1
|
Qin B, Bao D, Liu Y, Zeng S, Deng K, Liu H, Fu S. Engineered exosomes: a promising strategy for tendon-bone healing. J Adv Res 2024; 64:155-169. [PMID: 37972886 PMCID: PMC11464473 DOI: 10.1016/j.jare.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/24/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Due to the spatiotemporal complexity of the composition, structure, and cell population of the tendon-bone interface (TBI), it is difficult to achieve true healing. Recent research is increasingly focusing on engineered exosomes, which are a promising strategy for TBI regeneration. AIM OF REVIEW This review discusses the physiological and pathological characteristics of TBI and the application and limitations of natural exosomes in the field of tendon-bone healing. The definition, loading strategies, and spatiotemporal properties of engineered exosomes were elaborated. We also summarize the application and future research directions of engineered exosomes in the field of tendon-bone healing. KEY SCIENTIFIC CONCEPTS OF REVIEW Engineered exosomes can spatially deliver cargo to targeted sites and temporally realize the sustained release of therapeutic molecules in TBI. This review expounds on the multidifferentiation of engineered exosomes for tendon-bone healing, which effectively improves the biological and biomechanical properties of TBI. Engineered exosomes could be a promising strategy for tendon-bone healing.
Collapse
Affiliation(s)
- Bo Qin
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Dingsu Bao
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646600, China; Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610000, China
| | - Yang Liu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Shengqiang Zeng
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646600, China; Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610000, China
| | - Kai Deng
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Huan Liu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646600, China.
| | - Shijie Fu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646600, China.
| |
Collapse
|
2
|
Wu J, Wu J, Liu Z, Gong Y, Feng D, Xiang W, Fang S, Chen R, Wu Y, Huang S, Zhou Y, Liu N, Xu H, Zhou S, Liu B, Ni Z. Mesenchymal stem cell-derived extracellular vesicles in joint diseases: Therapeutic effects and underlying mechanisms. J Orthop Translat 2024; 48:53-69. [PMID: 39170747 PMCID: PMC11338158 DOI: 10.1016/j.jot.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/09/2024] [Accepted: 07/08/2024] [Indexed: 08/23/2024] Open
Abstract
Joint diseases greatly impact the daily lives and occupational functioning of patients globally. However, conventional treatments for joint diseases have several limitations, such as unsatisfatory efficacy and side effects, necessitating the exploration of more efficacious therapeutic strategies. Mesenchymal stem cell (MSC)-derived EVs (MSC-EVs) have demonstrated high therapeutic efficacyin tissue repair and regeneration, with low immunogenicity and tumorigenicity. Recent studies have reported that EVs-based therapy has considerable therapeutic effects against joint diseases, including osteoarthritis, tendon and ligament injuries, femoral head osteonecrosis, and rheumatoid arthritis. Herein, we review the therapeutic potential of various types of MSC-EVs in the aforementioned joint diseases, summarise the mechanisms underlying specific biological effects of MSC-EVs, and discuss future prospects for basic research on MSC-EV-based therapeutic modalities and their clinical translation. In general, this review provides an in-depth understanding of the therapeutic effects of MSC-EVs in joint diseases, as well as the underlying mechanisms, which may be beneficial to the clinical translation of MSC-EV-based treatment. The translational potential of this article: MSC-EV-based cell-free therapy can effectively promote regeneration and tissue repair. When used to treat joint diseases, MSC-EVs have demonstrated desirable therapeutic effects in preclinical research. This review may supplement further research on MSC-EV-based treatment of joint diseases and its clinical translation.
Collapse
Affiliation(s)
- Jinhui Wu
- Department of Joint Surgery and Sport Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China
| | - Jiangyi Wu
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, China
| | - Zheng Liu
- Department of Joint Surgery and Sport Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China
| | - Yunquan Gong
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Daibo Feng
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Wei Xiang
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Shunzheng Fang
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Ran Chen
- War Trauma Medical Center, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, China
| | - Yaran Wu
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Gantaoyan Street, Shapinba District, Chongqing, 400038, China
| | - Shu Huang
- Department of Joint Surgery and Sport Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China
| | - Yizhao Zhou
- Department of Joint Surgery and Sport Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China
| | - Ningning Liu
- Department of Laboratory Medicine, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, 450003, China
| | - Hao Xu
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University Zhengzhou, 450003, China
| | - Siru Zhou
- War Trauma Medical Center, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, China
| | - Baorong Liu
- Department of Joint Surgery and Sport Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China
| | - Zhenhong Ni
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| |
Collapse
|
3
|
Li J, He S, Yang H, Zhang L, Xiao J, Liang C, Liu S. The Main Mechanisms of Mesenchymal Stem Cell-Based Treatments against COVID-19. Tissue Eng Regen Med 2024; 21:545-556. [PMID: 38573476 PMCID: PMC11087407 DOI: 10.1007/s13770-024-00633-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) has a clinical manifestation of hypoxic respiratory failure and acute respiratory distress syndrome. However, COVID-19 still lacks of effective clinical treatments so far. As a promising potential treatment against COVID-19, stem cell therapy raised recently and had attracted much attention. Here we review the mechanisms of mesenchymal stem cell-based treatments against COVID-19, and provide potential cues for the effective control of COVID-19 in the future. METHODS Literature is obtained from databases PubMed and Web of Science. Key words were chosen for COVID- 19, acute respiratory syndrome coronavirus 2, mesenchymal stem cells, stem cell therapy, and therapeutic mechanism. Then we summarize and critically analyze the relevant articles retrieved. RESULTS Mesenchymal stem cell therapy is a potential effective treatment against COVID-19. Its therapeutic efficacy is mainly reflected in reducing severe pulmonary inflammation, reducing lung injury, improving pulmonary function, protecting and repairing lung tissue of the patients. Possible therapeutic mechanisms might include immunoregulation, anti-inflammatory effect, tissue regeneration, anti-apoptosis effect, antiviral, and antibacterial effect, MSC - EVs, and so on. CONCLUSION Mesenchymal stem cells can effectively treat COVID-19 through immunoregulation, anti-inflammatory, tissue regeneration, anti-apoptosis, anti-virus and antibacterial, MSC - EVs, and other ways. Systematically elucidating the mechanisms of mesenchymal stem cell-based treatments for COVID-19 will provide novel insights into the follow-up research and development of new therapeutic strategies in next step.
Collapse
Affiliation(s)
- Jinling Li
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine and Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Laboratory of Basic Medicine Center, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Shipei He
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine and Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Hang Yang
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine and Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Lizeai Zhang
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine and Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Jie Xiao
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine and Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Chaoyi Liang
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine and Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Sijia Liu
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine and Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
| |
Collapse
|
4
|
Foti C, Vellucci C, Santoro A. Regenerative Medicine Solutions for Rotator Cuff Injuries in Athletes: Indications and Outcomes. Sports Med Arthrosc Rev 2024; 32:46-50. [PMID: 38695503 DOI: 10.1097/jsa.0000000000000399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2024]
Abstract
Rotator cuff (RC) injuries include a wide range of pathologic states. Athletes are perhaps the most susceptible to RC injuries ranging from tendinopathy to partial or full-thickness tears, due to functional overload and repetitive movements, causing abstention from sports for long periods. Regenerative medicine keeps giving us multiple choices to fight the disability caused by these pathologies. A literature search was performed, and findings related to the structure-function of rotator cuff units, pathophysiology of injuries, regenerative medicine treatments, and future strategies were outlined. Platelet-rich plasma (PRP) has a greater number of articles and clinical trials, accompanied by stem cells progenitor, prolotherapy, and new approaches such as microfragmented adipose tissue and exosomes. RC injuries in athletes can cause pain, functional impotence, and the risk of recurrence, and can lead them to stop playing sports. Regenerative medicine offers a range of treatments, but some of them need further studies to underline their actual validity.
Collapse
Affiliation(s)
- Calogero Foti
- Department of Physical and Rehabilitation Medicine, Clinical Sciences and Translational Medicine, Tor Vergata University, Rome, Italy, EU
| | | | | |
Collapse
|
5
|
Zhang J, Cai Z, Feng F, Peng Y, Cui Y, Xu Y. Age-different BMSCs-derived exosomes accelerate tendon-bone interface healing in rotator cuff tears model. Gene 2024; 895:148002. [PMID: 37979948 DOI: 10.1016/j.gene.2023.148002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/20/2023]
Abstract
BACKGROUND Rotator cuff tears (RCTs) are culprit of shoulder pain and dysfunction. Tendon-bone interface (TBI) mal-healing is an essential contributor to retear after RCTs. Consequently, present project was conducted to investigate the role of bone marrow mesenchymal stem cells (BMSCs)-derived exosomes on TBI healing. METHOD Young BMSCs (Y-BMSCs) and Aged BMSCs (A-BMSCs) were isolated from Young (3-month-old) and old (24-month-old) SD rats, and their-derived exosomes (A-BMSCs-exo and Y-BMSCs-exo) were identified. RCTs model was established, and A-BMSCs-exo and Y-BMSCs-exo were injected at the rotator cuff using hydrogel as a vehicle. Pathological changes of TBI were observed by HE, Sirius Red and Oil Red O staining. Western blotting and RT-qPCR were applied to assess the expression of extracellular matrix (ECM)-, tendon cell (TCs)-, osteogenic-, tendon-derived stem cell (TDSCs)- and angiogenic-associated proteins and mRNAs in TBI. RESULT Y-BMSCs exhibited increased activity, osteogenic and lipogenic abilities than A-BMSCs. After A-BMSCs-exo and Y-BMSCs-exo treatment, TBI displayed massive sharpey's fibers growing along the tendon longitudinally, and a collagen fiber-chondrocyte migration zone forming a typical tendon-noncalcified fibrocartilage-calcified fibrocartilage-bone structure. A-BMSCs-exo and Y-BMSCs-exo significantly upregulated the expression of collagen Col I/II/III, Aggrecan, TNMD, SCX, Runx2, OPN, CD45, Sox2, CD31 and VEGFR2 in TBI. In vitro, A-BMSCs-exo and Y-BMSCs-exo significantly enhanced the activity of TCs and TDSCs, TDSCs stemness, and reduced the osteogenic and lipogenic capacity of TDSCs. The effect of Y-BMSCs-exo was significantly stronger than that of A-BMSCs-exo. CONCLUSION BMSCs-derived exosomes facilitate ECM remodeling, osteogenic differentiation, angiogenesis, and stemness of TDSCs, thereby accelerating TBI healing in RCTs, with better outcomes using young individual-derived BMSCs.
Collapse
Affiliation(s)
- Jianping Zhang
- Department of Orthopaedics, 920th Hospital of Joint Logistic Support Force, PLA, No. 212 Daguan Road, Kunming, Yunnan 650032, China.
| | - Zhijun Cai
- Department of Orthopaedics, 920th Hospital of Joint Logistic Support Force, PLA, No. 212 Daguan Road, Kunming, Yunnan 650032, China.
| | - Fanzhe Feng
- Department of Orthopaedics, 920th Hospital of Joint Logistic Support Force, PLA, No. 212 Daguan Road, Kunming, Yunnan 650032, China
| | - Yufeng Peng
- Department of Orthopaedics, 920th Hospital of Joint Logistic Support Force, PLA, No. 212 Daguan Road, Kunming, Yunnan 650032, China
| | - Yi Cui
- Department of Orthopaedics, 920th Hospital of Joint Logistic Support Force, PLA, No. 212 Daguan Road, Kunming, Yunnan 650032, China.
| | - Yongiqing Xu
- Department of Orthopaedics, 920th Hospital of Joint Logistic Support Force, PLA, No. 212 Daguan Road, Kunming, Yunnan 650032, China.
| |
Collapse
|
6
|
Peng Y, Diao L, Wang J, Wang G, Jia S, Zheng C. Effect of Platelet-Rich Plasma at Different Initiation Times on Healing of the Bone-Tendon Interface of the Rotator Cuff in a Mouse Model. Orthop J Sports Med 2024; 12:23259671231219812. [PMID: 38405010 PMCID: PMC10893834 DOI: 10.1177/23259671231219812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/31/2023] [Indexed: 02/27/2024] Open
Abstract
Background Platelet-rich plasma (PRP) has demonstrated beneficial effects on healing of the bone-tendon interface (BTI). Purpose To determine the optimal initiation time for PRP application after rotator cuff repair in an animal model. Study Design Controlled laboratory study. Methods A total of 136 C57BL/6 mice were included; 40 mice were used to prepare PRP, while 96 mice underwent acute supraspinatus tendon (SST) repair. The animals were randomly divided into 4 groups: a control group and 3 groups in which PRP was injected into the injury interface immediately after surgery, on the 7th postoperative day (PRP-7d), and on the 14th postoperative day. At 4 and 8 weeks postoperatively, the animals were sacrificed, blood was collected by eyeball removal, and samples of the SST-humerus complex were collected. Histological, imaging, immunological, and biomechanical data were compared among the groups using 1-way analysis of variance with the Bonferroni post hoc test. Results Histological analysis revealed that the fibrocartilage layer at the BTI was larger in the PRP-7d group compared to the other groups at both 4 and 8 weeks postoperatively. Moreover, the PRP-7d group exhibited improved proteoglycan content and distribution compared to the other groups. Enzyme-linked immunosorbent assay results demonstrated that at 4 weeks postoperatively, higher concentrations of transforming growth factor-β1 and platelet-derived growth factor-BB (PDGF-BB) were seen in the PRP-7d group versus the PRP-14d and control gruops (P < .05), and at 8 weeks postoperatively, the concentration of PDGF-BB was higher in the PRP-7d group versus the control group (P < .05). Biomechanical testing at 4 weeks postoperatively revealed that the failure load and ultimate strength of the SST-humerus complex were superior in the PRP-7d group compared to the other groups (P < .05), at 8 weeks, PRP-7d group was superior to the control group (P < .05). Additionally, at 8 weeks postoperatively, the PRP-7d group exhibited a greater trabecular number and trabecular thickness at the BTI compared to the PRP-14d and control gruops (P < .05). Conclusion PRP promoted healing of the BTI after a rotator cuff injury at an early stage. Clinical Relevance A PRP injection on the 7th postoperative day demonstrated superior therapeutic effects compared with injections at other time points.
Collapse
Affiliation(s)
- Yundong Peng
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
- College of Sports Medicine, Wuhan Sports University, Wuhan, China
| | - Luyu Diao
- College of Sports Medicine, Wuhan Sports University, Wuhan, China
| | - Juan Wang
- College of Sports Medicine, Wuhan Sports University, Wuhan, China
| | - Guanglan Wang
- College of Sports Medicine, Wuhan Sports University, Wuhan, China
| | - Shaohui Jia
- Hubei Key Laboratory of Sport Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, China
| | - Cheng Zheng
- Department of Sports Medicine, Affiliated Hospital, Wuhan Sports University, Wuhan, China
| |
Collapse
|
7
|
Trotta MC, Itro A, Lepre CC, Russo M, Guida F, Moretti A, Braile A, Tarantino U, D’Amico M, Toro G. Effects of adipose-derived mesenchymal stem cell conditioned medium on human tenocytes exposed to high glucose. Ther Adv Musculoskelet Dis 2024; 16:1759720X231214903. [PMID: 38204801 PMCID: PMC10775729 DOI: 10.1177/1759720x231214903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/26/2023] [Indexed: 01/12/2024] Open
Abstract
Introduction Diabetic tendinopathy is a common invalidating and challenging disease that may be treated using stem cells. However, the effects of adipose-derived mesenchymal stem cell conditioned medium (ASC-CM) in diabetic tendinopathy have never been explored. Objectives The present study evaluated the effects of ASC-CM on morphology, cell viability, structure, and scratch wound closure of human tenocytes (HTNC) exposed to high glucose (HG). Design Experimental study. Methods HTNC were exposed to HG (25 mM) for 7, 14 and 21 days with or without ASC-CM for the last 24 h. CM was collected from 4 × 105 ASCs, centrifuged for 10 min at 200 g and sterilized with 0.22 μm syringe filter. Results At 7 days, HG-HTNC had decreased cell viability [72 ± 2%, p < 0.01 versus normal glucose (NG)] compared to NG-HTNC (90 ± 5%). A further decrement was detected after 14 and 21 days (60 ± 4% and 60 ± 5%, both, p < 0.01 versus NG and p < 0.01 versus HG7). While NG-HTNC evidenced a normal fibroblast cell-like elongated morphology, HG-HTNC showed increased cell roundness. In contrast, HG-HTNC exposed to ASC-CM showed a significant increase in cell viability, an improved cell morphology and higher scratch wound closure at all HG time points. Moreover, the exposure to ASC-CM significantly increased thrombospondin 1 and transforming growth factor beta 1 (TGF-β1) content in HG-HTNC. The TGF-β1 elevation was paralleled by higher Collagen I and Vascular Endothelial Growth Factor in HG-HTNC. Conclusion ASC-CM may restore the natural morphology, cell viability and structure of HTNC, promoting their scratch wound closure through TGF-β1 increase.
Collapse
Affiliation(s)
- Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Annalisa Itro
- PhD Course in Translational Medicine, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Caterina Claudia Lepre
- Department of Experimental Medicine, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Marina Russo
- Department of Experimental Medicine, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Francesca Guida
- Department of Experimental Medicine, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Antimo Moretti
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Adriano Braile
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Umberto Tarantino
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
- Caterina ClaudiaLepre is also affiliated to PhD Course in Translational Medicine, University of Campania ‘Luigi Vanvitell’, Naples, Italy
| | - Michele D’Amico
- Department of Experimental Medicine, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Giuseppe Toro
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania ‘Luigi Vanvitelli’, Via L. De Crecchio 6, Naples 80138, Italy
| |
Collapse
|
8
|
Xue Y, Riva N, Zhao L, Shieh JS, Chin YT, Gatt A, Guo JJ. Recent advances of exosomes in soft tissue injuries in sports medicine: A critical review on biological and biomaterial applications. J Control Release 2023; 364:90-108. [PMID: 37866405 DOI: 10.1016/j.jconrel.2023.10.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/08/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
Sports medicine is generally associated with soft tissue injuries including muscle injuries, meniscus and ligament injuries, tendon ruptures, tendinopathy, rotator cuff tears, and tendon-bone healing during injuries. Tendon and ligament injuries are the most common sport injuries accounting for 30-40% of all injuries. Therapies for tendon injuries can be divided into surgical and non-surgical methods. Surgical methods mainly depend on the operative procedures, the surgeons and postoperative interventions. In non-surgical methods, cell therapy with stem cells and cell-free therapy with secretome of stem cell origin are current directions. Exosomes are the main paracrine factors of mesenchymal stem cells (MSCs) containing biological components such as proteins, nucleic acids and lipids. Compared with MSCs, MSC-exosomes (MSC-exos) possess the capacity to escape phagocytosis and achieve long-term circulation. In addition, the functions of exosomes from various cell sources in soft tissue injuries in sports medicine have been gradually revealed in recent years. Along with the biological and biomaterial advances in exosomes, exosomes can be designed as drug carriers with biomaterials and exosome research is providing promising contributions in cell biology. Exosomes with biomaterial have the potential of becoming one of the novel therapeutic modalities in regenerative researches. This review summarizes the derives of exosomes in soft tissue regeneration and focuses on the biological and biomaterial mechanism and advances in exosomal therapy in soft tissue injuries.
Collapse
Affiliation(s)
- Yulun Xue
- Department of Orthopaedic Surgery, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou 215006, Jiangsu, PR China; Department of Orthopedics and Sports Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, PR China
| | - Nicoletta Riva
- Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Lingying Zhao
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health of PR China, Suzhou 215006, Jiangsu, PR China; Department of Hematology, National Clinical Research Center for Hematologic Disease, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, PR China
| | - Ju-Sheng Shieh
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital, National Defense Medical Center, Taipei City 11490, Taiwan
| | - Yu-Tang Chin
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital, National Defense Medical Center, Taipei City 11490, Taiwan
| | - Alexander Gatt
- Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Department of Haematology, Mater Dei Hospital, Msida, Malta
| | - Jiong Jiong Guo
- Department of Orthopedics and Sports Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, PR China; Department of Hematology, National Clinical Research Center for Hematologic Disease, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, PR China.
| |
Collapse
|
9
|
Zhu Y, Yan J, Zhang H, Cui G. Bone marrow mesenchymal stem cell‑derived exosomes: A novel therapeutic agent for tendon‑bone healing (Review). Int J Mol Med 2023; 52:121. [PMID: 37937691 PMCID: PMC10635703 DOI: 10.3892/ijmm.2023.5324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/24/2023] [Indexed: 11/09/2023] Open
Abstract
In sports medicine, injuries related to the insertion of tendons into bones, including rotator cuff injuries, anterior cruciate ligament injuries and Achilles tendon ruptures, are commonly observed. However, traditional therapies have proven to be insufficient in achieving satisfactory outcomes due to the intricate anatomical structure associated with these injuries. Adult bone marrow mesenchymal stem cells possess self‑renewal and multi‑directional differentiation potential and can generate various mesenchymal tissues to aid in the recovery of bone, cartilage, adipose tissue and bone marrow hematopoietic tissue. In addition, extracellular vesicles derived from bone marrow mesenchymal stem cells known as exosomes, contain lipids, proteins and nucleic acids that govern the tissue microenvironment, facilitate tissue repair and perform various biological functions. Studies have demonstrated that bone marrow mesenchymal stem cell‑derived exosomes can function as natural nanocapsules for drug delivery and can enhance tendon‑bone healing strength. The present review discusses the latest research results on the role of exosomes released by bone marrow mesenchymal stem cells in tendon‑bone healing and provides valuable information for implementing these techniques in regenerative medicine and sports health.
Collapse
Affiliation(s)
- Yongjia Zhu
- Department of Arthritis, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Jiapeng Yan
- Department of Arthritis, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Hongfei Zhang
- Department of Arthritis, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Guanxing Cui
- Department of Arthritis, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| |
Collapse
|
10
|
Deng S, Cao H, Cui X, Fan Y, Wang Q, Zhang X. Optimization of exosome-based cell-free strategies to enhance endogenous cell functions in tissue regeneration. Acta Biomater 2023; 171:68-84. [PMID: 37730080 DOI: 10.1016/j.actbio.2023.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023]
Abstract
Exosomes, nanoscale extracellular vesicles, play a crucial role in intercellular communication, owing to their biologically active cargoes such as RNAs and proteins. In recent years, they have emerged as a promising tool in the field of tissue regeneration, with the potential to initiate a new trend in cell-free therapy. However, it's worth noting that not all types of exosomes derived from cells are appropriate for tissue repair. Thus, selecting suitable cell sources is critical to ensure their efficacy in specific tissue regeneration processes. Current therapeutic applications of exosomes also encounter several limitations, including low-specific content for targeted diseases, non-tissue-specific targeting, and short retention time due to rapid clearance in vivo. Consequently, this review paper focuses on exosomes from diverse cell sources with functions specific to tissue regeneration. It also highlights the latest engineering strategies developed to overcome the functional limitations of natural exosomes. These strategies encompass the loading of specific therapeutic contents into exosomes, the endowment of tissue-specific targeting capability on the exosome surface, and the incorporation of biomaterials to extend the in vivo retention time of exosomes in a controlled-release manner. Collectively, these innovative approaches aim to synergistically enhance the therapeutic effects of natural exosomes, optimizing exosome-based cell-free strategies to boost endogenous cell functions in tissue regeneration. STATEMENT OF SIGNIFICANCE: Exosome-based cell-free therapy has recently emerged as a promising tool for tissue regeneration. This review highlights the characteristics and functions of exosomes from different sources that can facilitate tissue repair and their contributions to the regeneration process. To address the functional limitations of natural exosomes in therapeutic applications, this review provides an in-depth understanding of the latest engineering strategies. These strategies include optimizing exosomal contents, endowing tissue-specific targeting capability on the exosome surface, and incorporating biomaterials to extend the in vivo retention time of exosomes in a controlled-release manner. This review aims to explore and discuss innovative approaches that can synergistically improve endogenous cell functions in advanced exosome-based cell-free therapies for a broad range of tissue regeneration.
Collapse
Affiliation(s)
- Siyan Deng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China; College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Hongfu Cao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China; College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiaolin Cui
- School of medicine, the Chinese University of Hong Kong, Shenzhen, China; Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopedic Surgery & Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine, University of Otago, Christchurch, New Zealand
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China; College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Qiguang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China; College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China; College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
11
|
尹 正, 陈 志, 尹 妮, 朱 弈, 张 必, 周 田, 谭 洪, 徐 永. [Progress and prospect of biological treatment for rotator cuff injury repair]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2023; 37:1169-1176. [PMID: 37718433 PMCID: PMC10505641 DOI: 10.7507/1002-1892.202303122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/09/2023] [Indexed: 09/19/2023]
Abstract
Objective To review the research progress in biotherapy of rotator cuff injury in recent years, in order to provide help for clinical decision-making of rotator cuff injury treatment. Methods The literature related to biotherapy of rotator cuff injury at home and abroad in recent years was widely reviewed, and the mechanism and efficacy of biotherapy for rotator cuff injury were summarized from the aspects of platelet-rich plasma (PRP), growth factors, stem cells, and exosomes. Results In order to relieve patients' pain, improve upper limb function, and improve quality of life, the treatment of rotator cuff injury experienced an important change from conservative treatment to open surgery to arthroscopic rotator cuff repair. Arthroscopic rotator cuff repair plus a variety of biotherapy methods have become the mainstream of clinical treatment. All kinds of biotherapy methods have ideal mid- and long-term effectiveness in the repair of rotator cuff injury. The biotherapy method to promote the healing of rotator cuff injury is controversial and needs to be further studied. Conclusion All kinds of biotherapy methods show a good effect on the repair of rotator cuff injury. It will be an important research direction to further develop new biotherapy technology and verify its effectiveness.
Collapse
Affiliation(s)
- 正勃 尹
- 昆明医科大学研究生院(昆明 650500)Graduate School of Kunming Medical University, Kunming Yunnan, 650500, P. R. China
| | - 志安 陈
- 昆明医科大学研究生院(昆明 650500)Graduate School of Kunming Medical University, Kunming Yunnan, 650500, P. R. China
| | - 妮 尹
- 昆明医科大学研究生院(昆明 650500)Graduate School of Kunming Medical University, Kunming Yunnan, 650500, P. R. China
| | - 弈霏 朱
- 昆明医科大学研究生院(昆明 650500)Graduate School of Kunming Medical University, Kunming Yunnan, 650500, P. R. China
| | - 必欢 张
- 昆明医科大学研究生院(昆明 650500)Graduate School of Kunming Medical University, Kunming Yunnan, 650500, P. R. China
| | - 田华 周
- 昆明医科大学研究生院(昆明 650500)Graduate School of Kunming Medical University, Kunming Yunnan, 650500, P. R. China
| | - 洪波 谭
- 昆明医科大学研究生院(昆明 650500)Graduate School of Kunming Medical University, Kunming Yunnan, 650500, P. R. China
| | - 永清 徐
- 昆明医科大学研究生院(昆明 650500)Graduate School of Kunming Medical University, Kunming Yunnan, 650500, P. R. China
| |
Collapse
|
12
|
Wang Z, Liao Y, Wang C, Tang C, Fang C, Luo J, Liu H, Mo X, Wang Z, Shen L, Wang J, Chen X, Yin Z, Li J, Shen W. Stem cell-based therapeutic strategies for rotator cuff tendinopathy. J Orthop Translat 2023; 42:73-81. [PMID: 37664079 PMCID: PMC10470406 DOI: 10.1016/j.jot.2023.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/20/2023] [Indexed: 09/05/2023] Open
Abstract
Rotator cuff tendinopathy is a common musculoskeletal disorder that imposes significant health and economic burden. Stem cell therapy has brought hope for tendon healing in patients with final stage rotator cuff tendinopathy. Some clinical trials have confirmed the effectiveness of stem cell therapy for rotator cuff tendinopathy, but its application has not been promoted and approved. There are still many issues that should be solved prior to using stem cell therapy in clinical applications. The optimal source and dose of stem cells for rotator cuff tendinopathy should be determined. We also proposed novel prospective approaches that can overcome cell population heterogeneity and standardize patient types for stem cell applications. The translational potential of this article This review explores the optimal sources of stem cells for rotator cuff tendinopathy and the principles for selecting stem cell dosages. Key strategies are provided for stem cell population standardization and recipient selection.
Collapse
Affiliation(s)
- Zetao Wang
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
- Department of Orthopedic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
- Orthopaedics Research Institute of Zhejiang University, Hangzhou, China
- China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Youguo Liao
- Department of Orthopedic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
- Orthopaedics Research Institute of Zhejiang University, Hangzhou, China
- China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Canlong Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
- Orthopaedics Research Institute of Zhejiang University, Hangzhou, China
- China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenqi Tang
- Department of Orthopedic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
- Orthopaedics Research Institute of Zhejiang University, Hangzhou, China
- China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Binjiang Institute of Zhejiang University, Hangzhou, China
| | - Cailian Fang
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
- Orthopaedics Research Institute of Zhejiang University, Hangzhou, China
- China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Junchao Luo
- Department of Orthopedic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
- Orthopaedics Research Institute of Zhejiang University, Hangzhou, China
- China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Hengzhi Liu
- Department of Orthopedic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
- Orthopaedics Research Institute of Zhejiang University, Hangzhou, China
- China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianan Mo
- Department of Orthopedic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Zicheng Wang
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Lingfang Shen
- Air Force Health Care Center for Special Services, Hangzhou, China
| | | | - Xiao Chen
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
- Orthopaedics Research Institute of Zhejiang University, Hangzhou, China
- China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Zi Yin
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
- Orthopaedics Research Institute of Zhejiang University, Hangzhou, China
- China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianyou Li
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Weiliang Shen
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
- Department of Orthopedic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
- Orthopaedics Research Institute of Zhejiang University, Hangzhou, China
- China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
13
|
Li J, Wang ZH, Sun YH. TGF-β1 stimulated mesenchymal stem cells-generated exosomal miR-29a promotes the proliferation, migration and fibrogenesis of tenocytes by targeting FABP3. Cytokine 2023; 162:156090. [PMID: 36481477 DOI: 10.1016/j.cyto.2022.156090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 10/30/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Rotator cuff Tear (RCT) causes a lot of inconvenience for patients. In most cases, RCT injury does not heal back to bone after repair, and there is a high chance of retearing. Therefore, there is a need to explore more effective targeted therapies. Bone mesenchymal stem cell-derived exosome (BMSCs-Exo) has been proved to be beneficial to the proliferation of tendon cells, but its specific mechanism remains to be further explored. METHODS BMSCs-Exo was isolated and identified by detecting the specific markers using flow cytometry and western blot assays. qRT-PCR and western blot were utilized to determine the gene or protein expressions, respectively. Cell proliferation, and migration in tenocytes were measured by CCK8, EdU and transwell assays. The interaction between miR-29a and FABP3 was analyzed using dual-luciferase reporter assay. RESULTS Our findings demonstrated that miR-29a was expressed in BMSCs-Exo and could be significantly enriched after TGF-β1 treatment. Moreover, TGF-β1-modified BMSCs-Exo co-cultured could promote the proliferation, migration and fibrosis of tenocytes by carrying miR-29a. Upon miR-29a was reduced in BMSCs-Exo, the regulatory roles of BMSCs-Exo on tenocytes were reversed. Mechanistically, miR-29a negatively regulated FABP3 via interaction with its 3'-UTR. Enforced expression of FABP3 could reverse the modulation of exosomal miR-29a in tenocytes. CONCLUSION Exosomal miR-29a derived from TGF-β1-modified BMSCs facilitated the proliferation, migration and fibrosis of tenocytes through targeting FABP3.
Collapse
Affiliation(s)
- Jia Li
- Department of Orthopedics, Affiliated Hospital of Chengde Medical College, Chengde 067000, Hebei Province, PR China.
| | - Zhi-Hui Wang
- Department of Orthopedics, Affiliated Hospital of Chengde Medical College, Chengde 067000, Hebei Province, PR China
| | - Yu-Hang Sun
- Department of Orthopedics, Affiliated Hospital of Chengde Medical College, Chengde 067000, Hebei Province, PR China
| |
Collapse
|
14
|
Citro V, Clerici M, Boccaccini AR, Della Porta G, Maffulli N, Forsyth NR. Tendon tissue engineering: An overview of biologics to promote tendon healing and repair. J Tissue Eng 2023; 14:20417314231196275. [PMID: 37719308 PMCID: PMC10501083 DOI: 10.1177/20417314231196275] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/06/2023] [Indexed: 09/19/2023] Open
Abstract
Tendons are dense connective tissues with a hierarchical polarized structure that respond to and adapt to the transmission of muscle contraction forces to the skeleton, enabling motion and maintaining posture. Tendon injuries, also known as tendinopathies, are becoming more common as populations age and participation in sports/leisure activities increases. The tendon has a poor ability to self-heal and regenerate given its intrinsic, constrained vascular supply and exposure to frequent, severe loading. There is a lack of understanding of the underlying pathophysiology, and it is not surprising that disorder-targeted medicines have only been partially effective at best. Recent tissue engineering approaches have emerged as a potential tool to drive tendon regeneration and healing. In this review, we investigated the physiochemical factors involved in tendon ontogeny and discussed their potential application in vitro to reproduce functional and self-renewing tendon tissue. We sought to understand whether stem cells are capable of forming tendons, how they can be directed towards the tenogenic lineage, and how their growth is regulated and monitored during the entire differentiation path. Finally, we showed recent developments in tendon tissue engineering, specifically the use of mesenchymal stem cells (MSCs), which can differentiate into tendon cells, as well as the potential role of extracellular vesicles (EVs) in tendon regeneration and their potential for use in accelerating the healing response after injury.
Collapse
Affiliation(s)
- Vera Citro
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, UK
- Department of Materials Science and Engineering, Institute of Biomaterials University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen, Germany
| | - Marta Clerici
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, UK
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, Baronissi, Salerno, Italy
| | - Aldo R. Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen, Germany
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, Baronissi, Salerno, Italy
- Interdepartmental Centre BIONAM, University of Salerno, via Giovanni Paolo I, Fisciano, Salerno, Italy
| | - Nicola Maffulli
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, UK
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, Baronissi, Salerno, Italy
- Department of Trauma and Orthopaedic Surgery, University Hospital ‘San Giovanni di Dio e Ruggi D’Aragona’, Salerno, Italy
| | - Nicholas R. Forsyth
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, UK
- Vice Principals’ Office, University of Aberdeen, Kings College, Aberdeen, UK
| |
Collapse
|
15
|
Zhao H, Jiang H, Zhang H, Sun Z, Lin Q, Wang T, Yu T, Zhang Y. Adipose-Derived Mesenchymal Stem Cell-Derived Extracellular Vesicles Rescue Tendon Injury in Rat via the miR-19 a/IGFBP3 Axis. Stem Cells Int 2022; 2022:4197473. [PMID: 36132169 PMCID: PMC9484934 DOI: 10.1155/2022/4197473] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/05/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Purpose Adipose-derived mesenchymal stem cells (ADSCs) are increasingly applied in tendon repair. However, the underlying mechanisms of ADSC-derived extracellular vesicles (EVs) in tendon healing are largely unknown. In this study, we investigated the effect of the EVs secreted by ADSCs on the recovery of tendon injuries and its potential mechanism. Materials and Methods We injected ADSCs into the injured tendon, followed by the evaluation of the tissue morphology, tenocyte proliferation, and oxidative stress. Then, the injured tenocytes were treated with EVs secreted by ADSCs, and oxidative stress and proliferation of tenocytes in vitro were detected. After the overexpression and knockdown of miR-19a and its target protein IGFBP3, the oxidative stress and proliferation of tenocytes in vitro were assessed. Finally, the injured tendon was treated with EVs, and the tissue morphology and proliferation of the injured tendon in vivo were examined. Results ADSC-derived EVs were found to inhibit oxidative stress and promote proliferation of tenocytes isolated from an injury model of rats. EVs were shown to carry miR-19a which regulated the expression of IGFBP3 through binding to 3'UTR of IGFBP3 mRNA. In addition, IGFBP3 promotes oxidative stress and inhibits proliferation of tenocytes. Finally, we found that ADSC-derived EVs promoted tendon wound healing in vivo. Conclusions Our data suggest that treatment with ADSC-derived EVs ameliorates tendon injury by inhibiting oxidative stress and promoting proliferation in tenocytes. miR-19a carried by ADSC-derived EVs regulates IGFBP3 expression through binding to its 3'UTR.
Collapse
Affiliation(s)
- Haibo Zhao
- Department of Orthopedics, Qingdao University Hospital, Qingdao 266000, China
| | - Hongyuan Jiang
- Department of Orthopedics, Qingdao University Hospital, Qingdao 266000, China
| | - Haoyun Zhang
- Department of Orthopedics, Qingdao University Hospital, Qingdao 266000, China
| | - Zewen Sun
- Department of Orthopedics, Qingdao University Hospital, Qingdao 266000, China
| | - Qian Lin
- Department of Orthopedics, Qingdao University Hospital, Qingdao 266000, China
| | - Tianrui Wang
- Department of Orthopedics, Qingdao University Hospital, Qingdao 266000, China
| | - Tengbo Yu
- Department of Orthopedics, Qingdao University Hospital, Qingdao 266000, China
| | - Yingze Zhang
- Trauma and Emergency Center, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| |
Collapse
|
16
|
Zhang X, Wang D, Wang Z, Ling SKK, Yung PSH, Tuan RS, Ker DFE. Clinical perspectives for repairing rotator cuff injuries with multi-tissue regenerative approaches. J Orthop Translat 2022; 36:91-108. [PMID: 36090820 PMCID: PMC9428729 DOI: 10.1016/j.jot.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 11/25/2022] Open
Abstract
Background In the musculoskeletal system, bone, tendon, and muscle form highly integrated multi-tissue units such as the rotator cuff complex, which facilitates functional and dynamic movement of the shoulder joint. Understanding the intricate interplay among these tissues within clinical, biological, and engineering contexts is vital for addressing challenging issues in treatment of musculoskeletal disorders and injuries. Methods A wide-ranging literature search was performed, and findings related to the socioeconomic impact of rotator cuff tears, the structure-function relationship of rotator cuff bone-tendon-muscle units, pathophysiology of injury, current clinical treatments, recent state-of-the-art advances (stem cells, growth factors, and exosomes) as well as their regulatory approval, and future strategies aimed at engineering bone-tendon-muscle musculoskeletal units are outlined. Results Rotator cuff injuries are a significant socioeconomic burden on numerous healthcare systems that may be addressed by treating the rotator cuff as a single complex, given its highly integrated structure-function relationship as well as degenerative pathophysiology and limited healing in bone-tendon-muscle musculoskeletal tissues. Current clinical practices for treating rotator cuff injuries, including the use of commercially available devices and evolving trends in surgical management have benefited patients while advances in application of stem/progenitor cells, growth factors, and exosomes hold clinical potential. However, such efforts do not emphasize targeted regeneration of bone-tendon-muscle units. Strategies aimed at regenerating bone-tendon-muscle units are thus expected to address challenging issues in rotator cuff repair. Conclusions The rotator cuff is a highly integrated complex of bone-tendon-muscle units that when injured, has severe consequences for patients and healthcare systems. State-of-the-art clinical treatment as well as recent advances have resulted in improved patient outcome and may be further enhanced by engineering bone-tendon-muscle multi-tissue grafts as a potential strategy for rotator cuff injuries. Translational Potential of this Article This review aims to bridge clinical, tissue engineering, and biological aspects of rotator cuff repair and propose a novel therapeutic strategy by targeted regeneration of multi-tissue units. The presentation of these wide-ranging and multi-disciplinary concepts are broadly applicable to regenerative medicine applications for musculoskeletal and non-musculoskeletal tissues.
Collapse
Affiliation(s)
- Xu Zhang
- Institute for Tissue Engineering and Regenerative Medicine, Hong Kong
- School of Biomedical Sciences, Hong Kong
| | - Dan Wang
- Institute for Tissue Engineering and Regenerative Medicine, Hong Kong
- School of Biomedical Sciences, Hong Kong
- Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Hong Kong
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong
| | - Zuyong Wang
- College of Materials Science and Engineering, Hunan University, Changsha, China
| | - Samuel Ka-kin Ling
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong
| | - Patrick Shu-hang Yung
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong
| | - Rocky S. Tuan
- Institute for Tissue Engineering and Regenerative Medicine, Hong Kong
- School of Biomedical Sciences, Hong Kong
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong
| | - Dai Fei Elmer Ker
- Institute for Tissue Engineering and Regenerative Medicine, Hong Kong
- School of Biomedical Sciences, Hong Kong
- Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Hong Kong
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong
| |
Collapse
|
17
|
Zhao H, Chen W, Chen J, Qi C, Wang T, Zhang J, Qu D, Yu T, Zhang Y. ADSCs Promote Tenocyte Proliferation by Reducing the Methylation Level of lncRNA Morf4l1 in Tendon Injury. Front Chem 2022; 10:908312. [PMID: 35860629 PMCID: PMC9290323 DOI: 10.3389/fchem.2022.908312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022] Open
Abstract
Objective: Tendons are the special connective tissue that connects bones to muscles and governs joint movement in response to loads passed by muscles. The healing of tendon injuries is still a challenge. In recent years, adipose-derived mesenchymal stem cells (ADSCs) have been increasingly used for tissue regeneration, but the underlying mechanism of tendon injury still remains unclear. Methods: High-throughput sequencing was used to identify a novel lncRNA, whose expression was significantly decreased in injured tendon compared with normal tendon. Furthermore, pyrosequencing, nuclear-cytoplasmic separation, FISH assay and qRT-PCR analysis were used to verify the level of lncRNA methylation in the injured tenocytes. lncRNA was confirmed to promote the proliferation of tenocytes by flow cytometry, wound healing assay, qRT-PCR, and western blot, and the target gene of lncRNA was predicted and verified. To confirm that ADSCs could repair injured tendons, ADSCs and injured tenocytes were co-cultured in vitro, and ADSCs were injected into injured tendons in vitro, respectively. Results: The lncRNA Morf4l1 promoter methylation in injured tendons led to down-regulation of its expression and inhibition of tenocyte proliferation. LncRNA Morf4l1 promoted the expression of TGF-β2 by targeting 3′U of miR-145-5p. After co-cultured ADSCs and injured tenocytes, the expression of lncRNA Morf4l1 was up-regulated, and the proliferation of injured tenocytes in vitro was promoted. The ADSCs were injected into the injured tendon to repair the injured tendon in vivo. Conclusion: This study confirmed that ADSCs promoted tendon wound healing by reducing the methylation level of lncRNA Morf4l1.
Collapse
Affiliation(s)
- Haibo Zhao
- Department of Orthopedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wei Chen
- Third Affiliated Hospital of Hebei Medical University, Shi Jiazhuang, China
| | - Jinli Chen
- Department of Orthopedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chao Qi
- Department of Orthopedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tianrui Wang
- Department of Orthopedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Zhang
- Department of Orthopedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Di Qu
- Department of Orthopedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tengbo Yu
- Department of Orthopedics, Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Tengbo Yu,
| | - Yingze Zhang
- Third Affiliated Hospital of Hebei Medical University, Shi Jiazhuang, China
| |
Collapse
|
18
|
Song K, Dayem AA, Lee S, Choi Y, Lim KM, Kim S, An J, Shin Y, Park H, Jeon TI, Jang SB, Bong H, Lee JI, Kang GH, Kim S, Kim A, Cho SG. Superior therapeutic activity of TGF-β-induced extracellular vesicles against interstitial cystitis. J Control Release 2022; 348:924-937. [PMID: 35772569 DOI: 10.1016/j.jconrel.2022.06.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/09/2022] [Accepted: 06/24/2022] [Indexed: 11/26/2022]
Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS) is a chronic disease characterized by incapacitating pelvic pain. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) are considered key mediators of the paracrine action of MSCs and show better biological activities than the parent MSCs, especially in the bladder tissue, which may be unfavorable for MSC survival. Here, we produced MSC-EVs using advanced three-dimensional (a3D) culture with exogenous transforming growth factor-β3 (TGF-β3) (T-a3D-EVs). Treatment with T-a3D-EVs led to significantly enhanced wound healing and anti-inflammatory capacities. Moreover, submucosal layer injection of T-a3D-EVs in chronic IC/BPS animal model resulted in restoration of bladder function, superior anti-inflammatory activity, and recovery of damaged urothelium compared to MSCs. Interestingly, we detected increased TGF-β1 level in T-a3D-EVs, which might be involved in the anti-inflammatory activity of these EVs. Taken together, we demonstrate the excellent immune-modulatory and regenerative abilities of T-a3D-EVs as observed by recovery from urothelial denudation and dysfunction, which could be a promising therapeutic strategy for IC/BPS.
Collapse
Affiliation(s)
- Kwonwoo Song
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Ahmed Abdal Dayem
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Soobin Lee
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Yujin Choi
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Kyung Min Lim
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sehee Kim
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jongyub An
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Yeokyung Shin
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyojin Park
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Tak-Il Jeon
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Soo Bin Jang
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hanbit Bong
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jeong Ik Lee
- Department of Veterinary Obstetrics and Theriogenology, College of Veterinary Medicine, and Regenerative Medicine Laboratory, Center for Stem Cell Research, Department of Biomedical Science and Technology, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, Seoul 05029, Republic of Korea
| | - Geun-Ho Kang
- R&D Team, StemExOne Co., Ltd., 303, Life Science Bldg, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sejong Kim
- R&D Team, StemExOne Co., Ltd., 303, Life Science Bldg, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Aram Kim
- Department of Urology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05029, Republic of Korea.
| | - Ssang-Goo Cho
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
19
|
Wan R, Hussain A, Behfar A, Moran SL, Zhao C. The Therapeutic Potential of Exosomes in Soft Tissue Repair and Regeneration. Int J Mol Sci 2022; 23:ijms23073869. [PMID: 35409228 PMCID: PMC8998690 DOI: 10.3390/ijms23073869] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Soft tissue defects are common following trauma and tumor extirpation. These injuries can result in poor functional recovery and lead to a diminished quality of life. The healing of skin and muscle is a complex process that, at present, leads to incomplete recovery and scarring. Regenerative medicine may offer the opportunity to improve the healing process and functional outcomes. Barriers to regenerative strategies have included cost, regulatory hurdles, and the need for cell-based therapies. In recent years, exosomes, or extracellular vesicles, have gained tremendous attention in the field of soft tissue repair and regeneration. These nanosized extracellular particles (30-140 nm) can break the cellular boundaries, as well as facilitate intracellular signal delivery in various regenerative physiologic and pathologic processes. Existing studies have established the potential of exosomes in regenerating tendons, skeletal muscles, and peripheral nerves through different mechanisms, including promoting myogenesis, increasing tenocyte differentiation and enhancing neurite outgrowth, and the proliferation of Schwann cells. These exosomes can be stored for immediate use in the operating room, and can be produced cost efficiently. In this article, we critically review the current advances of exosomes in soft tissue (tendons, skeletal muscles, and peripheral nerves) healing. Additionally, new directions for clinical applications in the future will be discussed.
Collapse
Affiliation(s)
- Rou Wan
- Division of Plastic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (R.W.); (A.H.); (S.L.M.)
| | - Arif Hussain
- Division of Plastic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (R.W.); (A.H.); (S.L.M.)
| | - Atta Behfar
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Van Cleve Cardiac Regenerative Medicine Program, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Steven L. Moran
- Division of Plastic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (R.W.); (A.H.); (S.L.M.)
| | - Chunfeng Zhao
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence:
| |
Collapse
|
20
|
Dev I, Pal S, Lugun O, Singh N, Ansari KM. Ochratoxin A treated rat derived urinary exosomes enhanced cell growth and extracellular matrix production in normal kidney cells through modulation of TGF-β1/smad2/3 signaling pathway. Life Sci 2022; 298:120506. [DOI: 10.1016/j.lfs.2022.120506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 11/30/2022]
|
21
|
Song K, Jiang T, Pan P, Yao Y, Jiang Q. Exosomes from tendon derived stem cells promote tendon repair through miR-144-3p-regulated tenocyte proliferation and migration. Stem Cell Res Ther 2022; 13:80. [PMID: 35197108 PMCID: PMC8867681 DOI: 10.1186/s13287-022-02723-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/27/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Tendon derived stem cells (TDSCs) have proven to be effective in tendon repair by secreting paracrine factors, which modulate the function of resident cells and inflammatory process. Exosomes, which are secreted from cells to mediate intercellular communication, may be used to treat tendon injuries. Here, we aimed to determine the effects of exosomes from TDSCs (TDSC-Exos) on tendon repair and to explore the underlying mechanism by investigating the role of microRNAs (miRNAs). METHODS TDSC-Exos were isolated from TDSC conditioned medium. In vitro studies were performed to investigate the effects of TDSC-Exos on the proliferation, migration, cytoprotection, collagen production and tendon-specific markers expression in tenocytes. In order to determine the therapeutic effects of TDSC-Exos in vivo, we used a scaffold of photopolymerizable hyaluronic acid (p-HA) loaded with TDSC-Exos (pHA-TDSC-Exos) to treat tendon defects in the rat model. Subsequently, RNA sequencing and bioinformatic analyses were used to screen for enriched miRNAs in TDSC-Exos and predict target genes. The miRNA-target transcript interaction was confirmed by a dual-luciferase reporter assay system. In order to determine the role of candidate miRNA and its target gene in TDSC-Exos-regulated tendon repair, miRNA mimic and inhibitor were transfected into tenocytes to evaluate cell proliferation and migration. RESULTS Treatment with TDSC-Exos promoted proliferation, migration, type I collagen production and tendon-specific markers expression in tenocytes, and also protected tenocytes from oxidative stress and serum deprivation. The scaffold of pHA-TDSC-Exos could sever as a sustained release system to treat the rat model of tendon defects. In vivo study showed that TDSC-Exos promoted early healing of injured tendons. Rats treated with TDSC-Exos had better fiber arrangement and histological scores at the injury site. Besides, the injured tendons treated with TDSC-Exos had better performance in the biomechanical testing. Therefore, the pHA-TDSC-Exos scaffold proved to facilitate tendon repair in the rat model. miR-144-3p was enriched in TDSC-Exos and promoted tenocyte proliferation and migration via targeting AT-rich interactive domain 1A (ARID1A). CONCLUSIONS TDSC-Exos enhanced tenon repair through miR-144-3p-regulated tenocyte proliferation and migration. These results suggest that TDSC-Exos can serve as a promising strategy to treat tendon injuries.
Collapse
Affiliation(s)
- Kai Song
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China.,Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, 210093, Jiangsu, People's Republic of China
| | - Tao Jiang
- Department of Orthopedic Surgery, The Affiliated Yixing Hospital of Jiangsu University, Wuxi, 214200, Jiangsu, People's Republic of China
| | - Pin Pan
- Department of Orthopedic Surgery, The Second People's Hospital of Hefei, Hefei, 230011, Anhui, People's Republic of China
| | - Yao Yao
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China.,Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, 210093, Jiangsu, People's Republic of China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China. .,Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, 210093, Jiangsu, People's Republic of China.
| |
Collapse
|
22
|
Du Y, Wu Y. Repairing Effect of Platelet Enriched Plasma on Tendon Healing. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To explore the repairing effect of platelet-rich plasma (PRP) on tendon (AT) healing, and provide evidence for PRP therapy to treat tendon-related diseases, 32 New Zealand white rabbits were selected to construct tendinopathy animal model. Leukocyte-rich Platelet-Rich Fibrin (Lr-PRP)
and Leukocyte-poor Platelet-Rich Fibrin (Lp-PRP) were prepared, whose biological effects on tendon stem cells (TSCs) were explored. Rabbits were divided into control group, low, medium, and high dose groups regrading concentration of Lp-PRP. The number of fibroblasts, collagen fiber content,
tubuloglomerular feedback-β1 (TGF-β1) expression, and biomechanical properties were compared at 15 and 30 days after operation. The results showed that Collagen-III (CoI-III) protein expression levels, interleukin-β (IL-β), and interleukin-6
(IL-6) levels in the Lp-PRP group were significantly higher than Lr-PRP group (P < 0.05). Fibroblasts and collagen fibers in group II and III were significantly higher versus group C 15 and 30 days after operation (P < 0.05). Fibroblasts and of collagen fibers in group
III were significantly higher versus group II (P < 0.05). Expression of TGF-β1 in groups II and III was significantly higher than that in group C 15 days after operation (P < 0.05). Tensile load of AT repair site in group III was significantly higher than group
C 30 days after operation (P < 0.05). Platelet plasma concentration had a certain repair effect on tendon injury and can effectively improve the quality of healing. In addition, Lp-PRP was better than Lr-PRP in tissue healing. When the concentration of Lp-PRP was 100%, the repair
effect was the best.
Collapse
Affiliation(s)
- Yi Du
- Department of Surgery, Zhejiang University Hospital, Zhejiang University, Hangzhou, 310058, China
| | - Yifan Wu
- Department of Surgery, Zhejiang University Hospital, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
23
|
Nguyen TH, Duong CM, Nguyen XH, Than UTT. Mesenchymal Stem Cell-Derived Extracellular Vesicles for Osteoarthritis Treatment: Extracellular Matrix Protection, Chondrocyte and Osteocyte Physiology, Pain and Inflammation Management. Cells 2021; 10:2887. [PMID: 34831109 PMCID: PMC8616200 DOI: 10.3390/cells10112887] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is a common degenerative disease that can lead to persistent pain and motion restriction. In the last decade, stem cells, particularly mesenchymal stem cells (MSCs), have been explored as a potential alternative OA therapy due to their regenerative capacity. Furthermore, it has been shown that trophic factors enveloped in extracellular vesicles (EVs), including exosomes, are a crucial aspect of MSC-based treatment for OA. Evidently, EVs derived from different MSC sources might rescue the OA phenotype by targeting many biological processes associated with cartilage extracellular matrix (ECM) degradation and exerting protective effects on different joint cell types. Despite this advancement, different studies employing EV treatment for OA have revealed reverse outcomes depending on the EV cargo, cell source, and pathological condition. Hence, in this review, we aim to summarize and discuss the possible effects of MSC-derived EVs based on recent findings at different stages of OA development, including effects on cartilage ECM, chondrocyte biology, osteocytes and bone homeostasis, inflammation, and pain management. Additionally, we discuss further strategies and technical advances for manipulating EVs to specifically target OA to bring the therapy closer to clinical use.
Collapse
Affiliation(s)
- Thu Huyen Nguyen
- Department of Bioscience, University of Milan, 20133 Milan, Italy;
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi 100000, Vietnam; (C.M.D.); (X.-H.N.)
| | - Chau Minh Duong
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi 100000, Vietnam; (C.M.D.); (X.-H.N.)
- Department of Biology, Clark University, Worcester, MA 01610, USA
| | - Xuan-Hung Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi 100000, Vietnam; (C.M.D.); (X.-H.N.)
- Vinmec Research Institute of Applied Sciences and Regenerative Medicine, Vinmec Healthcare System, Hanoi 100000, Vietnam
- College of Health Sciences, VinUniversity, Hanoi 100000, Vietnam
| | - Uyen Thi Trang Than
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi 100000, Vietnam; (C.M.D.); (X.-H.N.)
- Vinmec Research Institute of Applied Sciences and Regenerative Medicine, Vinmec Healthcare System, Hanoi 100000, Vietnam
| |
Collapse
|
24
|
Fang WH, Agrawal DK, Thankam FG. "Smart Exosomes": A Smart Approach for Tendon Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:613-625. [PMID: 34074136 DOI: 10.1089/ten.teb.2021.0075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Shoulder tendon injuries are the common musculoskeletal disorder resulting in significant pain and disability. These injuries are characterized by chronic inflammation and tissue degeneration. Tendon pathology exhibits poor innate healing ability, enhanced inflammation, disorganized collagen fibers, calcification, and scar tissue formation affecting the normal healing process. Extracellular vesicle, especially exosomes, treatment has been emerging as a potential regenerative strategy improving the outcomes and biomechanical properties, accelerating tenocyte proliferation and migration, reducing inflammation, and facilitating the healing at tendon-bone interface. In this article, we critically reviewed the potential role of exosomes in tendon regeneration and their applications to accelerate the healing response following injury. In addition, the article provides novel insights on the concept of "Smart Exosomes" by programming/manipulating the secretome contents and functions of exosomes in the management of shoulder tendon injury.
Collapse
Affiliation(s)
- William H Fang
- Department of Translational Research, Western University of Health Sciences, Pomona, California, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, California, USA
| | - Finosh G Thankam
- Department of Translational Research, Western University of Health Sciences, Pomona, California, USA
| |
Collapse
|
25
|
Zhang C, Wu J, Li X, Wang Z, Lu WW, Wong TM. Current Biological Strategies to Enhance Surgical Treatment for Rotator Cuff Repair. Front Bioeng Biotechnol 2021; 9:657584. [PMID: 34178957 PMCID: PMC8226184 DOI: 10.3389/fbioe.2021.657584] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/07/2021] [Indexed: 01/08/2023] Open
Abstract
Rotator cuff tear is one of the most common shoulder problems encountered by orthopedic surgeons. Due to the slow healing process and high retear rate, rotator cuff tear has distressed millions of people all around the world every year, especially for the elderly and active athletes. This disease significantly impairs patients' motor ability and reduces their quality of life. Besides conservative treatment, open and arthroscopic surgery contributes a lot to accelerate the healing process of rotator cuff tear. Currently, there are many emerging novel treatment methods to promote rotator cuff repair. A variety of biological stimulus has been utilized in clinical practice. Among them, platelet-rich plasma, growth factors, stem cells, and exosomes are the most popular biologics in laboratory research and clinical trials. This review will focus on the biologics of bioaugmentation methods for rotator cuff repair and tendon healing, including platelet-rich plasma, growth factors, exosomes and stem cells, etc. Relevant studies are summarized in this review and future research perspectives are introduced.
Collapse
Affiliation(s)
- Cheng Zhang
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Guangdong Engineering Technology Research Center for Orthopaedic Trauma Repair, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jun Wu
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Guangdong Engineering Technology Research Center for Orthopaedic Trauma Repair, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Xiang Li
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Guangdong Engineering Technology Research Center for Orthopaedic Trauma Repair, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Zejin Wang
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Guangdong Engineering Technology Research Center for Orthopaedic Trauma Repair, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Weijia William Lu
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Guangdong Engineering Technology Research Center for Orthopaedic Trauma Repair, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology (CAS), Shenzhen, China
| | - Tak-Man Wong
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Guangdong Engineering Technology Research Center for Orthopaedic Trauma Repair, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
26
|
Meeremans M, Van de Walle GR, Van Vlierberghe S, De Schauwer C. The Lack of a Representative Tendinopathy Model Hampers Fundamental Mesenchymal Stem Cell Research. Front Cell Dev Biol 2021; 9:651164. [PMID: 34012963 PMCID: PMC8126669 DOI: 10.3389/fcell.2021.651164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Overuse tendon injuries are a major cause of musculoskeletal morbidity in both human and equine athletes, due to the cumulative degenerative damage. These injuries present significant challenges as the healing process often results in the formation of inferior scar tissue. The poor success with conventional therapy supports the need to search for novel treatments to restore functionality and regenerate tissue as close to native tendon as possible. Mesenchymal stem cell (MSC)-based strategies represent promising therapeutic tools for tendon repair in both human and veterinary medicine. The translation of tissue engineering strategies from basic research findings, however, into clinical use has been hampered by the limited understanding of the multifaceted MSC mechanisms of action. In vitro models serve as important biological tools to study cell behavior, bypassing the confounding factors associated with in vivo experiments. Controllable and reproducible in vitro conditions should be provided to study the MSC healing mechanisms in tendon injuries. Unfortunately, no physiologically representative tendinopathy models exist to date. A major shortcoming of most currently available in vitro tendon models is the lack of extracellular tendon matrix and vascular supply. These models often make use of synthetic biomaterials, which do not reflect the natural tendon composition. Alternatively, decellularized tendon has been applied, but it is challenging to obtain reproducible results due to its variable composition, less efficient cell seeding approaches and lack of cell encapsulation and vascularization. The current review will overview pros and cons associated with the use of different biomaterials and technologies enabling scaffold production. In addition, the characteristics of the ideal, state-of-the-art tendinopathy model will be discussed. Briefly, a representative in vitro tendinopathy model should be vascularized and mimic the hierarchical structure of the tendon matrix with elongated cells being organized in a parallel fashion and subjected to uniaxial stretching. Incorporation of mechanical stimulation, preferably uniaxial stretching may be a key element in order to obtain appropriate matrix alignment and create a pathophysiological model. Together, a thorough discussion on the current status and future directions for tendon models will enhance fundamental MSC research, accelerating translation of MSC therapies for tendon injuries from bench to bedside.
Collapse
Affiliation(s)
- Marguerite Meeremans
- Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Catharina De Schauwer
- Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|