the human airways is used and particle transport under various levels of cardiovascular activity in enclosed spaces is studied by means of computational fluid dynamics. The influence of the room size, where the activity takes place, and the aerosol concentration is studied. The contribution aims to assess the risk of various levels of exercising while inhaling infectious pathogens to gain further insights in the deposition behavior of aerosols in the human airways. The size distribution of the expiratory droplets or aerosols plays a crucial role for the disease onset and progression. As the size of the expiratory droplets and aerosols differs for various exhaling scenarios, reported experimental particle size distributions are taken into account when setting up the environmental conditions. To model the aerosol deposition we employ OpenFOAM by using an Euler-Lagrangian frame including Reynolds-Averaged Navier-Stokes resolved turbulent flow. Within this study, the effects of different exercise levels and thus breathing rates as well as particle size distributions and room sizes are investigated to enable new insights into the local particle deposition in the human airway and virus loads. A general observation can be made that exercising at higher levels of activity is increasing the risk to develop a severe cause of the COVID-19 disease due to the increased aerosolized volume that reaches into the lower airways, thus the knowledge of the inhaled particle dynamics in the human airways at various exercising levels provides valuable information for infection control strategies.
Collapse
Affiliation(s)
- Jana Wedel
- Institute of Applied Mechanics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Paul Steinmann
- Institute of Applied Mechanics, University of Erlangen-Nuremberg, Erlangen, Germany
- Glasgow Computational Engineering Center, University of Glasgow, Glasgow, UK
| | - Mitja Štrakl
- Faculty of Mechanical Engineering, University of Maribor, Maribor, Slovenia
| | - Matjaž Hriberšek
- Faculty of Mechanical Engineering, University of Maribor, Maribor, Slovenia
| | - Jure Ravnik
- Faculty of Mechanical Engineering, University of Maribor, Maribor, Slovenia
| |
Collapse
|
7
|
Acute Effects of Using Added Respiratory Dead Space Volume in a Cycling Sprint Interval Exercise Protocol: A Cross-Over Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17249485. [PMID: 33352863 PMCID: PMC7766125 DOI: 10.3390/ijerph17249485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/23/2022]
Abstract
Background: The aim of the study was to compare acute physiological, biochemical, and perceptual responses during sprint interval exercise (SIE) with breathing through a device increasing added respiratory dead space volume (ARDSV) and without the device. Methods: The study involved 11 healthy, physically active men (mean maximal oxygen uptake: 52.6 ± 8.2 mL∙kg1∙min-1). During four visits to a laboratory with a minimum interval of 72 h, they participated in (1) an incremental test on a cycle ergometer; (2) a familiarization session; (3) and (4) cross-over SIE sessions. SIE consisted of 6 × 10-s all-out bouts with 4-min active recovery. During one of the sessions the participants breathed through a 1200-mL ARDSv (SIEARDS). Results: The work performed was significantly higher by 4.4% during SIEARDS, with no differences in the fatigue index. The mean respiratory ventilation was significantly higher by 13.2%, and the mean oxygen uptake was higher by 31.3% during SIEARDS. Respiratory muscle strength did not change after the two SIE sessions. In SIEARDS, the mean pH turned out significantly lower (7.26 vs. 7.29), and the mean HCO3- concentration was higher by 7.6%. Average La- and rating of perceived exertion (RPE) did not differ between the sessions. Conclusions: Using ARDSV during SIE provokes respiratory acidosis, causes stronger acute physiological responses, and does not increase RPE.
Collapse
|
8
|
Rasch-Halvorsen Ø, Hassel E, Langhammer A, Brumpton BM, Steinshamn S. The association between dynamic lung volume and peak oxygen uptake in a healthy general population: the HUNT study. BMC Pulm Med 2019; 19:2. [PMID: 30612551 PMCID: PMC6322288 DOI: 10.1186/s12890-018-0762-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 12/10/2018] [Indexed: 11/10/2022] Open
Abstract
Background Although dynamic lung volume is not considered a limiting factor of peak oxygen uptake (VO2peak) in healthy subjects, an association between forced expiratory lung volume in one second (FEV1) and VO2peak has been reported in a healthy population aged 69 – 77 years. We hypothesized that a corresponding association could be found in a healthy general population including young and middle-aged subjects. Methods In a population-based study in Norway, we investigated the association between FEV1 above the lower limit of normal (LLN) and VO2peak using linear regression and assessed the ventilatory reserve (VR) in healthy subjects aged 20 – 79 years (n = 741). Results On average, one standard deviation (SD) increase in FEV1 was associated with 1.2 ml/kg/min (95% CI 0.7 – 1.6) higher VO2peak. The association did not differ statistically by sex (p-value for interaction = 0.16) and was similar (0.9 ml/kg/min, 95% CI 0.2 – 1.5) in a sensitivity analysis including only never-smokers (n = 376). In subjects below and above 45 years of age, corresponding estimates were 1.2 ml/kg/min (95% CI 0.5 – 1.8) and 1.2 ml/kg/min (95% CI 0.5 – 1.9), respectively. Preserved VR (≥ 20%) was observed in 66.6% of men and 86.4% of women. Conclusions Normal dynamic lung volume, defined as FEV1 above LLN, was positively associated with VO2peak in both men and women, in never-smokers and in subjects below and above 45 years of age. The majority of subjects had preserved VR, and the results suggest that FEV1 within normal limits may influence VO2peak in healthy subjects even when no ventilatory limitation to exercise is evident.
Collapse
Affiliation(s)
- Øystein Rasch-Halvorsen
- K.G. Jebsen Center for Exercise in Medicine, Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU, Norwegian University of Science and Technology, Trondheim, Norway. .,Clinic of Thoracic and Occupational Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway. .,NTNU, Faculty of Medicine and Health Sciences, Department of Circulation and Medical Imaging, 8905, 7491, Trondheim, Norway.
| | - Erlend Hassel
- K.G. Jebsen Center for Exercise in Medicine, Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Thoracic and Occupational Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Arnulf Langhammer
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ben M Brumpton
- Clinic of Thoracic and Occupational Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.,K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sigurd Steinshamn
- K.G. Jebsen Center for Exercise in Medicine, Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Thoracic and Occupational Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
9
|
Shei RJ. Recent Advancements in Our Understanding of the Ergogenic Effect of Respiratory Muscle Training in Healthy Humans: A Systematic Review. J Strength Cond Res 2018; 32:2665-2676. [PMID: 29985221 PMCID: PMC6105530 DOI: 10.1519/jsc.0000000000002730] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Shei, R-J. Recent advancements in our understanding of the ergogenic effect of respiratory muscle training in healthy humans: a systematic review. J Strength Cond Res 32(9): 2674-2685, 2018-Respiratory muscle training (RMT) has been shown to be an effective ergogenic aid for sport performance. Respiratory muscle training has been documented to improve performance in a wide range of exercise modalities including running, cycling, swimming, and rowing. The physiological effects of RMT that may explain the improvements in performance have been proposed to include diaphragm hypertrophy, muscle fiber-type switching, improved neural control of the respiratory muscles, increased respiratory muscle economy, attenuation of the respiratory muscle metaboreflex, and decreases in perceived breathlessness and exertion. This review summarizes recent studies on the ergogenicity and mechanisms of RMT since 2013 when the topic was last systematically reviewed. Recent evidence confirms the ergogenic effects of RMT and explores different loading protocols, such as concurrent exercise and RMT (i.e., "functional" RMT). These studies suggest that adapting new training protocols may have an additive improvement effect, but evidence of the efficacy of such an approach is conflicting thus far. Other recent investigations have furthered our understanding of the mechanisms underpinning RMT-associated improvements in performance. Importantly, changes in ventilatory efficiency, oxygen delivery, cytokine release, motor recruitment patterns, and respiratory muscle fatigue resistance are highlighted as potential mechanistic factors linking RMT with performance improvements. It is suggested that future investigations focus on development of sport-specific RMT loading protocols, and that further work be undertaken to better understand the mechanistic basis of RMT-induced performance improvements.
Collapse
Affiliation(s)
- Ren-Jay Shei
- Division of Pulmonary, Allergy, and Critical Care Medicine, and Gregory Fleming James Cystic Fibrosis Research Center, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|