1
|
Iba T, Kondo Y, Maier CL, Helms J, Ferrer R, Levy JH. Impact of hyper- and hypothermia on cellular and whole-body physiology. J Intensive Care 2025; 13:4. [PMID: 39806520 PMCID: PMC11727703 DOI: 10.1186/s40560-024-00774-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025] Open
Abstract
The incidence of heat-related illnesses and heatstroke continues to rise amidst global warming. Hyperthermia triggers inflammation, coagulation, and progressive multiorgan dysfunction, and, at levels above 40 °C, can even lead to cell death. Blood cells, particularly granulocytes and platelets, are highly sensitive to heat, which promotes proinflammatory and procoagulant changes. Key factors in heatstroke pathophysiology involve mitochondrial thermal damage and excessive oxidative stress, which drive apoptosis and necrosis. While the kinetics of cellular damage from heat have been extensively studied, the mechanisms driving heat-induced organ damage and death are not yet fully understood. Converse to hyperthermia, hypothermia is generally protective, as seen in therapeutic hypothermia. However, accidental hypothermia presents another environmental threat due to arrhythmias, cardiac arrest, and coagulopathy. From a cellular physiology perspective, hypothermia generally supports mitochondrial homeostasis and enhances cell preservation, aiding whole-body recovery following resuscitation. This review summarizes recent findings on temperature-related cellular damage and preservation and suggests future research directions for understanding the tempo-physiologic axis.
Collapse
Affiliation(s)
- Toshiaki Iba
- Department of Emergency and Disaster Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo Bunkyo-Ku, Tokyo, 113-8421, Japan.
| | - Yutaka Kondo
- Department of Emergency and Disaster Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Cheryl L Maier
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Julie Helms
- Strasbourg University (UNISTRA), Strasbourg University Hospital, Medical Intensive Care Unit-NHC; INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Strasbourg, France
| | - Ricard Ferrer
- Intensive Care Department, Hospital Universitari Vall d'Hebron Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jerrold H Levy
- Department of Anesthesiology, Critical Care, and Surgery, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
2
|
Archontakis-Barakakis P, Mavridis T, Chlorogiannis DD, Barakakis G, Laou E, Sessler DI, Gkiokas G, Chalkias A. Intestinal oxygen utilisation and cellular adaptation during intestinal ischaemia-reperfusion injury. Clin Transl Med 2025; 15:e70136. [PMID: 39724463 DOI: 10.1002/ctm2.70136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/06/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024] Open
Abstract
The gastrointestinal tract can be deranged by ailments including sepsis, trauma and haemorrhage. Ischaemic injury provokes a common constellation of microscopic and macroscopic changes that, together with the paradoxical exacerbation of cellular dysfunction and death following restoration of blood flow, are collectively known as ischaemia-reperfusion injury (IRI). Although much of the gastrointestinal tract is normally hypoxemic, intestinal IRI results when there is inadequate oxygen availability due to poor supply (pathological hypoxia) or abnormal tissue oxygen use and metabolism (dysoxia). Intestinal oxygen uptake usually remains constant over a wide range of blood flows and pressures, with cellular function being substantively compromised when ischaemia leads to a >50% decline in intestinal oxygen consumption. Restoration of perfusion and oxygenation provokes additional injury, resulting in mucosal damage and disruption of intestinal barrier function. The primary cellular mechanism for sensing hypoxia and for activating a cascade of cellular responses to mitigate the injury is a family of heterodimer proteins called hypoxia-inducible factors (HIFs). The HIF system is connected to numerous biochemical and immunologic pathways induced by IRI and the concentration of those proteins increases during hypoxia and dysoxia. Activation of the HIF system leads to augmented transcription of specific genes in various types of affected cells, but may also augment apoptotic and inflammatory processes, thus aggravating gut injury. KEY POINTS: During intestinal ischaemia, mitochondrial oxygen uptake is reduced when cellular oxygen partial pressure decreases to below the threshold required to maintain normal oxidative metabolism. Upon reperfusion, intestinal hypoxia may persist because microcirculatory flow remains impaired and/or because available oxygen is consumed by enzymes, intestinal cells and neutrophils.
Collapse
Affiliation(s)
| | - Theodoros Mavridis
- Department of Neurology, Tallaght University Hospital (TUH)/The Adelaide and Meath Hospital incorporating the National Children's Hospital (AMNCH), Dublin, Ireland
| | | | - Georgios Barakakis
- Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni Laou
- Department of Anesthesiology, Agia Sophia Children's Hospital, Athens, Greece
| | - Daniel I Sessler
- Center for Outcomes Research and Department of Anesthesiology, UTHealth, Houston, Texas, USA
- Outcomes Research Consortium®, Houston, Texas, USA
| | - George Gkiokas
- Second Department of Surgery, Aretaieion University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Chalkias
- Outcomes Research Consortium®, Houston, Texas, USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Critical Care Medicine, Tzaneio General Hospital, Piraeus, Greece
| |
Collapse
|
3
|
Mir A, Rahman MF, Ragab KM, Fathallah AH, Daloub S, Alwifati N, Hagrass AI, Nourelden AZ, Elsayed SM, Kamal I, Elhady MM, Khan R. Efficacy and Safety of Therapeutic Hypothermia as an Adjuvant Therapy for Percutaneous Coronary Intervention in Acute Myocardial Infarction: A Systematic Review and Meta-Analysis. Ther Hypothermia Temp Manag 2024; 14:152-171. [PMID: 37792341 DOI: 10.1089/ther.2023.0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
The study aims to compare the use of hypothermia in patients with myocardial infarction (MI) undergoing percutaneous coronary intervention (PCI) with control. We systematically searched four electronic databases until March 2022. The inclusion criteria were any study design that compared hypothermia in patients with MI undergoing PCI with control. The risk of bias assessment of the included randomized controlled trials was conducted through Cochrane Tool, while the quality of the included cohort studies was assessed by the NIH tool. The meta-analysis was performed on RevMan. A total of 19 studies were entered. Regarding the mortality, there were nonsignificant differences between hypothermia and control (odds ratio [OR] = 1.06, 95% confidence interval [CI] 0.75 to 1.50, p = 0.73). There was also no significant difference between the control and hypothermia in recurrent MI (OR = 1.21, 95% CI 0.64 to 2.30, p = 0.56). On the other hand, the analysis showed a significant favor for hypothermia over the control infarct size (mean difference = -1.76, 95% CI -3.04 to -0.47, p = 0.007), but a significant favor for the control over hypothermia in the overall bleeding complications (OR = 1.88, 95% CI 1.11 to 3.18, p = 0.02). Compared with the control, hypothermia reduced the infarct size of the heart, but this finding was not consistent across studies. However, the control had lower rates of bleeding problems. The other outcomes, such as death and the incidence of recurrent MI, were similar between the two groups.
Collapse
Affiliation(s)
- Ali Mir
- Department of Internal Medicine, University at Buffalo, Buffalo, New York, USA
| | | | | | | | - Shaden Daloub
- Department of Internal Medicine, Marshall University Joan C. Edwards School of Medicine, Huntington, West Virginia, USA
| | - Nader Alwifati
- Department of Internal Medicine, Rochester General Hospital, Rochester, New York, USA
| | | | | | | | - Ibrahim Kamal
- Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | | | - Raheel Khan
- Department of Internal Medicine, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
4
|
Deng W, Chen Y, Zhang J, Ling J, Xu Z, Zhu Z, Tang X, Liu X, Zhang D, Zhu H, Lang H, Zhang L, Hua F, Yu S, Qian K, Yu P. Mild therapeutic hypothermia upregulates the O-GlcNAcylation level of COX10 to alleviate mitochondrial damage induced by myocardial ischemia-reperfusion injury. J Transl Med 2024; 22:489. [PMID: 38778315 PMCID: PMC11112789 DOI: 10.1186/s12967-024-05264-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
OBJECTIVE Mild therapeutic hypothermia (MTH) is an important method for perioperative prevention and treatment of myocardial ischemia-reperfusion injury (MIRI). Modifying mitochondrial proteins after protein translation to regulate mitochondrial function is one of the mechanisms for improving myocardial ischemia-reperfusion injury. This study investigated the relationship between shallow hypothermia treatment improving myocardial ischemia-reperfusion injury and the O-GlcNAcylation level of COX10. METHODS We used in vivo Langendorff model and in vitro hypoxia/reoxygenation (H/R) cell model to investigate the effects of MTH on myocardial ischemia-reperfusion injury. Histological changes, myocardial enzymes, oxidative stress, and mitochondrial structure/function were assessed. Mechanistic studies involved various molecular biology methods such as ELISA, immunoprecipitation (IP), WB, and immunofluorescence. RESULTS Our research results indicate that MTH upregulates the O-GlcNACylation level of COX10, improves mitochondrial function, and inhibits the expression of ROS to improve myocardial ischemia-reperfusion injury. In vivo, MTH effectively alleviates ischemia-reperfusion induced cardiac dysfunction, myocardial injury, mitochondrial damage, and redox imbalance. In vitro, the OGT inhibitor ALX inhibits the OGT mediated O-GlcNA acylation signaling pathway, downregulates the O-Glc acylation level of COX10, promotes ROS release, and counteracts the protective effect of MTH. On the contrary, the OGA inhibitor ThG showed opposite effects to ALX, further confirming that MTH activated the OGT mediated O-GlcNAcylation signaling pathway to exert cardioprotective effects. CONCLUSIONS In summary, MTH activates OGT mediated O-glycosylation modified COX10 to regulate mitochondrial function and improve myocardial ischemia-reperfusion injury, which provides important theoretical basis for the clinical application of MTH.
Collapse
Affiliation(s)
- Wei Deng
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1st Minde Road, Nanchang, Jiangxi province, 330006, China
| | - Yixuan Chen
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1st Minde Road, Nanchang, Jiangxi province, 330006, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1st Minde Road, Nanchang, Jiangxi province, 330006, China
| | - Jitao Ling
- Department of Endocrinology an Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1st Minde Road, Nanchang, Jiangxi province, 330006, China
| | - Zhou Xu
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi province, 330006, China
| | - Zicheng Zhu
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1st Minde Road, Nanchang, Jiangxi province, 330006, China
| | - Xiaoyi Tang
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1st Minde Road, Nanchang, Jiangxi province, 330006, China
| | - Xiao Liu
- Department of Cardiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Yanjiang Road, Guangzhou, Guangdong Province, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Hong Zhu
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi province, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi province, China
| | - Haili Lang
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1st Minde Road, Nanchang, Jiangxi province, 330006, China
| | - Lieliang Zhang
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1st Minde Road, Nanchang, Jiangxi province, 330006, China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1st Minde Road, Nanchang, Jiangxi province, 330006, China
| | - Shuchun Yu
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1st Minde Road, Nanchang, Jiangxi province, 330006, China.
| | - Kejian Qian
- Department of Intensive Care Unit, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi province, China.
| | - Peng Yu
- Department of Endocrinology an Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1st Minde Road, Nanchang, Jiangxi province, 330006, China.
| |
Collapse
|
5
|
Ravingerova T, Adameova A, Lonek L, Farkasova V, Ferko M, Andelova N, Kura B, Slezak J, Galatou E, Lazou A, Zohdi V, Dhalla NS. Is Intrinsic Cardioprotection a Laboratory Phenomenon or a Clinically Relevant Tool to Salvage the Failing Heart? Int J Mol Sci 2023; 24:16497. [PMID: 38003687 PMCID: PMC10671596 DOI: 10.3390/ijms242216497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Cardiovascular diseases, especially ischemic heart disease, as a leading cause of heart failure (HF) and mortality, will not reduce over the coming decades despite the progress in pharmacotherapy, interventional cardiology, and surgery. Although patients surviving acute myocardial infarction live longer, alteration of heart function will later lead to HF. Its rising incidence represents a danger, especially among the elderly, with data showing more unfavorable results among females than among males. Experiments revealed an infarct-sparing effect of ischemic "preconditioning" (IPC) as the most robust form of innate cardioprotection based on the heart's adaptation to moderate stress, increasing its resistance to severe insults. However, translation to clinical practice is limited by technical requirements and limited time. Novel forms of adaptive interventions, such as "remote" IPC, have already been applied in patients, albeit with different effectiveness. Cardiac ischemic tolerance can also be increased by other noninvasive approaches, such as adaptation to hypoxia- or exercise-induced preconditioning. Although their molecular mechanisms are not yet fully understood, some noninvasive modalities appear to be promising novel strategies for fighting HF through targeting its numerous mechanisms. In this review, we will discuss the molecular mechanisms of heart injury and repair, as well as interventions that have potential to be used in the treatment of patients.
Collapse
Affiliation(s)
- Tanya Ravingerova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Adriana Adameova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, 10 Odbojárov St., 832 32 Bratislava, Slovakia
| | - Lubomir Lonek
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Veronika Farkasova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Miroslav Ferko
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Natalia Andelova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Branislav Kura
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Jan Slezak
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Eleftheria Galatou
- School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (E.G.); (A.L.)
- Department of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus
| | - Antigone Lazou
- School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (E.G.); (A.L.)
| | - Vladislava Zohdi
- Department of Anatomy, Faculty of Medicine, Comenius University in Bratislava, 24 Špitalska, 813 72 Bratislava, Slovakia;
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, 19 Innovation Walk, Clayton, VIC 3800, Australia
| | - Naranjan S. Dhalla
- Institute of Cardiovascular Sciences St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada;
| |
Collapse
|
6
|
Zhou T, Mo J, Xu W, Hu Q, Liu H, Fu Y, Jiang J. Mild hypothermia alleviates oxygen−glucose deprivation/reperfusion-induced apoptosis by inhibiting ROS generation, improving mitochondrial dysfunction and regulating DNA damage repair pathway in PC12 cells. Apoptosis 2022; 28:447-457. [PMID: 36520321 DOI: 10.1007/s10495-022-01799-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2022] [Indexed: 12/23/2022]
Abstract
The brain ischemia/reperfusion (I/R) injury has a great impact on human life and property safety. As far as we know, mild hypothermia (MH) is an effective measure to reduce neuronal injury after I/R. However, the precise mechanism is not extremely clear. The purpose of this study was to investigate whether mild therapeutic hypothermia can play a protective role in nerve cells dealing with brain I/R injury and explore its specific mechanism in vitro. A flow cytometer, cell counting kit-8 (CCK-8) assay and lactate dehydrogenase (LDH) release assay were performed to detect apoptotic rate of cells, cell viability and cytotoxicity, respectively, reactive oxygen species (ROS) assay kit, JC-1 fluorescent methods, immunofluorescence and western blot were used to explore ROS, mitochondrial transmembrane potential (Δψm), mitochondrial permeability transition pore (MPTP) and protein expression, respectively. The result indicated that the cell activity was decreased, while the cytotoxicity and apoptosis rate were increased after treating with oxygen-glucose deprivation/reperfusion (OGD/R) in PC12 cells. However, MH could antagonize this phenomenon. Interestingly, treating with OGD/R increased the release of ROS and the transfer of Cytochrome C (Cyt-C) from mitochondria to cytoplasm. In addition, it up-regulated the expression of γH2AX, Bax and Clv-caspase3, down-regulated the expression of PCNA, Rad51 and Bcl-2, and inhibited the function of mitochondria in PC12 cells. Excitingly, the opposite trend was observed after MH treatment. Therefore, our results suggest that MH protects PC12 cells against OGD/R-induced injury with the mechanism of inhibiting cell apoptosis by reducing ROS production, improving mitochondrial function, reducing DNA damage, and enhancing DNA repair.
Collapse
Affiliation(s)
- Tianen Zhou
- Department of Emergency, The First People's Hospital of Foshan, Foshan, 528000, Guangdong, China
| | - Jierong Mo
- Department of Emergency, The First People's Hospital of Foshan, Foshan, 528000, Guangdong, China
| | - Weigan Xu
- Department of Emergency, The First People's Hospital of Foshan, Foshan, 528000, Guangdong, China
| | - Qiaohua Hu
- Department of Emergency, The First People's Hospital of Foshan, Foshan, 528000, Guangdong, China
| | - Hongfeng Liu
- Department of Emergency, The First People's Hospital of Foshan, Foshan, 528000, Guangdong, China
| | - Yue Fu
- Department of General Medicine, The First People's Hospital of Foshan, Foshan, 528000, Guangdong, China.
| | - Jun Jiang
- Department of Emergency, The First People's Hospital of Foshan, Foshan, 528000, Guangdong, China.
| |
Collapse
|
7
|
Schleef M, Gonnot F, Pillot B, Leon C, Chanon S, Vieille-Marchiset A, Rabeyrin M, Bidaux G, Guebre-Egziabher F, Juillard L, Baetz D, Lemoine S. Mild Therapeutic Hypothermia Protects from Acute and Chronic Renal Ischemia-Reperfusion Injury in Mice by Mitigated Mitochondrial Dysfunction and Modulation of Local and Systemic Inflammation. Int J Mol Sci 2022; 23:9229. [PMID: 36012493 PMCID: PMC9409407 DOI: 10.3390/ijms23169229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Renal ischemia-reperfusion (IR) injury can lead to acute kidney injury, increasing the risk of developing chronic kidney disease. We hypothesized that mild therapeutic hypothermia (mTH), 34 °C, applied during ischemia could protect the function and structure of kidneys against IR injuries in mice. In vivo bilateral renal IR led to an increase in plasma urea and acute tubular necrosis at 24 h prevented by mTH. One month after unilateral IR, kidney atrophy and fibrosis were reduced by mTH. Evaluation of mitochondrial function showed that mTH protected against IR-mediated mitochondrial dysfunction at 24 h, by preserving CRC and OX-PHOS. mTH completely abrogated the IR increase of plasmatic IL-6 and IL-10 at 24 h. Acute tissue inflammation was decreased by mTH (IL-6 and IL1-β) in as little as 2 h. Concomitantly, mTH increased TNF-α expression at 24 h. One month after IR, mTH increased TNF-α mRNA expression, and it decreased TGF-β mRNA expression. We showed that mTH alleviates renal dysfunction and damage through a preservation of mitochondrial function and a modulated systemic and local inflammatory response at the acute phase (2-24 h). The protective effect of mTH is maintained in the long term (1 month), as it diminished renal atrophy and fibrosis, and mitigated chronic renal inflammation.
Collapse
Affiliation(s)
- Maxime Schleef
- CarMeN Laboratory, Univ Lyon, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France
- Hospices Civils de Lyon, Médecine Intensive Réanimation, Hôpital Edouard Herriot, 69003 Lyon, France
| | - Fabrice Gonnot
- CarMeN Laboratory, Univ Lyon, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France
| | - Bruno Pillot
- CarMeN Laboratory, Univ Lyon, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France
| | - Christelle Leon
- CarMeN Laboratory, Univ Lyon, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France
| | - Stéphanie Chanon
- CarMeN Laboratory, Univ Lyon, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France
| | - Aurélie Vieille-Marchiset
- CarMeN Laboratory, Univ Lyon, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France
| | - Maud Rabeyrin
- Hospices Civils de Lyon, Anatomopathologie, Groupement Hospitalier Est, 69500 Bron, France
| | - Gabriel Bidaux
- CarMeN Laboratory, Univ Lyon, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France
| | - Fitsum Guebre-Egziabher
- CarMeN Laboratory, Univ Lyon, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France
- Hospices Civils de Lyon, Néphrologie-HTA-Dialyse, Hôpital Edouard Herriot, 69003 Lyon, France
| | - Laurent Juillard
- CarMeN Laboratory, Univ Lyon, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France
- Hospices Civils de Lyon, Néphrologie-HTA-Dialyse, Hôpital Edouard Herriot, 69003 Lyon, France
| | - Delphine Baetz
- CarMeN Laboratory, Univ Lyon, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France
| | - Sandrine Lemoine
- CarMeN Laboratory, Univ Lyon, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France
- Hospices Civils de Lyon, Explorations Fonctionnelles Rénales, Hôpital Edouard Herriot, 69003 Lyon, France
| |
Collapse
|
8
|
Stevic N, Maalouf J, Argaud L, Gallo-Bona N, Lo Grasso M, Gouriou Y, Gomez L, Crola Da Silva C, Ferrera R, Ovize M, Cour M, Bidaux G. Cooling Uncouples Differentially ROS Production from Respiration and Ca 2+ Homeostasis Dynamic in Brain and Heart Mitochondria. Cells 2022; 11:cells11060989. [PMID: 35326440 PMCID: PMC8947173 DOI: 10.3390/cells11060989] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/17/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022] Open
Abstract
Hypothermia provides an effective neuro and cardio-protection in clinical settings implying ischemia/reperfusion injury (I/R). At the onset of reperfusion, succinate-induced reactive oxygen species (ROS) production, impaired oxidative phosphorylation (OXPHOS), and decreased Ca2+ retention capacity (CRC) concur to mitochondrial damages. We explored the effects of temperature from 6 to 37 °C on OXPHOS, ROS production, and CRC, using isolated mitochondria from mouse brain and heart. Oxygen consumption and ROS production was gradually inhibited when cooling from 37 to 6 °C in brain mitochondria (BM) and heart mitochondria (HM). The decrease in ROS production was gradual in BM but steeper between 31 and 20 °C in HM. In respiring mitochondria, the gradual activation of complex II, in addition of complex I, dramatically enhanced ROS production at all temperatures without modifying respiration, likely because of ubiquinone over-reduction. Finally, CRC values were linearly increased by cooling in both BM and HM. In BM, the Ca2+ uptake rate by the mitochondrial calcium uniporter (MCU) decreased by 2.7-fold between 25 and 37 °C, but decreased by 5.7-fold between 25 and 37 °C in HM. In conclusion, mild cold (25-37 °C) exerts differential inhibitory effects by preventing ROS production, by reverse electron transfer (RET) in BM, and by reducing MCU-mediated Ca2+ uptake rate in BM and HM.
Collapse
Affiliation(s)
- Neven Stevic
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, Université Claude Bernard Lyon 1, INSA Lyon, F-69550 Bron, France; (N.S.); (J.M.); (L.A.); (N.G.-B.); (M.L.G.); (Y.G.); (L.G.); (C.C.D.S.); (R.F.); (M.O.); (M.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, F-69500 Bron, France
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Médecine Intensive-Réanimation, F-69437 Lyon, France
| | - Jennifer Maalouf
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, Université Claude Bernard Lyon 1, INSA Lyon, F-69550 Bron, France; (N.S.); (J.M.); (L.A.); (N.G.-B.); (M.L.G.); (Y.G.); (L.G.); (C.C.D.S.); (R.F.); (M.O.); (M.C.)
| | - Laurent Argaud
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, Université Claude Bernard Lyon 1, INSA Lyon, F-69550 Bron, France; (N.S.); (J.M.); (L.A.); (N.G.-B.); (M.L.G.); (Y.G.); (L.G.); (C.C.D.S.); (R.F.); (M.O.); (M.C.)
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Médecine Intensive-Réanimation, F-69437 Lyon, France
| | - Noëlle Gallo-Bona
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, Université Claude Bernard Lyon 1, INSA Lyon, F-69550 Bron, France; (N.S.); (J.M.); (L.A.); (N.G.-B.); (M.L.G.); (Y.G.); (L.G.); (C.C.D.S.); (R.F.); (M.O.); (M.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, F-69500 Bron, France
| | - Mégane Lo Grasso
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, Université Claude Bernard Lyon 1, INSA Lyon, F-69550 Bron, France; (N.S.); (J.M.); (L.A.); (N.G.-B.); (M.L.G.); (Y.G.); (L.G.); (C.C.D.S.); (R.F.); (M.O.); (M.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, F-69500 Bron, France
| | - Yves Gouriou
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, Université Claude Bernard Lyon 1, INSA Lyon, F-69550 Bron, France; (N.S.); (J.M.); (L.A.); (N.G.-B.); (M.L.G.); (Y.G.); (L.G.); (C.C.D.S.); (R.F.); (M.O.); (M.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, F-69500 Bron, France
| | - Ludovic Gomez
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, Université Claude Bernard Lyon 1, INSA Lyon, F-69550 Bron, France; (N.S.); (J.M.); (L.A.); (N.G.-B.); (M.L.G.); (Y.G.); (L.G.); (C.C.D.S.); (R.F.); (M.O.); (M.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, F-69500 Bron, France
| | - Claire Crola Da Silva
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, Université Claude Bernard Lyon 1, INSA Lyon, F-69550 Bron, France; (N.S.); (J.M.); (L.A.); (N.G.-B.); (M.L.G.); (Y.G.); (L.G.); (C.C.D.S.); (R.F.); (M.O.); (M.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, F-69500 Bron, France
| | - René Ferrera
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, Université Claude Bernard Lyon 1, INSA Lyon, F-69550 Bron, France; (N.S.); (J.M.); (L.A.); (N.G.-B.); (M.L.G.); (Y.G.); (L.G.); (C.C.D.S.); (R.F.); (M.O.); (M.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, F-69500 Bron, France
| | - Michel Ovize
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, Université Claude Bernard Lyon 1, INSA Lyon, F-69550 Bron, France; (N.S.); (J.M.); (L.A.); (N.G.-B.); (M.L.G.); (Y.G.); (L.G.); (C.C.D.S.); (R.F.); (M.O.); (M.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, F-69500 Bron, France
| | - Martin Cour
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, Université Claude Bernard Lyon 1, INSA Lyon, F-69550 Bron, France; (N.S.); (J.M.); (L.A.); (N.G.-B.); (M.L.G.); (Y.G.); (L.G.); (C.C.D.S.); (R.F.); (M.O.); (M.C.)
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Médecine Intensive-Réanimation, F-69437 Lyon, France
| | - Gabriel Bidaux
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, Université Claude Bernard Lyon 1, INSA Lyon, F-69550 Bron, France; (N.S.); (J.M.); (L.A.); (N.G.-B.); (M.L.G.); (Y.G.); (L.G.); (C.C.D.S.); (R.F.); (M.O.); (M.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, F-69500 Bron, France
- Correspondence:
| |
Collapse
|
9
|
Kohlhauer M, Panel M, Roches MVD, Faucher E, Abi Zeid Daou Y, Boissady E, Lidouren F, Ghaleh B, Morin D, Tissier R. Brain and Myocardial Mitochondria Follow Different Patterns of Dysfunction After Cardiac Arrest. Shock 2021; 56:857-864. [PMID: 33978607 DOI: 10.1097/shk.0000000000001793] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT Mitochondria is often considered as the common nexus of cardiac and cerebral dysfunction after cardiac arrest. Here, our goal was to determine whether the time course of cardiac and cerebral mitochondrial dysfunction is similar after shockable versus non-shockable cardiac arrest in rabbits. Anesthetized rabbits were submitted to 10 min of no-flow by ventricular fibrillation (VF group) or asphyxia (non-shockable group). They were euthanized at the end of the no-flow period or 30 min, 120 min, or 24 h after resuscitation for in vitro evaluation of oxygen consumption and calcium retention capacity. In the brain (cortex and hippocampus), moderate mitochondrial dysfunction was evidenced at the end of the no-flow period after both causes of cardiac arrest versus baseline. It partly recovered at 30 and 120 min after cardiac arrest, with lower calcium retention capacity and higher substrate-dependant oxygen consumption after VF versus non-shockable cardiac arrest. However, after 24 h of follow-up, mitochondrial dysfunction dramatically increased after both VF and non-shockable cardiac arrest, despite greater neurological dysfunction after the latter one. In the heart, mitochondrial dysfunction was also maximal after 24 h following resuscitation, with no significant difference among the causes of the cardiac arrest. During the earlier timing of evaluation, calcium retention capacity and ADP-dependant oxygen consumption were lower and higher, respectively, after non-shockable cardiac arrest versus VF. In conclusion, the kinetics of cardiac and cerebral mitochondrial dysfunction suggests that mitochondrial function does not play a major role in the early phase of the post-resuscitation process but is only involved in the longer pathophysiological events.
Collapse
Affiliation(s)
- Matthias Kohlhauer
- Univ Paris Est Créteil, INSERM, IMRB, Créteil, France
- Ecole nationale vétérinaire d'Alfort, IMRB, Maisons-Alfort, France
| | - Mathieu Panel
- Univ Paris Est Créteil, INSERM, IMRB, Créteil, France
- Ecole nationale vétérinaire d'Alfort, IMRB, Maisons-Alfort, France
| | - Marine Vermot des Roches
- Univ Paris Est Créteil, INSERM, IMRB, Créteil, France
- Ecole nationale vétérinaire d'Alfort, IMRB, Maisons-Alfort, France
| | - Estelle Faucher
- Univ Paris Est Créteil, INSERM, IMRB, Créteil, France
- Ecole nationale vétérinaire d'Alfort, IMRB, Maisons-Alfort, France
| | - Yara Abi Zeid Daou
- Univ Paris Est Créteil, INSERM, IMRB, Créteil, France
- Ecole nationale vétérinaire d'Alfort, IMRB, Maisons-Alfort, France
| | - Emilie Boissady
- Univ Paris Est Créteil, INSERM, IMRB, Créteil, France
- Ecole nationale vétérinaire d'Alfort, IMRB, Maisons-Alfort, France
| | - Fanny Lidouren
- Univ Paris Est Créteil, INSERM, IMRB, Créteil, France
- Ecole nationale vétérinaire d'Alfort, IMRB, Maisons-Alfort, France
| | - Bijan Ghaleh
- Univ Paris Est Créteil, INSERM, IMRB, Créteil, France
- Ecole nationale vétérinaire d'Alfort, IMRB, Maisons-Alfort, France
| | - Didier Morin
- Univ Paris Est Créteil, INSERM, IMRB, Créteil, France
- Ecole nationale vétérinaire d'Alfort, IMRB, Maisons-Alfort, France
| | - Renaud Tissier
- Univ Paris Est Créteil, INSERM, IMRB, Créteil, France
- Ecole nationale vétérinaire d'Alfort, IMRB, Maisons-Alfort, France
| |
Collapse
|
10
|
High Oxygen Does Not Increase Reperfusion Injury Assessed with Lipid Peroxidation Biomarkers after Cardiac Arrest: A Post Hoc Analysis of the COMACARE Trial. J Clin Med 2021; 10:jcm10184226. [PMID: 34575337 PMCID: PMC8471647 DOI: 10.3390/jcm10184226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 12/02/2022] Open
Abstract
The products of polyunsaturated fatty acid peroxidation are considered reliable biomarkers of oxidative injury in vivo. We investigated ischemia-reperfusion-related oxidative injury by determining the levels of lipid peroxidation biomarkers (isoprostane, isofuran, neuroprostane, and neurofuran) after cardiac arrest and tested the associations between the biomarkers and different arterial oxygen tensions (PaO2). We utilized blood samples collected during the COMACARE trial (NCT02698917). In the trial, 123 patients resuscitated from out-of-hospital cardiac arrest were treated with a 10–15 kPa or 20–25 kPa PaO2 target during the initial 36 h in the intensive care unit. We measured the biomarker levels at admission, and 24, 48, and 72 h thereafter. We compared biomarker levels in the intervention groups and in groups that differed in oxygen exposure prior to randomization. Blood samples for biomarker determination were available for 112 patients. All four biomarker levels peaked at 24 h; the increase appeared greater in younger patients and in patients without bystander-initiated life support. No association between the lipid peroxidation biomarkers and oxygen exposure either before or after randomization was found. Increases in the biomarker levels during the first 24 h in intensive care suggest continuing oxidative stress, but the clinical relevance of this remains unresolved.
Collapse
|
11
|
Ji X, Bradley JL, Zheng G, Ge W, Xu J, Hu J, He F, Shabnam R, Peberdy MA, Ornato JP, Chen Q, Lesnefsky EJ, Tang W. Cerebral and myocardial mitochondrial injury differ in a rat model of cardiac arrest and cardiopulmonary resuscitation. Biomed Pharmacother 2021; 140:111743. [PMID: 34020243 DOI: 10.1016/j.biopha.2021.111743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 11/18/2022] Open
Abstract
Brain mitochondria are more sensitive to global ischemia compared to heart mitochondria. Complex I in the electron transport chain (ETC) is sensitive to ischemic injury and is a major control point of the rate of ADP stimulated oxygen consumption. The purpose of this study was to explore whether changes in cerebral and myocardial mitochondria differ after cardiac arrest. Animals were randomized into 4 groups (n = 6): 1) Sham 2) VF 3) VF+CPR 4) ROSC 1hr. Ventricular Fibrillation (VF) was induced through a guide wire advanced from the right jugular vein into the ventricle and untreated for 8 min. Resuscitation was attempted with a 4J defibrillation after 8 min of cardiopulmonary resuscitation (CPR). Brain mitochondria and cardiac mitochondrial subpopulations were isolated. Calcium retention capacity was measured to assess susceptibility to mitochondrial permeability transition pore opening. ADP stimulated oxygen consumption and ETC activity assays were performed. Brain mitochondria are far more sensitive to injury during cardiac arrest and resuscitation compared to cardiac mitochondria. Complex I is highly sensitive to injury in brain mitochondria. With markedly decreased calcium retention capacity, mitochondria contribute to cerebral reperfusion injury. Therapeutic preservation of cerebral mitochondrial activity and mitochondrial function during cardiac arrest may improve post-resuscitation neurologic function.
Collapse
Affiliation(s)
- Xianfei Ji
- Department of Emergency, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China; Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA, USA.
| | - Jennifer L Bradley
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA, USA; Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA.
| | - Guanghui Zheng
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA, USA.
| | - Weiwei Ge
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA, USA.
| | - Jing Xu
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA, USA.
| | - Juntao Hu
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA, USA.
| | - Fenglian He
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA, USA.
| | | | - Mary Ann Peberdy
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA, USA; Departments of Internal Medicine and Emergency Medicine, Virginia Commonwealth University Health System, Richmond, VA, USA; Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University Health System, Richmond, VA, USA.
| | - Joseph P Ornato
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA, USA; Department of Emergency Medicine, Virginia Commonwealth University Health System, Richmond, VA, USA.
| | - Qun Chen
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University Health System, Richmond, VA, USA.
| | - Edward J Lesnefsky
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University Health System, Richmond, VA, USA; Medical Service, McGuire Department of Veterans Affairs Medical Center, Richmond, VA, USA; McGuire Research Institute, Richmond, VA, USA.
| | - Wanchun Tang
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA, USA; Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA; Department of Emergency Medicine, Virginia Commonwealth University Health System, Richmond, VA, USA.
| |
Collapse
|
12
|
Yang L, Dong Y, Wu C, Youngblood H, Li Y, Zong X, Li L, Xu T, Zhang Q. Effects of prenatal photobiomodulation treatment on neonatal hypoxic ischemia in rat offspring. Theranostics 2021; 11:1269-1294. [PMID: 33391534 PMCID: PMC7738878 DOI: 10.7150/thno.49672] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
Neonatal hypoxic-ischemic (HI) injury is a severe complication often leading to neonatal death and long-term neurobehavioral deficits in children. Currently, the only treatment option available for neonatal HI injury is therapeutic hypothermia. However, the necessary specialized equipment, possible adverse side effects, and limited effectiveness of this therapy creates an urgent need for the development of new HI treatment methods. Photobiomodulation (PBM) has been shown to be neuroprotective against multiple brain disorders in animal models, as well as limited human studies. However, the effects of PBM treatment on neonatal HI injury remain unclear. Methods: Two-minutes PBM (808 nm continuous wave laser, 8 mW/cm2 on neonatal brain) was applied three times weekly on the abdomen of pregnant rats from gestation day 1 (GD1) to GD21. After neonatal right common carotid artery ligation, cortex- and hippocampus-related behavioral deficits due to HI insult were measured using a battery of behavioral tests. The effects of HI insult and PBM pretreatment on infarct size; synaptic, dendritic, and white matter damage; neuronal degeneration; apoptosis; mitochondrial function; mitochondrial fragmentation; oxidative stress; and gliosis were then assessed. Results: Prenatal PBM treatment significantly improved the survival rate of neonatal rats and decreased infarct size after HI insult. Behavioral tests revealed that prenatal PBM treatment significantly alleviated cortex-related motor deficits and hippocampus-related memory and learning dysfunction. In addition, mitochondrial function and integrity were protected in HI animals treated with PBM. Additional studies revealed that prenatal PBM treatment significantly alleviated HI-induced neuroinflammation, oxidative stress, and myeloid cell/astrocyte activation. Conclusion: Prenatal PBM treatment exerts neuroprotective effects on neonatal HI rats. Underlying mechanisms for this neuroprotection may include preservation of mitochondrial function, reduction of inflammation, and decreased oxidative stress. Our findings support the possible use of PBM treatment in high-risk pregnancies to alleviate or prevent HI-induced brain injury in the perinatal period.
Collapse
|
13
|
In Vitro/Ex Vivo Models for the Study of Ischemia Reperfusion Injury during Kidney Perfusion. Int J Mol Sci 2020; 21:ijms21218156. [PMID: 33142791 PMCID: PMC7662866 DOI: 10.3390/ijms21218156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress is a key element of ischemia–reperfusion injury, occurring during kidney preservation and transplantation. Current options for kidney graft preservation prior to transplantation are static cold storage (CS) and hypothermic machine perfusion (HMP), the latter demonstrating clear improvement of preservation quality, particularly for marginal donors, such as extended criteria donors (ECDs) and donation after circulatory death (DCDs). Nevertheless, complications still exist, fostering the need to improve kidney preservation. This review highlights the most promising avenues of in kidney perfusion improvement on two critical aspects: ex vivo and in vitro evaluation.
Collapse
|
14
|
Cuprizone Affects Hypothermia-Induced Neuroprotection and Enhanced Neuroblast Differentiation in the Gerbil Hippocampus after Ischemia. Cells 2020; 9:cells9061438. [PMID: 32531881 PMCID: PMC7349804 DOI: 10.3390/cells9061438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022] Open
Abstract
In the present study, we investigated the effects of cuprizone on cell death, glial activation, and neuronal plasticity induced by hypothermia after ischemia in gerbils. Food was supplemented with cuprizone at 0.2% ad libitum for eight weeks. At six weeks after diet feeing, gerbils received transient forebrain ischemia with or without hypothermic preconditioning. Cuprizone treatment for 8 weeks increased the number of astrocytes, microglia, and pro-inflammatory cytokine levels in the hippocampus. In addition, cuprizone treatment significantly decreased the number of proliferating cells and neuroblasts in the dentate gyrus. Brain ischemia caused cell death, disruption of myelin basic proteins, and reactive gliosis in CA1. In addition, ischemia significantly increased pro-inflammatory cytokines and the number of proliferating cells and differentiating neuroblasts in the dentate gyrus. In contrast, hypothermic conditioning attenuated these changes in CA1 and the dentate gyrus. However, cuprizone treatment decreased cell survival induced by hypothermic preconditioning after ischemia and increased the number of reactive microglia and astrocytes in CA1 as well as that of macrophages in the subcallosal zone. These changes occurred because the protective effect of hypothermia in ischemic damage was disrupted by cuprizone administration. Furthermore, cuprizone decreased ischemia-induced proliferating cells and neuroblasts in the dentate gyrus.
Collapse
|
15
|
Martini S, Austin T, Aceti A, Faldella G, Corvaglia L. Free radicals and neonatal encephalopathy: mechanisms of injury, biomarkers, and antioxidant treatment perspectives. Pediatr Res 2020; 87:823-833. [PMID: 31655487 DOI: 10.1038/s41390-019-0639-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/19/2019] [Accepted: 09/22/2019] [Indexed: 12/11/2022]
Abstract
Neonatal encephalopathy (NE), most commonly a result of the disruption of cerebral oxygen delivery, is the leading cause of neurologic disability in term neonates. Given the key role of free radicals in brain injury development following hypoxia-ischemia-reperfusion, several oxidative biomarkers have been explored in preclinical and clinical models of NE. Among these, antioxidant enzyme activity, uric acid excretion, nitric oxide, malondialdehyde, and non-protein-bound iron have shown promising results as possible predictors of NE severity and outcome. Owing to high costs and technical complexity, however, their routine use in clinical practice is still limited. Several strategies aimed at reducing free radical production or upregulating physiological scavengers have been proposed for NE. Room-air resuscitation has proved to reduce oxidative stress following perinatal asphyxia and is now universally adopted. A number of medications endowed with antioxidant properties, such as melatonin, erythropoietin, allopurinol, or N-acetylcysteine, have also shown potential neuroprotective effects in perinatal asphyxia; nevertheless, further evidence is needed before these antioxidant approaches could be implemented as standard care.
Collapse
Affiliation(s)
- Silvia Martini
- Neonatology and Neonatal Intensive Care Unit, St. Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.
| | - Topun Austin
- Neonatal Intensive Care Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Arianna Aceti
- Neonatology and Neonatal Intensive Care Unit, St. Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Giacomo Faldella
- Neonatology and Neonatal Intensive Care Unit, St. Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Luigi Corvaglia
- Neonatology and Neonatal Intensive Care Unit, St. Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
16
|
Tirza G, Solodeev I, Sela M, Greenberg I, Pasmanik-Chor M, Gur E, Shani N. Reduced culture temperature attenuates oxidative stress and inflammatory response facilitating expansion and differentiation of adipose-derived stem cells. Stem Cell Res Ther 2020; 11:35. [PMID: 31973743 PMCID: PMC6979291 DOI: 10.1186/s13287-019-1542-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/10/2019] [Accepted: 12/26/2019] [Indexed: 11/16/2022] Open
Abstract
Background Adipose-derived stem cell (ASC) expansion under atmospheric oxygen levels (21%) was previously shown to cause increased reactive oxygen species (ROS) accumulation and genetic instability compared to cells cultured under physiological oxygen levels (2–8%). However, since culture under physiological oxygen levels is costly and complicated, a simpler method to reduce ROS accumulation is desirable. The current study aimed to determine whether lower culture temperature can reduce ROS production in ASCs without impairing their culture expansion. Methods Proliferation, differentiation, ROS accumulation, and gene expression were compared between ASC cultures at 35 °C and 37 °C. ASCs isolated either from rat fat depots or from human lipoaspirates were examined in the study. Results Rat visceral ASCs (vASCs) cultured at 35 °C demonstrated reduced ROS production and apoptosis and enhanced expansion and adipogenic differentiation compared to vASCs cultured at 37 °C. Similarly, the culture of human ASCs (hASCs) at 35 °C led to reduced ROS accumulation and apoptosis, with no effect on the proliferation rate, compared to hASCs cultured at 37 °C. Comparison of gene expression profiles of 35 °C versus 37 °C vASCs uncovered the development of a pro-inflammatory phenotype in 37 °C vASCs in correlation with culture temperature and ROS overproduction. This correlation was reaffirmed in both hASCs and subcutaneous rat ASCs. Conclusions This is the first evidence of the effect of culture temperature on ASC growth and differentiation properties. Reduced temperatures may result in superior ASC cultures with enhanced expansion capacities in vitro and effectiveness in vivo.
Collapse
Affiliation(s)
- Gal Tirza
- The Department of Plastic and Reconstructive Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Inna Solodeev
- The Department of Plastic and Reconstructive Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Meirav Sela
- The Department of Plastic and Reconstructive Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ilanit Greenberg
- The Department of Plastic and Reconstructive Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Metsada Pasmanik-Chor
- The Bioinformatics Unit George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Eyal Gur
- The Department of Plastic and Reconstructive Surgery, Tel Aviv Sourasky Medical Center, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Weizmann 6, Tel Aviv, Israel
| | - Nir Shani
- The Department of Plastic and Reconstructive Surgery, Tel Aviv Sourasky Medical Center, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Weizmann 6, Tel Aviv, Israel.
| |
Collapse
|
17
|
Murata I, Imanari M, Komiya M, Kobayashi J, Inoue Y, Kanamoto I. Icing treatment in rats with crush syndrome can improve survival through reduction of potassium concentration and mitochondrial function disorder effect. Exp Ther Med 2019; 19:777-785. [PMID: 31853328 DOI: 10.3892/etm.2019.8230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/08/2019] [Indexed: 12/12/2022] Open
Abstract
Crush syndrome (CS), a serious medical condition, which is characterized by damage to myocytes due to pressure and is associated with high mortality, even when patients receive fluid therapy. Icing therapy over the affected muscle has been reported to be effective in improving mitochondrial dysfunction and inflammation. These effects are thought to be secondary to improvements in the leakage of potassium and myoglobin from the damaged myocytes in the early stages of disease. However, their effects on the various symptoms of CS are unclear. It was hypothesized that treatment with icing will inhibit the influence of potassium by vasoconstriction, exert anti-inflammatory effects in the affected myocytes and improve mitochondrial function The CS model constructed by subjecting anesthetized rats to bilateral hindlimb compression with a rubber tourniquet for 5 h. The rats were then randomly divided into six groups: i) Sham; ii) CS without treatment (CS); iii) and iv) icing for 30 or 180 min over the entire hindlimb on CS rats (CI-30 and -180), respectively; and v) and vi) local icing for 30 or 180 min over the affected area on CS rats (CLI-30 and -180), respectively. Under continuous monitoring and recording of arterial blood pressures, blood and tissue samples were collected for biochemical analyses at designated time points prior to and following reperfusion. The survival rate, vital signs, and blood gas parameters in the CS group were lethal compared with the sham group. These were also improved in the CI-30 and CLI-30 groups compared with the CS group; however, they worsened in the CI-180 and CLI-180 groups due to hypothermia. The CI-30 and CLI-30 groups demonstrated tendencies of improvements compared with the CS group. Systemic inflammation and mitochondria dysfunction had improved in these groups compared with the CS group. We suggest icing therapy to temporarily prolong the viability after crush injury. Its effectiveness can be improved by combining it with other infusion therapies.
Collapse
Affiliation(s)
- Isamu Murata
- Laboratory of Drug Safety Management, Faculty of Pharmacy and Pharmaceutical Science, Josai University, Sakado, Saitama 350-0295, Japan
| | - Mayuki Imanari
- Laboratory of Drug Safety Management, Faculty of Pharmacy and Pharmaceutical Science, Josai University, Sakado, Saitama 350-0295, Japan
| | - Marise Komiya
- Laboratory of Drug Safety Management, Faculty of Pharmacy and Pharmaceutical Science, Josai University, Sakado, Saitama 350-0295, Japan
| | - Jun Kobayashi
- Division of Pathophysiology, Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmacy and Pharmaceutical Science, Josai University, Sakado, Saitama 350-0295, Japan
| | - Yutaka Inoue
- Laboratory of Drug Safety Management, Faculty of Pharmacy and Pharmaceutical Science, Josai University, Sakado, Saitama 350-0295, Japan
| | - Ikuo Kanamoto
- Laboratory of Drug Safety Management, Faculty of Pharmacy and Pharmaceutical Science, Josai University, Sakado, Saitama 350-0295, Japan
| |
Collapse
|
18
|
Liu Y, Wang P, Wen C, Zheng H, Tang X, Ling Q, Liu X, Qin J, Tang W, Yang Z, Huang Z. Endovascular hypothermia improves post-resuscitation myocardial dysfunction by increasing mitochondrial biogenesis in a pig model of cardiac arrest. Cryobiology 2019; 89:6-13. [PMID: 31283936 DOI: 10.1016/j.cryobiol.2019.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 01/11/2023]
Abstract
The aim of the study was to investigate the effects of endovascular hypothermia on mitochondrial biogenesis in a pig model of prolonged cardiac arrest (CA). Ventricular fibrillation was electrically induced, and animals were left untreated for 10 min; then after 6min of cardiopulmonary resuscitation (CPR), defibrillation was attempted. 25 animals that were successfully resuscitated were randomized into three groups: Sham group (SG, 5, no CA), normal temperature group (NTG, 5 for 12 h observation and 5 for 24 h observation), and endovascular hypothermia group (EHG, 5 for 12 h observation and 5 for 24 h observation). The core temperatures (Tc) in the EHG were maintained at 34 ± 0.5 °C for 6 h by an endovascular hypothermia device (Coolgard 3000), then actively increased at the speed of 0.5 °C per hour during the next 6 h to achieve a normal body temperature, while Tc were maintained at 37.5 ± 0.5 °C in the NTG. Cardiac and mitochondrial functions, the quantification of myocardial mitochondrial DNA (mtDNA), peroxisome proliferator-activated receptor coactivator-1α (PGC-1α), nuclear respiratory factor (NRF)-1, and NRF-2 were examined. Results showed that myocardial and mitochondrial injury and dysfunction increased significantly at 12 h and 24 h after CA. Endovascular hypothermia offered a method to rapidly achieve the target temperature and provide stable target temperature management (TTM). Cardiac outcomes were improved and myocardial injuries were alleviated with endovascular hypothermia. Compared with NTG, endovascular hypothermia significantly increased mitochondrial activity and biogenesis by amplifying mitochondrial biogenesis factors' expressions, including PGC-1α, NRF-1, and NRF-2. In conclusions, endovascular hypothermia after CA alleviated myocardial and mitochondrial dysfunction, and was associated with increasing mitochondrial biogenesis.
Collapse
Affiliation(s)
- Yuanshan Liu
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Peng Wang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Cai Wen
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Houzhen Zheng
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Xinran Tang
- The 3rd Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Qin Ling
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuefen Liu
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiahong Qin
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Wanchun Tang
- Weil Institute of Emergency and Critical Care Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Zhengfei Yang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Weil Institute of Emergency and Critical Care Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China.
| | - Zitong Huang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
19
|
Ndongson-Dongmo B, Lang GP, Mece O, Hechaichi N, Lajqi T, Hoyer D, Brodhun M, Heller R, Wetzker R, Franz M, Levy FO, Bauer R. Reduced ambient temperature exacerbates SIRS-induced cardiac autonomic dysregulation and myocardial dysfunction in mice. Basic Res Cardiol 2019; 114:26. [DOI: 10.1007/s00395-019-0734-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 04/12/2019] [Indexed: 12/13/2022]
|
20
|
Kohlhauer M, Pell VR, Burger N, Spiroski AM, Gruszczyk A, Mulvey JF, Mottahedin A, Costa ASH, Frezza C, Ghaleh B, Murphy MP, Tissier R, Krieg T. Protection against cardiac ischemia-reperfusion injury by hypothermia and by inhibition of succinate accumulation and oxidation is additive. Basic Res Cardiol 2019; 114:18. [PMID: 30877396 PMCID: PMC6420484 DOI: 10.1007/s00395-019-0727-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 03/12/2019] [Indexed: 01/23/2023]
Abstract
Hypothermia induced at the onset of ischemia is a potent experimental cardioprotective strategy for myocardial infarction. The aim of our study was to determine whether the beneficial effects of hypothermia may be due to decreasing mitochondria-mediated mechanisms of damage that contribute to the pathophysiology of ischemia/reperfusion injury. New Zealand male rabbits were submitted to 30 min of myocardial ischemia with hypothermia (32 °C) induced by total liquid ventilation (TLV). Hypothermia was applied during ischemia alone (TLV group), during ischemia and reperfusion (TLV-IR group) and normothermia (Control group). In all the cases, ischemia was performed by surgical ligation of the left anterior descending coronary artery and was followed by 3 h of reperfusion before assessment of infarct size. In a parallel study, male C57BL6/J mice underwent 30 min myocardial ischemia followed by reperfusion under either normothermia (37 °C) or conventionally induced hypothermia (32 °C). In both the models, the levels of the citric acid cycle intermediate succinate, mitochondrial complex I activity were assessed at various times. The benefit of hypothermia during ischemia on infarct size was compared to inhibition of succinate accumulation and oxidation by the complex II inhibitor malonate, applied as the pro-drug dimethyl malonate under either normothermic or hypothermic conditions. Hypothermia during ischemia was cardioprotective, even when followed by normothermic reperfusion. Hypothermia during ischemia only, or during both, ischemia and reperfusion, significantly reduced infarct size (2.8 ± 0.6%, 24.2 ± 3.0% and 49.6 ± 2.6% of the area at risk, for TLV-IR, TLV and Control groups, respectively). The significant reduction of infarct size by hypothermia was neither associated with a decrease in ischemic myocardial succinate accumulation, nor with a change in its rate of oxidation at reperfusion. Similarly, dimethyl malonate infusion and hypothermia during ischemia additively reduced infarct size (4.8 ± 2.2% of risk zone) as compared to either strategy alone. Hypothermic cardioprotection is neither dependent on the inhibition of succinate accumulation during ischemia, nor of its rapid oxidation at reperfusion. The additive effect of hypothermia and dimethyl malonate on infarct size shows that they are protective by distinct mechanisms and also suggests that combining these different therapeutic approaches could further protect against ischemia/reperfusion injury during acute myocardial infarction.
Collapse
Affiliation(s)
- M Kohlhauer
- U955, IMRB, Inserm, UPEC, Ecole Nationale Vétérinaire d'Alfort, Créteil, France
| | - V R Pell
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - N Burger
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - A M Spiroski
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - A Gruszczyk
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - J F Mulvey
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Amin Mottahedin
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK.,Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK.,Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - A S H Costa
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge, CB2 0XZ, UK
| | - C Frezza
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge, CB2 0XZ, UK
| | - B Ghaleh
- U955, IMRB, Inserm, UPEC, Ecole Nationale Vétérinaire d'Alfort, Créteil, France
| | - M P Murphy
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK.,Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - R Tissier
- U955, IMRB, Inserm, UPEC, Ecole Nationale Vétérinaire d'Alfort, Créteil, France.
| | - T Krieg
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
21
|
Wang P, Li Y, Yang Z, Yu T, Zheng G, Fang X, Huang Z, Jiang L, Tang W. Inhibition of dynamin-related protein 1 has neuroprotective effect comparable with therapeutic hypothermia in a rat model of cardiac arrest. Transl Res 2018; 194:68-78. [PMID: 29351829 DOI: 10.1016/j.trsl.2018.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/21/2017] [Accepted: 01/02/2018] [Indexed: 12/12/2022]
Abstract
Dynamin-related protein 1 (Drp1) regulates mitochondrial fission, it has been proven that inhibition of Drp1 by mdivi-1 improves survival and attenuates cerebral ischemic injury after cardiac arrest. In this study, we compared the effects of Drp1 inhibition with therapeutic hypothermia on post-resuscitation neurologic injury in a rat model of cardiac arrest. Rats were randomized into 4 groups: mdivi-1 treatment group (n = 39), hypothermic group (n = 38), normothermic group (n = 41), and sham group (n = 12). The rats in the mdivi-1 treatment group were received intravenously 1.2 mg/kg of mdivi-1 at 1 minute after the return of spontaneous circulation (ROSC). In rats in hypothermia group, rapid cooling was initiated at 5 minutes after resuscitation, and the core temperature was maintained to 33 ± 0.5°C for 2 hours. The results showed that both Drp1 inhibition and therapeutic hypothermia increased 3-day survival time (all P <0.05) and improved neurologic function up to 72 hours post cardiac arrest. In addition, both Drp1 inhibition and therapeutic hypothermia decreased cell injury, apoptosis in hippocampal cornu ammonis 1 region and brain mitochondrial dysfunction including adenosine triphosphate production, reactive oxygen species and mitochondrial membrane potential after cardiac arrest. Moreover, therapeutic hypothermia decreased mitochondrial Drp1 expression and mitochondrial fission after cardiac arrest. In conclusion, inhibition of Drp1 has a similar effect to therapeutic hypothermia on neurologic outcome after resuscitation in this cardiac arrest rat model, and the neuroprotective effects of therapeutic hypothermia are associated with inhibition of mitochondrial fission.
Collapse
Affiliation(s)
- Peng Wang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Yi Li
- Department of Emergency Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhengfei Yang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Tao Yu
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Guanghui Zheng
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Xiangshao Fang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Zitong Huang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Longyuan Jiang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China.
| | - Wanchun Tang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China; Weil Institute of Emergency and Critical Care Research, School of Medicine, Virginia Commonwealth University, Richmond, Virginia; Department of Emergency Medicine, Virginia Commonwealth University, Richmond, Virginia.
| |
Collapse
|
22
|
Preconditioning-Like Properties of Short-Term Hypothermia in Isolated Perfused Rat Liver (IPRL) System. Int J Mol Sci 2018; 19:ijms19041023. [PMID: 29596325 PMCID: PMC5979303 DOI: 10.3390/ijms19041023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 12/28/2022] Open
Abstract
Hypothermia may attenuate the progression of ischemia-induced damage in liver. Here, we determined the effects of a brief cycle of hypothermic preconditioning applied before an ischemic/reperfusion (I/R) episode in isolated perfused rat liver (IPRL) on tissue damage and oxidative stress. Rats (male, 200–250 g) were anaesthetised with sodium pentobarbital (60 mg·kg−1 i.p) and underwent laparatomy. The liver was removed and perfused in a temperature-regulated non-recirculating system. Livers were randomly divided into two groups (n = 6 each group). In the hypothermia-preconditioned group, livers were perfused with hypothermic buffer (cycle of 10 min at 22 °C plus 10 min at 37 °C) and the other group was perfused at 37 °C. Both groups were then submitted to 40 min of warm ischemia and 20 min of warm reperfusion. The level of tissue-damage indicators (alanine amino transferase, ALT; lactate dehydrogenase, LDH; and proteins), oxidative stress markers (thiobarbituric acid-reactive substances, TBARS; advanced oxidation protein products, AOPP; and glutathione, GSH) were measured in aliquots of perfusate sampled at different time intervals. Histological determinations and oxidative stress biomarkers in homogenized liver (AOPP; TBARS; nitric oxide derivatives, NOx; GSH and glutathione disulphide, GSSG) were also made in the tissue at the end. Results showed that both damage and oxidant indicators significantly decreased while antioxidant increased in hypothermic preconditioned livers. In addition, homogenized liver determinations and histological observations at the end of the protocol corroborate the results in the perfusate, confirming the utility of the perfusate as a non-invasive method. In conclusion, hypothermic preconditioning attenuates oxidative damage and appears to be a promising strategy to protect the liver against IR injury.
Collapse
|
23
|
Guo J, Zhang S, Ma L, Shi H, Zhu J, Wu J, An Y, Ge J. Cardioprotection by Mild Hypothermia Is Abolished in Aged Mice. Ther Hypothermia Temp Manag 2017; 7:193-198. [PMID: 28445087 DOI: 10.1089/ther.2017.0001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Junjie Guo
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Shandong, China
| | - Shuning Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Leilei Ma
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hongtao Shi
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianbing Zhu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Wu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi An
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Shandong, China
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Otterspoor L, Van 't Veer M, Van Nunen L, Brueren G, Tonino P, Wijnbergen I, Helmes H, Zimmermann F, Van Hagen E, Johnson N, Pijls N. Safety and feasibility of selective intracoronary hypothermia in acute myocardial infarction. EUROINTERVENTION 2017; 13:e1475-e1482. [DOI: 10.4244/eij-d-17-00240] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Jahandiez V, Cour M, Bochaton T, Abrial M, Loufouat J, Gharib A, Varennes A, Ovize M, Argaud L. Fast therapeutic hypothermia prevents post-cardiac arrest syndrome through cyclophilin D-mediated mitochondrial permeability transition inhibition. Basic Res Cardiol 2017; 112:35. [PMID: 28492973 DOI: 10.1007/s00395-017-0624-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/02/2017] [Indexed: 03/14/2023]
Abstract
The opening of the mitochondrial permeability transition pore (PTP), which is regulated by the matrix protein cyclophilin D (CypD), plays a key role in the pathophysiology of post-cardiac arrest (CA) syndrome. We hypothesized that therapeutic hypothermia could prevent post-CA syndrome through a CypD-mediated PTP inhibition in both heart and brain. In addition, we investigated whether specific pharmacological PTP inhibition would confer additive protection to cooling. Adult male New Zealand White rabbits underwent 15 min of CA followed by 120 min of reperfusion. Five groups (n = 10-15/group) were studied: control group (CA only), hypothermia group (HT, hypothermia at 32-34 °C induced by external cooling at reperfusion), NIM group (injection at reperfusion of 2.5 mg/kg NIM811, a specific CypD inhibitor), HT + NIM, and sham group. The following measurements were taken: hemodynamics, echocardiography, and cellular damage markers (including S100β protein and troponin Ic). Oxidative phosphorylation and PTP opening were assessed on mitochondria isolated from both brain and heart. Acetylation of CypD was measured by immunoprecipitation in both the cerebral cortex and myocardium. Hypothermia and NIM811 significantly prevented cardiovascular dysfunction, pupillary areflexia, and early tissue damage. Hypothermia and NIM811 preserved oxidative phosphorylation, limited PTP opening in both brain and heart mitochondria and prevented increase in CypD acetylation in brain. There were no additive beneficial effects in the combination of NIM811 and therapeutic hypothermia. In conclusion, therapeutic hypothermia limited post-CA syndrome by preventing mitochondrial permeability transition mainly through a CypD-dependent mechanism.
Collapse
Affiliation(s)
- Vincent Jahandiez
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Réanimation Médicale, 5 Place d'Arsonval, 69437, Lyon Cedex 03, France
- Université de Lyon, Université Claude Bernard Lyon 1, Faculté de médecine Lyon-Est, 69373, Lyon, France
- INSERM UMR 1060, CarMeN, Equipe 5 "Cardioprotection", 69373, Lyon, France
| | - Martin Cour
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Réanimation Médicale, 5 Place d'Arsonval, 69437, Lyon Cedex 03, France
- Université de Lyon, Université Claude Bernard Lyon 1, Faculté de médecine Lyon-Est, 69373, Lyon, France
- INSERM UMR 1060, CarMeN, Equipe 5 "Cardioprotection", 69373, Lyon, France
| | - Thomas Bochaton
- INSERM UMR 1060, CarMeN, Equipe 5 "Cardioprotection", 69373, Lyon, France
| | - Maryline Abrial
- INSERM UMR 1060, CarMeN, Equipe 5 "Cardioprotection", 69373, Lyon, France
| | - Joseph Loufouat
- INSERM UMR 1060, CarMeN, Equipe 5 "Cardioprotection", 69373, Lyon, France
| | - Abdallah Gharib
- INSERM UMR 1060, CarMeN, Equipe 5 "Cardioprotection", 69373, Lyon, France
| | - Annie Varennes
- Hospices Civils de Lyon, Groupement Hospitalier Edouard Herriot, Laboratoire de Biochimie, 69437, Lyon, France
| | - Michel Ovize
- INSERM UMR 1060, CarMeN, Equipe 5 "Cardioprotection", 69373, Lyon, France
| | - Laurent Argaud
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Réanimation Médicale, 5 Place d'Arsonval, 69437, Lyon Cedex 03, France.
- Université de Lyon, Université Claude Bernard Lyon 1, Faculté de médecine Lyon-Est, 69373, Lyon, France.
- INSERM UMR 1060, CarMeN, Equipe 5 "Cardioprotection", 69373, Lyon, France.
| |
Collapse
|
26
|
Aslami H, Beurskens CJP, Tuip AM, Horn J, Juffermans NP. Induced hypothermia is associated with reduced circulating subunits of mitochondrial DNA in cardiac arrest patients. Mitochondrial DNA A DNA Mapp Seq Anal 2017; 29:525-528. [PMID: 28407722 DOI: 10.1080/24701394.2017.1315568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Induced hypothermia may protect from ischemia reperfusion injury. The mechanism of protection is not fully understood and may include an effect on mitochondria. Here we describe the effect of hypothermia on circulating mitochondrial (mt) DNA in a substudy of a multicenter randomized trial (the Target Temperature Management trial). Circulating levels of mtDNA were elevated in patients with cardiac arrest at all-time points compared to healthy controls. After 24 h of temperature management, patients kept at 33 °C had significantly lower levels of COX3, NADH1 and NADH2 compared to baseline, in contrast to those kept at 36 °C. After regain of temperature, cytochrome - B was significantly reduced in patients kept at 33 °C with cardiac arrest. Cardiac arrest results in circulating mtDNA levels, which reduced during a temperature management protocol in patients with a target temperature of 33 °C.
Collapse
Affiliation(s)
- Hamid Aslami
- a Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.) , Academic Medical Center , Amsterdam , The Netherlands.,b Department of Anesthesiology , Academic Medical Center , Amsterdam , The Netherlands.,c Department of Intensive Care Medicine , Academic Medical Center , Amsterdam , The Netherlands
| | - Charlotte J P Beurskens
- a Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.) , Academic Medical Center , Amsterdam , The Netherlands.,b Department of Anesthesiology , Academic Medical Center , Amsterdam , The Netherlands
| | - Anita M Tuip
- a Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.) , Academic Medical Center , Amsterdam , The Netherlands
| | - Janneke Horn
- c Department of Intensive Care Medicine , Academic Medical Center , Amsterdam , The Netherlands
| | - Nicole P Juffermans
- a Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.) , Academic Medical Center , Amsterdam , The Netherlands.,c Department of Intensive Care Medicine , Academic Medical Center , Amsterdam , The Netherlands
| |
Collapse
|
27
|
Marycz K, Marędziak M, Lewandowski D, Zachanowicz E, Zięcina A, Wiglusz RJ, Pązik R. The Effect of Co 0.2Mn 0.8Fe 2O 4 Ferrite Nanoparticles on the C2 Canine Mastocytoma Cell Line and Adipose-Derived Mesenchymal Stromal Stem Cells (ASCs) Cultured Under a Static Magnetic Field: Possible Implications in the Treatment of Dog Mastocytoma. Cell Mol Bioeng 2017; 10:209-222. [PMID: 28580034 PMCID: PMC5434168 DOI: 10.1007/s12195-017-0480-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 02/10/2017] [Indexed: 12/29/2022] Open
Abstract
Cobalt manganese ferrite nanoparticles have application potential in the biomedical field, however there is limited information concerning the biological response. The aim of this work was to investigate the cytotoxic potential of cobalt-manganese ferrite nanoparticles in canine mastocytoma tumor cells (C2) and adipose-derived mesenchymal stromal stem cells (ASCs) cultured under a static magnetic field (MF). In this study, we investigated the viability and proliferation rate of ASC and C2 cells cultured with Co0.2Mn0.8Fe2O4 nanoparticles under 0.5T MF. We observed cells morphology and measured intracellular ROS generation. Thermal observations were used to characterize the thermotrophic cell behavior in different condition and RNA level of heat shock proteins and apoptotic genes was measured. Nanoparticles reduced cell viability, caused cell damage, i.e., through the formation of reactive oxygen species (ROS) and increased transcriptional level of apoptotic genes (Bcl-2, Bax, p53, p21). In addition, we have found that C2 mastocytoma cells cultured with metal oxide nanoparticles under MF exhibited unexpected biological responses, including thermotolerance and apoptotic response induced by the expression of heat shock proteins and ROS produced under a MF. Our results suggest that stimulation using MF and Co0.2Mn0.8Fe2O4 nanoparticles is involved in mechanisms associated with controlling cell proliferative potential signaling events. We can state that significant differences between normal and cancer cells in response to nanoparticles and MF are apparent. Our results show that nanoparticles and MF elevate the temperature in vitro in tumor cells, thereby increasing the expression of ROS as well as heat shock proteins.
Collapse
Affiliation(s)
- K. Marycz
- Faculty of Biology, Wrocław University of Environmental and Life Sciences, Kożuchowska 5b, 50-631 Wrocław, Poland
| | - M. Marędziak
- Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Norwida 31, 50-375 Wrocław, Poland
| | - D. Lewandowski
- Institute of Materials Science and Applied Mechanics, Wroclaw University of Technology, Smoluchowskiego 25, 50-372 Wrocław, Poland
| | - E. Zachanowicz
- Polymer Engineering and Technology Division, Wroclaw University of Technology, 50-370 Wrocław, Poland
| | - A. Zięcina
- Institute of Low Temperature and Structure Research, PAN, Okólna 2, 50-422 Wrocław, Poland
| | - R. J. Wiglusz
- Institute of Low Temperature and Structure Research, PAN, Okólna 2, 50-422 Wrocław, Poland
- Centre for Advanced Materials and Smart Structures, Polish Academy of Sciences, Okolna 2, 50-950 Wrocław, Poland
| | - R. Pązik
- Institute of Low Temperature and Structure Research, PAN, Okólna 2, 50-422 Wrocław, Poland
- Centre for Advanced Materials and Smart Structures, Polish Academy of Sciences, Okolna 2, 50-950 Wrocław, Poland
| |
Collapse
|
28
|
Nadeau M, Sage M, Kohlhauer M, Mousseau J, Vandamme J, Fortin-Pellerin E, Praud JP, Tissier R, Walti H, Micheau P. Optimal Control of Inspired Perfluorocarbon Temperature for Ultrafast Hypothermia Induction by Total Liquid Ventilation in an Adult Patient Model. IEEE Trans Biomed Eng 2017; 64:2760-2770. [PMID: 28237918 DOI: 10.1109/tbme.2017.2671741] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
GOAL Recent preclinical studies have shown that therapeutic hypothermia induced in less than 30 min by total liquid ventilation (TLV) strongly improves the survival rate after cardiac arrest. When the lung is ventilated with a breathable perfluorocarbon liquid, the inspired perfluorocarbon allows us to control efficiently the cooling process of the organs. While TLV can rapidly cool animals, the cooling speed in humans remains unknown. The objective is to predict the efficiency and safety of ultrafast cooling by TLV in adult humans. METHODS It is based on a previously published thermal model of ovines in TLV and the design of a direct optimal controller to compute the inspired perfluorocarbon temperature profile. The experimental results in an adult sheep are presented. The thermal model of sheep is subsequently projected to a human model to simulate the optimal hypothermia induction and its sensitivity to physiological parameter uncertainties. RESULTS The results in the sheep showed that the computed inspired perfluorocarbon temperature command can avoid arterial temperature undershoot. The projection to humans revealed that mild hypothermia should be ultrafast (reached in fewer than 3 min (-72 °C/h) for the brain and 20 min (-10 °C/h) for the entire body). CONCLUSION The projection to human model allows concluding that therapeutic hypothermia induction by TLV can be ultrafast and safe. SIGNIFICANCE This study is the first to simulate ultrafast cooling by TLV in a human model and is a strong motivation to translate TLV to humans to improve the quality of life of postcardiac arrest patients.
Collapse
|
29
|
Kohlhauer M, Berdeaux A, Ghaleh B, Tissier R. Therapeutic hypothermia to protect the heart against acute myocardial infarction. Arch Cardiovasc Dis 2016; 109:716-722. [DOI: 10.1016/j.acvd.2016.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/29/2016] [Accepted: 05/03/2016] [Indexed: 10/20/2022]
|
30
|
Saunderson CE, Chowdhary A, Brogan RA, Batin PD, Gale CP. In an era of rapid STEMI reperfusion with Primary Percutaneous Coronary Intervention is there a role for adjunct therapeutic hypothermia? A structured literature review. Int J Cardiol 2016; 223:883-890. [DOI: 10.1016/j.ijcard.2016.08.226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/12/2016] [Indexed: 11/26/2022]
|
31
|
Onukwufor JO, Kibenge F, Stevens D, Kamunde C. Hypoxia-reoxygenation differentially alters the thermal sensitivity of complex I basal and maximal mitochondrial oxidative capacity. Comp Biochem Physiol A Mol Integr Physiol 2016; 201:87-94. [DOI: 10.1016/j.cbpa.2016.06.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/17/2016] [Accepted: 06/28/2016] [Indexed: 10/21/2022]
|
32
|
Subnormothermic Perfusion in the Isolated Rat Liver Preserves the Antioxidant Glutathione and Enhances the Function of the Ubiquitin Proteasome System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9324692. [PMID: 27800122 PMCID: PMC5075307 DOI: 10.1155/2016/9324692] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/09/2016] [Accepted: 09/15/2016] [Indexed: 12/18/2022]
Abstract
The reduction of oxidative stress is suggested to be one of the main mechanisms to explain the benefits of subnormothermic perfusion against ischemic liver damage. In this study we investigated the early cellular mechanisms induced in isolated rat livers after 15 min perfusion at temperatures ranging from normothermia (37°C) to subnormothermia (26°C and 22°C). Subnormothermic perfusion was found to maintain hepatic viability. Perfusion at 22°C raised reduced glutathione levels and the activity of glutathione reductase; however, lipid and protein oxidation still occurred as determined by malondialdehyde, 4-hydroxynonenal-protein adducts, and advanced oxidation protein products. In livers perfused at 22°C the lysosomal and ubiquitin proteasome system (UPS) were both activated. The 26S chymotrypsin-like (β5) proteasome activity was significantly increased in the 26°C (46%) and 22°C (42%) groups. The increased proteasome activity may be due to increased Rpt6 Ser120 phosphorylation, which is known to enhance 26S proteasome activity. Together, our results indicate that the early events produced by subnormothermic perfusion in the liver can induce oxidative stress concomitantly with antioxidant glutathione preservation and enhanced function of the lysosomal and UPS systems. Thus, a brief hypothermia could trigger antioxidant mechanisms and may be functioning as a preconditioning stimulus.
Collapse
|
33
|
Lv O, Zhou F, Zheng Y, Li Q, Wang J, Zhu Y. Mild hypothermia protects against early brain injury in rats following subarachnoid hemorrhage via the TrkB/ERK/CREB signaling pathway. Mol Med Rep 2016; 14:3901-7. [PMID: 27600366 DOI: 10.3892/mmr.2016.5709] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 08/18/2016] [Indexed: 11/06/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is a severe neurological disease, which is associated with a significant number of cases of premature mortality and disability worldwide. Mild hypothermia (MH) has been proposed as a potential therapeutic strategy to reduce neuronal injury following SAH. The present study aimed to investigate the mechanisms of MH's protective role in the process of SAH. The present study demonstrated that MH was able to protect against early brain injury in a rat model of SAH. Treating SAH rats with MH reduced the release of reactive oxygen species and prevented activation of apoptotic cascades. Furthermore, the protective effects of MH were shown to be mediated by enhanced activity of the tropomyosin receptor kinase B/extracellular signal‑regulated kinases/cAMP response element binding protein (TrkB/ERK/CREB) pathway. Inhibition of TrkB/ERK/CREB activity using a small molecule inhibitor largely abolished the beneficial effects of MH in SAH rats. These results outline an endogenous mechanism underlying the neuroprotective effects of MH in SAH.
Collapse
Affiliation(s)
- Ou Lv
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Fenggang Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Yongri Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Qingsong Li
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Jianjiao Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Yulan Zhu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
34
|
Kohlhauer M, Berdeaux A, Kerber RE, Micheau P, Ghaleh B, Tissier R. Liquid Ventilation for the Induction of Ultrafast Hypothermia in Resuscitation Sciences: A Review. Ther Hypothermia Temp Manag 2016; 6:63-70. [DOI: 10.1089/ther.2015.0024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Matthias Kohlhauer
- Inserm, Unité 955, Equipe 03, Créteil, France
- Université Paris Est, UMR_S955, DHU A-TVB, UPEC, Créteil, France
- Université Paris Est, École Nationale Vétérinaire d'Alfort, Maisons-Alfort Cedex, France
| | - Alain Berdeaux
- Inserm, Unité 955, Equipe 03, Créteil, France
- Université Paris Est, UMR_S955, DHU A-TVB, UPEC, Créteil, France
- Université Paris Est, École Nationale Vétérinaire d'Alfort, Maisons-Alfort Cedex, France
| | - Richard E. Kerber
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Philippe Micheau
- Department of Mechanical Engineering, Université de Sherbrooke, Sherbrooke, Canada
| | - Bijan Ghaleh
- Inserm, Unité 955, Equipe 03, Créteil, France
- Université Paris Est, UMR_S955, DHU A-TVB, UPEC, Créteil, France
- Université Paris Est, École Nationale Vétérinaire d'Alfort, Maisons-Alfort Cedex, France
| | - Renaud Tissier
- Inserm, Unité 955, Equipe 03, Créteil, France
- Université Paris Est, UMR_S955, DHU A-TVB, UPEC, Créteil, France
- Université Paris Est, École Nationale Vétérinaire d'Alfort, Maisons-Alfort Cedex, France
| |
Collapse
|
35
|
Huang CH, Tsai MS, Chiang CY, Su YJ, Wang TD, Chang WT, Chen HW, Chen WJ. Activation of mitochondrial STAT-3 and reduced mitochondria damage during hypothermia treatment for post-cardiac arrest myocardial dysfunction. Basic Res Cardiol 2015; 110:59. [DOI: 10.1007/s00395-015-0516-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 10/08/2015] [Indexed: 01/05/2023]
|
36
|
Xu SY, Hu FY, Ren LJ, Chen L, Zhou ZQ, Zhang XJ, Li WP. Dantrolene enhances the protective effect of hypothermia on cerebral cortex neurons. Neural Regen Res 2015; 10:1279-85. [PMID: 26487856 PMCID: PMC4590241 DOI: 10.4103/1673-5374.162761] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2015] [Indexed: 01/05/2023] Open
Abstract
Therapeutic hypothermia is the most promising non-pharmacological neuroprotective strategy against ischemic injury. However, shivering is the most common adverse reaction. Many studies have shown that dantrolene is neuroprotective in in vitro and in vivo ischemic injury models. In addition to its neuroprotective effect, dantrolene neutralizes the adverse reaction of hypothermia. Dantrolene may be an effective adjunctive therapy to enhance the neuroprotection of hypothermia in treating ischemic stroke. Cortical neurons isolated from rat fetuses were exposed to 90 minutes of oxygen-glucose deprivation followed by reoxygenation. Neurons were treated with 40 μM dantrolene, hypothermia (at 33°C), or the combination of both for 12 hours. Results revealed that the combination of dantrolene and hypothermia increased neuronal survival and the mitochondrial membrane potential, and reduced intracellular active oxygen cytoplasmic histone-associated DNA fragmentation, and apoptosis. Furthermore, improvements in cell morphology were observed. The combined treatment enhanced these responses compared with either treatment alone. These findings indicate that dantrolene may be used as an effective adjunctive therapy to enhance the neuroprotective effects of hypothermia in ischemic stroke.
Collapse
Affiliation(s)
- Sui-yi Xu
- Postdoctoral Workstation, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Department of Brain Center, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen University First Affiliated Hospital, Shenzhen, Guangdong Province, China
| | - Feng-yun Hu
- Department of Neurology, Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Li-jie Ren
- Department of Brain Center, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen University First Affiliated Hospital, Shenzhen, Guangdong Province, China
| | - Lei Chen
- Department of Brain Center, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen University First Affiliated Hospital, Shenzhen, Guangdong Province, China
| | - Zhu-qing Zhou
- Department of Brain Center, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen University First Affiliated Hospital, Shenzhen, Guangdong Province, China
| | - Xie-jun Zhang
- Department of Brain Center, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen University First Affiliated Hospital, Shenzhen, Guangdong Province, China
| | - Wei-ping Li
- Postdoctoral Workstation, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Department of Brain Center, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen University First Affiliated Hospital, Shenzhen, Guangdong Province, China
| |
Collapse
|
37
|
Xiong W, Xu S, Li H, Liang K. Moderate hypothermia ameliorates enterocyte mitochondrial dysfunction in severe shock and reperfusion. J Surg Res 2015; 200:250-9. [PMID: 26227675 DOI: 10.1016/j.jss.2015.06.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/27/2015] [Accepted: 06/30/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND Hypothermia can ameliorate ischemia-reperfusion-induced intestinal injury; however, whether the therapeutic mechanism of hypothermia on hemorrhagic shock, a severe condition of ischemia-reperfusion, is associated with mitochondrial protection in enterocytes is rarely reported. We aimed to evaluate the effects of hypothermia on mitochondria after shock-induced intestinal injury. MATERIALS AND METHODS A severe hemorrhagic shock model was constructed in Sprague-Dawley rats at induced hypothermic (32°C or 34°C) or normothermic temperatures (37°C), followed by resuscitation with whole shed blood and Ringer lactate (15 mg/kg body weight). After 2 h, 24 rats were killed and their intestinal tissue was collected; the remaining animals were returned to the normothermic environment to observe the survival time. RESULTS There was severe mitochondrial dysfunction in the normothermia group, as well as increased oxidative stress and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling apoptotic index. As expected, hypothermia treatment decreased mitochondrial permeability transition pore opening and restored the mitochondrial membrane potential and intracellular adenosine triphosphate content. Furthermore, hypothermia elevated mitochondrial-reduced glutathione and decreased mitochondrial malondialdehyde; consistent with the restored mitochondrial function, intestinal cell apoptosis and intestinal histopathologic injury were attenuated, the systemic inflammatory response was mitigated, and survival time was significantly prolonged. Additionally, moderate-induced hypothermia (32°C) had better therapeutic effects than mild hypothermia (34°C). CONCLUSIONS The results suggest that moderate hypothermia resuscitation is an effective treatment for shock-induced intestinal injury, and its therapeutic mechanism may be related to mitochondrial protection.
Collapse
Affiliation(s)
- Wei Xiong
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Department of Anesthesiology, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Shiyuan Xu
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Hongyue Li
- Department of Anesthesiology, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Kunhui Liang
- Department of Anesthesiology, Zhongshan Hospital, Xiamen University, Xiamen, China
| |
Collapse
|
38
|
ABYSS: Therapeutic hypothermia by total liquid ventilation following cardiac arrest and resuscitation. Ing Rech Biomed 2015. [DOI: 10.1016/j.irbm.2015.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Huang CH, Chiang CY, Pen RH, Tsai MS, Chen HW, Hsu CY, Wang TD, Ma MHM, Chen SC, Chen WJ. Hypothermia treatment preserves mitochondrial integrity and viability of cardiomyocytes after ischaemic reperfusion injury. Injury 2015; 46:233-9. [PMID: 25467711 DOI: 10.1016/j.injury.2014.10.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/22/2014] [Indexed: 02/02/2023]
Abstract
BACKGROUND Haemorrhagic shock after traumatic injury carries a high mortality. Therapeutic hypothermia has been widely used in critical illness to improve the outcome in haemorrhagic shock by activation of cardiac pro-survival signalling pathways. However, the role played by the mitochondria in the cardioprotective effects of therapeutic hypothermia remains unclear. We investigated the effects of therapeutic hypothermia on mitochondrial function and integrity after haemorrhagic shock using an in vitro ischaemia-reperfusion model. METHODS H9c2 cardiomyocytes received a simulated ischaemic reperfusion injury under normothermic (37 °C) and hypothermic (31 °C) conditions. The cardiomyocytes were treated with hypoxic condition for 18 h in serum-free, glucose-free culture medium at pH 6.9 and then shifted to re-oxygenation status for 6h in serum-containing cell culture medium at pH 7.4. Cellular survival, mitochondrial integrity, energy metabolism and calcium homeostasis were studied. RESULTS Hypothermia treatment lessened cell death (15.0 ± 12.7 vs. 31.9 ± 11.8%, P=0.025) and preserved mitochondrial number (81.3 ± 17.4 vs. 45.2 ± 6.6, P=0.03) against simulated ischaemic reperfusion injury. Hypothermia treatment ameliorated calcium overload in the intracellular (1.5 ± 0.2 vs. 9.5 ± 2.8, P<0.001) and intra-mitochondrial (1.0 ± 0.3 vs. 1.6 ± 0.3, P=0.014) compartments against the injury. Mitochondrial integrity was more preserved by hypothermia treatment (50.1 ± 26.6 vs. 14.8 ± 13.0%, P<0.01) after the injury. Mitochondrial ATP concentrations were maintained with hypothermia treatment after injury (16.7 ± 9.5 vs. 6.1 ± 5.1 μM, P<0.01). CONCLUSIONS Hypothermia treatment at 31 °C can ameliorate cardiomyocyte damage caused by simulated ischaemic reperfusion injuries. Mitochondrial calcium homeostasis, energy metabolism, and membrane integrity are preserved and play critical roles during therapeutic hypothermia treatment.
Collapse
Affiliation(s)
- Chien-Hua Huang
- Department of Emergency Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Chih-Yen Chiang
- Division of Cardiology, Department of Internal Medicine, Cardinal Tien Hospital Yonghe Branch, New Taipei City, Taiwan.
| | - Ren-How Pen
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan.
| | - Min-Shan Tsai
- Department of Emergency Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Huei-Wen Chen
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Chiung-Yuan Hsu
- Department of Emergency Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Tzung-Dau Wang
- Department of Internal Medicine (Cardiology), College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Matthew Huei-Ming Ma
- Department of Emergency Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Shyr-Chyr Chen
- Department of Emergency Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Wen-Jone Chen
- Department of Emergency Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Internal Medicine, Lotung Poh-Ai Hospital, Yilan County, Taiwan.
| |
Collapse
|
40
|
Ning XH, Villet OM, Ge M, Sekhar LN, Corson MA, Tylee TS, Fan LP, Yao L, Zhu C, Olson AK, Buroker NE, Xu CS, Anderson DL, Soh YK, Wang E, Chen SH, Portman MA. Optimal protective hypothermia in arrested mammalian hearts. Ther Hypothermia Temp Manag 2014; 5:40-7. [PMID: 25514569 DOI: 10.1089/ther.2014.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many therapeutic hypothermia recommendations have been reported, but the information supporting them is sparse, and reveals a need for the data of target therapeutic hypothermia (TTH) from well-controlled experiments. The core temperature ≤35°C is considered as hypothermia, and 29°C is a cooling injury threshold in pig heart in vivo. Thus, an optimal protective hypothermia (OPH) should be in the range 29-35°C. This study was conducted with a pig cardiopulmonary bypass preparation to decrease the core temperature to 29-35°C range at 20 minutes before and 60 minutes during heart arrest. The left ventricular (LV) developed pressure, maximum of the first derivative of LV (dP/dtmax), cardiac power, heart rate, cardiac output, and myocardial velocity (Vmax) were recorded continuously via an LV pressure catheter and an aortic flow probe. At 20 minutes of off-pump during reperfusion after 60 minutes arrest, 17 hypothermic hearts showed that the recovery of Vmax and dP/dtmax established sigmoid curves that consisted of two plateaus: a good recovery plateau at 29-30.5°C, the function recovered to baseline level (BL) (Vmax=118.4%±3.9% of BL, LV dP/dtmax=120.7%±3.1% of BL, n=6); another poor recovery plateau at 34-35°C (Vmax=60.2%±2.8% of BL, LV dP/dtmax=28.0%±5.9% of BL, p<0.05, n=6; ), which are similar to the four normothermia arrest (37°C) hearts (Vmax=55.9%±4.8% of BL, LV dP/dtmax=24.5%±2.1% of BL, n=4). The 32-32.5°C arrest hearts showed moderate recovery (n=5). A point of inflection (around 30.5-31°C) existed at the edge of a good recovery plateau followed by a steep slope. The point presented an OPH that should be the TTH. The results are concordant with data in the mammalian hearts, suggesting that the TTH should be initiated to cool core temperature at 31°C.
Collapse
Affiliation(s)
- Xue-Han Ning
- 1 Division of Cardiology, Department of Pediatrics, University of Washington , Seattle, Washington
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Xu SY, Hu YF, Li WP, Wu YM, Ji Z, Wang SN, Li K, Pan SY. Intermittent hypothermia is neuroprotective in an in vitro model of ischemic stroke. Int J Biol Sci 2014; 10:873-81. [PMID: 25170301 PMCID: PMC4147221 DOI: 10.7150/ijbs.8868] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 07/14/2014] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE To investigate whether the intermittent hypothermia (IH) protects neurons against ischemic insult and the potential molecular targets using an in vitro ischemic model of oxygen glucose deprivation (OGD). METHODS Fetal rat cortical neurons isolated from Day E18 rat embryos were subjected to 90-min OGD and hypothermia treatments during reoxygenation before examining the changes in microscopic morphology, cell viability, microtubule- associated protein 2 (MAP-2) release, intracellular pH value and calcium, reactive oxygen species (ROS) generation, mitochondrial membrane potential (△Ψm) and neuronal death using cell counting kit (CCK-8), enzyme-linked immunosorbent assay (ELISA), BCECF AM, Fluo-3 AM, DCFH-DA and dihydroethidium (DHE), JC-1 staining and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL), respectively. RESULTS 90-min OGD induced morphologic abnormalities, cell viability decline, MAP-2 release, intracellular acidosis, calcium overload, increased ROS generation, △Ψm decrease and cell death in primary neurons, which was partially inhibited by continuous hypothermia (CH) and intermittent hypothermia (IH). Interestingly, 6-h CH was insufficient to reduce intracellular calcium overload and stabilize mitochondrial membrane potential (△Ψm), while 12-h CH was effective in reversing the above changes. All IH treatments (6×1 h, 4×1.5 h or 3×2 h) effectively attenuated intracellular free calcium overload, inhibited ROS production, stabilized mitochondrial membrane potential (△Ψm) and reduced delayed cell death in OGD-treated cells. However, only IH intervals longer than 1.5 h appeared to be effective in preventing cell viability loss and intracellular pH decline. CONCLUSION Both CH and IH were neuroprotective in an in vitro model of ischemic stroke, and in spite of shorter hypothermia duration, IH could provide a comparable neuroprotection to CH.
Collapse
Affiliation(s)
- Sui-yi Xu
- 1. Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; ; 2. Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen 518035, China
| | - Ya-fang Hu
- 1. Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wei-pin Li
- 2. Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen 518035, China
| | - Yong-ming Wu
- 1. Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhong Ji
- 1. Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Sheng-nan Wang
- 1. Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ke Li
- 3. Research Center of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Su-yue Pan
- 1. Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
42
|
The role of mitochondria-derived reactive oxygen species in hyperthermia-induced platelet apoptosis. PLoS One 2013; 8:e75044. [PMID: 24023970 PMCID: PMC3762754 DOI: 10.1371/journal.pone.0075044] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 08/08/2013] [Indexed: 12/17/2022] Open
Abstract
A combination of hyperthermia with radiotherapy and chemotherapy for various solid tumors has been practiced clinically. However, hyperthermic therapy has side effects, such as thrombocytopenia. Up to now, the pathogenesis of hyperthermia-induced thrombocytopenia remains unclear. Previous studies have shown that hyperthermia induces platelet apoptosis. However, the signaling pathways and molecular mechanisms involved in hyperthermia-induced platelet apoptosis have not been determined. Here we show that hyperthermia induced intracellular reactive oxygen species (ROS) production and mitochondrial ROS generation in a time-dependent manner in platelets. The mitochondria-targeted ROS scavenger Mito-TEMPO blocked intracellular ROS and mitochondrial ROS generation. By contrast, inhibitors of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, nitric oxide synthase, cyclooxygenase and lipoxygenase did not. Furthermore, Mito-TEMPO inhibited hyperthermia-induced malonyldialdehyde production and cardiolipin peroxidation. We also showed that hyperthermia-triggered platelet apoptosis was inhibited by Mito-TEMPO. Furthermore, Mito-TEMPO ameliorated hyperthermia-impaired platelet aggregation and adhesion function. Lastly, hyperthermia decreased platelet manganese superoxide dismutase (MnSOD) protein levels and enzyme activity. These data indicate that mitochondrial ROS play a pivotal role in hyperthermia-induced platelet apoptosis, and decreased of MnSOD activity might, at least partially account for the enhanced ROS levels in hyperthermia-treated platelets. Therefore, determining the role of mitochondrial ROS as contributory factors in platelet apoptosis, is critical in providing a rational design of novel drugs aimed at targeting mitochondrial ROS. Such therapeutic approaches would have potential clinical utility in platelet-associated disorders involving oxidative damage.
Collapse
|