1
|
Mokhtar Tawfeek ES, Aly Abou Elez Gawish S, Hamed WS, Asker SA. Construction of an animal model of autism based on interaction between cerebellar histological, immunohistochemical, and biochemical changes in adult male albino rat. Ultrastruct Pathol 2025; 49:39-57. [PMID: 39654093 DOI: 10.1080/01913123.2024.2438382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/01/2024] [Accepted: 12/02/2024] [Indexed: 01/02/2025]
Abstract
METHODS Twelve pregnant female rats were divided into a control group and a valproic acid (VPA) treated group (injected intraperitoneally on embryonic day 12 with 600 mg/kg body weight of VPA). Neurobehavioral tests were conducted on the offspring of both groups. The cerebellum was studied by light and electron microscopy as well as GFAP and caspase-3 immunohistochemical staining. RESULTS The VPA-treated group showed signs of neuronal degeneration, such as congested blood vessels, vacuolations, irregularly shrunken with dark small heterochromatic nuclei and numerous apoptotic blebs in the Purkinje and granule cells with vacuolated cerebellar glomeruli. The myelinated nerve fibers showed rarefaction and loss of their neurofilaments. GFAP and caspase-3 immune expression were significantly altered in the VPA-treated group. CONCLUSION The VPA rat model can serve as an excellent model of autism at the structural level, which may be used as a validated model in preclinical studies to evaluate novel drugs.
Collapse
Affiliation(s)
- Eman Saeed Mokhtar Tawfeek
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura National University, Gamasa, Egypt
| | - Salwa Aly Abou Elez Gawish
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Wafaa Saad Hamed
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Samar A Asker
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Delta University, Gamasa, Egypt
| |
Collapse
|
2
|
Iwai T, Ikeguchi R, Aoyama T, Noguchi T, Yoshimoto K, Sakamoto D, Fujita K, Miyazaki Y, Akieda S, Nagamura-Inoue T, Nagamura F, Nakayama K, Matsuda S. Nerve regeneration using a Bio 3D conduit derived from umbilical cord-Derived mesenchymal stem cells in a rat sciatic nerve defect model. PLoS One 2024; 19:e0310711. [PMID: 39715170 DOI: 10.1371/journal.pone.0310711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 09/05/2024] [Indexed: 12/25/2024] Open
Abstract
Human umbilical cord-derived mesenchymal stromal cells (UC-MSCs), which can be prepared in advance and are presumed to be advantageous for nerve regeneration, have potential as a cell source for Bio 3D conduits. The purpose of this study was to evaluate the nerve regeneration ability of Bio 3D conduits made from UC-MSCs using a rat sciatic nerve defect model. METHODS A Bio 3D conduit was fabricated using a Bio 3D printer by placing UC-MSC spheroids into thin needles according to predesigned 3D data. The conduit was transplanted to bridge the 5-mm gaps of Lewis rat sciatic nerve, and nerve regeneration was evaluated at 8 weeks (Bio 3D group). Transplantation of autologous nerve segments (autograft) and silicone tubes represented the positive and negative control groups, respectively. In a second experiment, immunological reactions were evaluated in Bio 3D, autograft, and allograft groups by histochemical staining of transplanted segments in Brown Norway rats. RESULTS The mean angle of attack value in the kinematic analysis was significantly better in the Bio 3D group (‒20.1 ± 0.5°) than in the silicone group (‒33.7 ± 1.5°) 8 weeks after surgery. The average diameters of myelinated axons were significantly larger in the Bio 3D group (3.61 ± 0.15 μm) than in the silicone group (3.07 ± 0.12 μm), and the number of myelinated axons was significantly higher in the Bio 3D group (11,201 ± 980) than in the silicone group (8117 ± 646). Histological findings (hematoxylin and eosin [HE] staining and anti-CD3 fluorescent immunostaining) showed that rejection was suppressed in the Bio 3D group compared to the allograft group. Based on macroscopic findings and histological findings (anti-human mitochondrial fluorescent immunostaining), UC-MSCs in the Bio 3D conduit disappeared gradually from week 1 to week 8. CONCLUSIONS The Bio 3D conduit prepared from UC-MSCs was superior to the silicone tube and achieved comparable nerve regeneration to the autologous (autograft) group. Rejection was suppressed in the Bio 3D group compared to the allograft group. Although this study used a xenograft model, we speculate that rejection was low due to the characteristics of UC-MSCs. UC-MSCs are a useful cell source for Bio 3D conduits.
Collapse
Affiliation(s)
- Terunobu Iwai
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | - Ryosuke Ikeguchi
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
- Department of Rehabilitation Medicine, Kyoto University, Kyoto, Japan
| | - Tomoki Aoyama
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Noguchi
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | - Koichi Yoshimoto
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | - Daichi Sakamoto
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | - Kazuaki Fujita
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | | | | | - Tokiko Nagamura-Inoue
- Department of Cell Processing and Transfusion, The Institute of Medical Science, IMSUT CORD, Research Hospital, The University of Tokyo, Tokyo, Japan
| | - Fumitaka Nagamura
- Division of Advanced Medicine Promotion, The Advanced Clinical Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Koichi Nakayama
- Department of Regenerative Medicine and Biomedical Engineering, Faculty of Medicine, Saga University, Saga, Japan
| | - Shuichi Matsuda
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Sharifi M, Salehi M, Ebrahimi-Barough S, Alizadeh M, Jahromi HK, Kamalabadi-Farahani M. Synergic effects of core-shell nanospheres and magnetic field for sciatic nerve regeneration in decellularized artery conduits with Schwann cells. J Nanobiotechnology 2024; 22:776. [PMID: 39696412 DOI: 10.1186/s12951-024-03048-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
Numerous conduits have been developed to improve peripheral nerve regeneration. However, challenges remain, including remote control of conduit function, and programmed cell behaviors like orientation. We synthesized Fe3O4-MnO2@Zirconium-based Metal-organic frameworks@Retinoic acid (FMZMR) core-shell and assessed their impact on Schwann cell function and behavior within conduits made from decellularized human umbilical arteries (DHUCA) under magnetic field (MF). FMZMR core-shell, featuring a spherical porous structure and catalytic properties, effectively scavenges radicals and facilitates controlled drug release under MF. The histology of the DHUCA indicates effective decellularization with adequate tensile strength and Young's modulus for sciatic nerve regeneration. In-vitro results demonstrate that FMZMR core-shell is biocompatible and promotes Schwann cell proliferation through remotely controlled drug release. Furthermore, its synergy with MF enhances cell orientation and increases neurite length by ~ 1.93-fold. Functional and histological evaluations indicate that the FMZMR core-shell combined with MF promotes nerve regeneration, decreases muscle atrophy, and enhances new neuron growth and myelin formation, without negatively affecting vital tissues. This study suggests that the synergistic effect of FMZMR core-shell with MF can alleviate some of the treatment challenges.
Collapse
Affiliation(s)
- Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Majid Salehi
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Mohammad Kamalabadi-Farahani
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran.
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
| |
Collapse
|
4
|
Zhukauskas R, Fischer DN, Deister C, Faleris J, Marquez-Vilendrer SB, Mercer D. Histological Comparison of Porcine Small Intestine Submucosa and Bovine Type-I Collagen Conduit for Nerve Repair in a Rat Model. JOURNAL OF HAND SURGERY GLOBAL ONLINE 2023; 5:810-817. [PMID: 38106932 PMCID: PMC10721507 DOI: 10.1016/j.jhsg.2023.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/15/2023] [Indexed: 12/19/2023] Open
Abstract
Purpose After nerve injury, macrophages and Schwann cells remove axon and myelin debris. We hypothesized that nerves repaired with different conduit materials will result in varying levels of these cell populations, which impacts Wallerian degeneration and axonal regeneration. Methods We performed a unilateral sciatic nerve transection in 18 rats. The nerves were repaired with small intestine submucosa (SIS, n = 9) or isolated type-I collagen (CLC, n = 9) conduits. Rats were monitored for 4 weeks. Histology samples were obtained from the proximal nerve, mid-implant, and distal nerve regions. Samples were stained for total macrophages, M2 macrophages, foamy phagocytes, Schwann cells, vascular components, axon components, and collagen density. Results Distal nerve analyses showed higher populations of total macrophages and M2 macrophages in SIS-repaired nerves and higher density of foamy phagocytes in CLC-repaired nerves. Proximal nerve, mid-implant, and distal nerve analyses showed higher Schwann cell and vascular component densities in SIS-repaired nerves. Axon density was higher in the mid-implant region of SIS-repaired nerves. Collagen staining in the mid-implant was scant, but less collagen density was observed in SIS-repaired versus CLC-repaired nerves. Conclusions In the distal nerve, the following were observed: (1) lower total macrophages in CLC-repaired nerves, suggesting lower overall inflammation versus SIS-repaired nerves; (2) higher M2 macrophages in SIS-repaired versus CLC-repaired nerves, a driving factor for higher total macrophages and indicative of an inflammation resolution response in SIS-repaired nerves; and (3) a lower foamy phagocyte density in SIS-repaired nerves, suggesting earlier resolution of Wallerian degeneration versus CLC-repaired nerves. In the proximal nerve, mid-implant, and distal nerve, higher Schwann cell and vascular component densities were noted in SIS-repaired nerves. In the mid-implant, a higher axon component density and a lower collagen density of the SIS-repaired nerves versus CLC-repaired nerves were noted. These results indicate more robust nerve regeneration with less collagen deposition. Clinical relevance This in vivo study evaluated two common conduit materials that are used in peripheral nerve repair. Clinical outcomes of nerves repaired with conduits may be impacted by the response to different conduit materials. These nerve repair responses include Wallerian degeneration, nerve regeneration, and nerve scarring. This study evaluated Wallerian degeneration using total macrophages, M2 macrophages, and foamy phagocytes. Nerve regeneration was evaluated using Schwann cells and axons. Nerve scarring was evaluated using vascular and collagen density.
Collapse
|
5
|
Evaluating the Degradation Process of Collagen Sponge and Acellular Matrix Implants In Vivo Using the Standardized HPLC-MS/MS Method. SEPARATIONS 2023. [DOI: 10.3390/separations10010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The purpose of this study was to establish a collagen determination method based on an isotope-labeled collagen peptide as an internal reference via high-performance liquid chromatography–tandem mass spectrometry (HPLC–MS/MS), and using the established method to evaluate the degradation process of collagen-based implants in vivo. The specific peptide (GPAGPQGPR) of bovine type I collagen was identified with an Orbitrap mass spectrometer. Then, the quantification method based on the peptide detection with HPLC-MS/MS was established and validated, and then further used to analyze the degradation trend of the collagen sponge and acellular matrix (ACM) in vivo at 2, 4, 6, 8, 12, 16, and 18 weeks after implantation. The results indicate that the relative standard deviation (RSD) of the detection precision and repeatability of the peptide-based HPLC-MS/MS quantification method were 3.55% and 0.63%, respectively. The limitations of quantification and detection were 2.05 × 10−3 μg/mL and 1.12 × 10−3 μg/mL, respectively. The collagen sponge and ACM were completely degraded at 10 weeks and 18 weeks, respectively. Conclusion: A specific peptide (GPAGPQGPR) of bovine type I collagen was identified with an Orbitrap mass spectrometer, and a standardized HPLC-MS/MS-based internal reference method for the quantification of bovine type I collagen was established. The method can be used for the analysis of the degradation of collagen-based implants in vivo.
Collapse
|
6
|
Martínez GF, Fagetti J, Vierci G, Brauer MM, Unsain N, Richeri A. Extracellular matrix stiffness negatively affects axon elongation, growth cone area and F-actin levels in a collagen type I 3D culture. J Tissue Eng Regen Med 2021; 16:151-162. [PMID: 34816618 DOI: 10.1002/term.3269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 12/11/2022]
Abstract
Three dimensional (3D) in vitro neuronal cultures can better reproduce physiologically relevant phenotypes compared to 2D-cultures, because in vivo neurons reside in a 3D microenvironment. Interest in neuronal 3D cultures is emerging, with special attention to the mechanical forces that regulate axon elongation and sprouting in three dimensions. Type I collagen (Col-I) is a native substrate since it is present in the extracellular matrix and hence emulates an in vivo environment to study axon growth. The impact of its mechanical properties needs to be further investigated. Here, we generated Col-I 3D matrices of different mechanical stiffness and evaluated axon growth in three dimensions. Superior cervical ganglion (SCG) explants from neonatal rats were cultured in soft and stiff Col-I 3D matrices and neurite outgrowth was assessed by measuring: maximum neuritic extent; neuritic halo area and fasciculation. Axonal cytoskeletal proteins were examined. Axon elongation in stiff Col-I 3D matrices was reduced (31%) following 24 h in culture compared to soft matrices. In stiff matrices, neurites fasciculated and formed less dense halos. Consistently, almost no F-actin rich growth cones were recognized, and F-actin staining was strongly reduced in the axonal compartment. This study shows that stiffness negatively affects 3D neurite outgrowth and adds insights on the cytoskeletal responses upon mechanic interactions of axons with a 3D environment. Our data will serve to facilitate the development of model systems that are mechanically well-behaved but still mimic key physiologic properties observed in vivo.
Collapse
Affiliation(s)
- Gaby F Martínez
- Departamento de Neurofarmacología Experimental, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay.,Laboratorio de Biología Celular, Departamento de Neurofarmacología Experimental, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Jimena Fagetti
- Departamento de Neurofarmacología Experimental, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Gabriela Vierci
- Laboratorio de Biología Celular, Departamento de Neurofarmacología Experimental, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - M Mónica Brauer
- Laboratorio de Biología Celular, Departamento de Neurofarmacología Experimental, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Nicolás Unsain
- Laboratorio de Neurobiología, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Analía Richeri
- Departamento de Neurofarmacología Experimental, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay.,Laboratorio de Biología Celular, Departamento de Neurofarmacología Experimental, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| |
Collapse
|
7
|
Fan X, Li L, Zhu H, Yan L, Zhu S, Yan Y. Preparation, characterization, and in vitro and in vivo biocompatibility evaluation of polymer (amino acid and glycolic acid)/hydroxyapatite composite for bone repair. Biomed Mater 2021; 16:025004. [PMID: 33599212 DOI: 10.1088/1748-605x/abdbdd] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A composite of hydroxyapatite (HA) and polymers prepared from amino acids and glycolic acid (PAG) was synthesized using an in situ melting polycondensation method. The in vitro degradability and bioactivity of the composite were evaluated, as well as its in vitro and in vivo biocompatibility based on subcutaneous and osseous implantation of samples in New Zealand white rabbits for 8 weeks. The results showed that the PAG/HA composite had higher degradability than PAG and showed a typical apatite morphology after immersion in simulated body fluid for 5 d. Both the PAG/HA composite and PAG alone showed excellent in vitro biocompatibility. In the rabbit model, PAG/HA composite could induce formation of new bone tissue after 4 weeks implantation, mainly owing to the excellent in vivo bioactivity of the implant. These results suggest that PAG/HA composites have the potential to guide bone regeneration and could be used as biodegradable biomaterials for bone repair.
Collapse
Affiliation(s)
- Xiaoxia Fan
- Medical College, Yan'an University, Yan'an 716000, People's Republic of China
| | | | | | | | | | | |
Collapse
|
8
|
Zhang Y, Chen Y, Zhao B, Gao J, Xia L, Xing F, Kong Y, Li Y, Zhang G. Detection of Type I and III collagen in porcine acellular matrix using HPLC-MS. Regen Biomater 2020; 7:577-582. [PMID: 33365143 PMCID: PMC7748446 DOI: 10.1093/rb/rbaa032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/18/2020] [Accepted: 07/06/2020] [Indexed: 12/20/2022] Open
Abstract
Acellular matrix (ACM) has been widely used as a biomaterial. As the main component of ACM, collagen type and content show influence on the material properties. In this research, the collagen in ACM from different tissues of pig were determined by detection of marker peptides. The marker peptides of Type I and III collagen were identified from the digested collagen standards using ions trap mass spectrometry (LCQ). The relationship between the abundance of marker peptide and collagen concentration was established using triple quadrupole mass spectrometer (TSQ). The contents of Type I and III collagen in ACM from different tissues were determined. The method was further verified by hydroxyproline determination. The results showed that, the sum of Type I and III collagen contents in the ACM from small intestinal submucosa, dermis and Achilles tendon of pig were about 87.59, 81.41 and 61.13%, respectively, which were close to the total collagen contents in these tissues. The results proved that this method could quantitatively detect the collagen with different types in the ACM of various tissues.
Collapse
Affiliation(s)
- Yang Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, CAS, Beijing 100190, China
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Yi Chen
- Beijing Biosis Healing Biological Technology Co., Ltd, Beijing 100026, China
| | - Bo Zhao
- Beijing Biosis Healing Biological Technology Co., Ltd, Beijing 100026, China
| | - Jianping Gao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, CAS, Beijing 100190, China
| | - Leilei Xia
- Beijing Biosis Healing Biological Technology Co., Ltd, Beijing 100026, China
| | - Fangyu Xing
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, CAS, Beijing 100190, China
| | - Yingjun Kong
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, CAS, Beijing 100190, China
| | - Yongchao Li
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
- Correspondence address. State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, CAS, Beijing 100190, China. Tel: +86-1082613421; Fax: +86-1082613421; E-mail: (G.Z.); School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China. Tel: +86-15936529310; Fax: +86-15936529310; E-mail: (Y.L.)
| | - Guifeng Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, CAS, Beijing 100190, China
- Correspondence address. State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, CAS, Beijing 100190, China. Tel: +86-1082613421; Fax: +86-1082613421; E-mail: (G.Z.); School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China. Tel: +86-15936529310; Fax: +86-15936529310; E-mail: (Y.L.)
| |
Collapse
|
9
|
Esteban-Garcia N, Nombela C, Garrosa J, Rascón-Ramirez FJ, Barcia JA, Sánchez-Sánchez-Rojas L. Neurorestoration Approach by Biomaterials in Ischemic Stroke. Front Neurosci 2020; 14:431. [PMID: 32477053 PMCID: PMC7235425 DOI: 10.3389/fnins.2020.00431] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/08/2020] [Indexed: 12/11/2022] Open
Abstract
Ischemic stroke (IS) is the leading cause of disability in the western world, assuming a high socio-economic cost. One of the most used strategies in the last decade has been biomaterials, which have been initially used with a structural support function. They have been perfected, different compounds have been combined, and they have been used together with cell therapy or controlled release chemical compounds. This double function has driven them as potential candidates for the chronic treatment of IS. In fact, the most developed are in different phases of clinical trial. In this review, we will show the ischemic scenario and address the most important criteria to achieve a successful neuroreparation from the point of view of biomaterials. The spontaneous processes that are activated and how to enhance them is one of the keys that contribute to the success of the therapeutic approach. In addition, the different routes of administration and how they affect the design of biomaterials are analyzed. Future perspectives show where this broad scientific field is heading, which advances every day with the help of technology and advanced therapies.
Collapse
Affiliation(s)
- Noelia Esteban-Garcia
- Regenerative Medicine and Advanced Therapies Lab, Instituto de Investigación Sanitaria San Carlos, Clínico San Carlos Hospital, Madrid, Spain
| | - Cristina Nombela
- Regenerative Medicine and Advanced Therapies Lab, Instituto de Investigación Sanitaria San Carlos, Clínico San Carlos Hospital, Madrid, Spain
- Department of Biological and Health Psychology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Javier Garrosa
- Regenerative Medicine and Advanced Therapies Lab, Instituto de Investigación Sanitaria San Carlos, Clínico San Carlos Hospital, Madrid, Spain
| | | | - Juan Antonio Barcia
- Neurosurgery Department, Clínico San Carlos Hospital, Madrid, Spain
- Chair of Neurosurgery Department, Clínico San Carlos Hospital, Madrid, Spain
| | - Leyre Sánchez-Sánchez-Rojas
- Regenerative Medicine and Advanced Therapies Lab, Instituto de Investigación Sanitaria San Carlos, Clínico San Carlos Hospital, Madrid, Spain
| |
Collapse
|
10
|
Wei S, Hu Q, Cheng X, Ma J, Liang X, Peng J, Xu W, Sun X, Han G, Ma X, Wang Y. Differences in the Structure and Protein Expression of Femoral Nerve Branches in Rats. Front Neuroanat 2020; 14:16. [PMID: 32322192 PMCID: PMC7156789 DOI: 10.3389/fnana.2020.00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 03/18/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Shuai Wei
- Tianjin Hospital Tianjin University, Tianjin, China
- Institute of Orthopedics, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Qian Hu
- Department of Geriatrics, The Second People’s Hospital of Nantong, Nantong, China
| | - Xiaoqing Cheng
- Institute of Orthopedics, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jianxiong Ma
- Tianjin Hospital Tianjin University, Tianjin, China
| | - Xuezhen Liang
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Shandong, China
| | - Jiang Peng
- Institute of Orthopedics, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Wenjing Xu
- Institute of Orthopedics, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Xun Sun
- Tianjin Hospital Tianjin University, Tianjin, China
| | - Gonghai Han
- The First People’s Hospital of Yunnan Province, Kunming, China
| | - Xinlong Ma
- Tianjin Hospital Tianjin University, Tianjin, China
- *Correspondence: Xinlong Ma Yu Wang
| | - Yu Wang
- Institute of Orthopedics, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
- *Correspondence: Xinlong Ma Yu Wang
| |
Collapse
|