1
|
Ramos LS, Fernandes MF, Santos HLC, Picão RC, Branquinha MH, Santos ALS. Candida spp. isolated from recreational coastal waters of Rio de Janeiro - Brazil: Focus on antifungal resistance and virulence attributes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174662. [PMID: 38997029 DOI: 10.1016/j.scitotenv.2024.174662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/02/2024] [Accepted: 07/07/2024] [Indexed: 07/14/2024]
Abstract
The use of recreational waters is a widespread activity worldwide, and one of the risks associated with this practice is the exposure of bathers to microorganisms that may arise due to pollution caused by inadequate infrastructure and sanitation. In the present work, we isolated Candida spp. (n = 24) from five recreational beaches in Rio de Janeiro, Brazil, in order to evaluate their susceptibility to antifungals, the production of virulence attributes and the in vivo virulence using Tenebrio molitor larvae as a model. The ITS1-5.8S-ITS2 gene sequencing identified thirteen isolates (54.1 %) as C. tropicalis, seven (29.1 %) as C. krusei (Pichia kudriavzevii), one (4.2 %) as C. rugosa (Diutina rugosa), one (4.2 %) as C. mesorugosa (Diutina mesorugosa), one (4.2 %) as C. utilis (Cyberlindnera jadinii) and one (4.2 %) as C. parapsilosis. C. tropicalis isolates showed resistance to azoles and susceptibility to amphotericin B, flucytosine and caspofungin. C. krusei isolates were resistant to fluconazole, caspofungin and itraconazole, with 42.8 % resistance to flucytosine, besides susceptibility to voriconazole and amphotericin B. The remaining species were susceptible to all tested antifungals. All Candida isolates adhered to abiotic surfaces and formed biofilm on polystyrene, albeit to varying degrees, and produced aspartic protease and hemolytic activity, which are considered fungal virulence attributes. C. tropicalis, C. krusei and C. utilis isolates produced phytase, while the only esterase producer was C. tropicalis. Regarding resistance to osmotic stress, all isolates of C. tropicalis, C. parapsilosis and C. mesorugosa grew up to 7.5 % NaCl; the remaining isolates grew up to 1.87-3.75 % NaCl. The mortality caused by fungal challenges in T. molitor larvae was variable, with C. tropicalis, C. utilis and C. parapsilosis being more virulent than C. krusei and C. rugosa complex. Collectively, the presence of these yeasts, particularly the virulent and resistant isolates, in recreational waters can pose a significant health risk to bathers.
Collapse
Affiliation(s)
- Lívia S Ramos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana F Fernandes
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Helena L C Santos
- Laboratório de Estudos Integrados em Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Renata C Picão
- Laboratório de Investigação em Microbiologia Médica, Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marta H Branquinha
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Rede Micologia RJ - Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-902, RJ, Brazil
| | - André L S Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Rede Micologia RJ - Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-902, RJ, Brazil; Programa de Pós-Graduação em Bioquímica, Instituto de Química, UFRJ, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Silva NBS, Menezes RP, Gonçalves DS, Santiago MB, Conejo NC, Souza SL, Santos ALO, da Silva RS, Ramos SB, Ferro EAV, Martins CHG. Exploring the antifungal, antibiofilm and antienzymatic potential of Rottlerin in an in vitro and in vivo approach. Sci Rep 2024; 14:11132. [PMID: 38750088 PMCID: PMC11096346 DOI: 10.1038/s41598-024-61179-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
Candida species have been responsible for a high number of invasive infections worldwide. In this sense, Rottlerin has demonstrated a wide range of pharmacological activities. Therefore, this study aimed to evaluate the antifungal, antibiofilm and antivirulence activity of Rottlerin in vitro against Candida spp. and its toxicity and antifungal activity in vivo. Rottlerin showed antifungal activity against all yeasts evaluated, presenting Minimum Inhibitory and Fungicidal Concentration (MIC and MFC) values of 7.81 to > 1000 µg/mL. Futhermore, it was able to significantly inhibit biofilm production, presenting Biofilm Inhibitory Concentration (MICB50) values that ranged from 15.62 to 250 µg/mL and inhibition of the cell viability of the biofilm by 50% (IC50) from 2.24 to 12.76 µg/mL. There was a considerable reduction in all hydrolytic enzymes evaluated, with emphasis on hemolysin where Rottlerin showed a reduction of up to 20%. In the scanning electron microscopy (SEM) analysis, Rottlerin was able to completely inhibit filamentation by C. albicans. Regarding in vivo tests, Rottlerin did not demonstrate toxicity at the therapeutic concentrations demonstrated here and was able to increase the survival of C. elegans larvae infected. The results herein presented are innovative and pioneering in terms of Rottlerin's multipotentiality against these fungal infections.
Collapse
Affiliation(s)
- Nagela Bernadelli Sousa Silva
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences (ICBIM), Federal University of Uberlândia (UFU), Av. Pará, 1720 - Umuarama, Uberlândia, 38405-320, Brazil
| | - Ralciane Paula Menezes
- Technical School of Health (ESTES), Federal University of Uberlândia (UFU), Uberlândia, Brazil
| | - Daniela Silva Gonçalves
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences (ICBIM), Federal University of Uberlândia (UFU), Av. Pará, 1720 - Umuarama, Uberlândia, 38405-320, Brazil
| | - Mariana Brentini Santiago
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences (ICBIM), Federal University of Uberlândia (UFU), Av. Pará, 1720 - Umuarama, Uberlândia, 38405-320, Brazil
| | - Noemi Chagas Conejo
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences (ICBIM), Federal University of Uberlândia (UFU), Av. Pará, 1720 - Umuarama, Uberlândia, 38405-320, Brazil
| | - Sara Lemes Souza
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences (ICBIM), Federal University of Uberlândia (UFU), Av. Pará, 1720 - Umuarama, Uberlândia, 38405-320, Brazil
| | - Anna Lívia Oliveira Santos
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences (ICBIM), Federal University of Uberlândia (UFU), Av. Pará, 1720 - Umuarama, Uberlândia, 38405-320, Brazil
| | - Robinson Sabino da Silva
- Innovation Center in Salivary Diagnostic and Nanotheranostics, Institute of Biomedical Sciences (ICBIM), Federal University of Uberlandia (UFU), Uberlândia, Brazil
| | - Salvador Boccaletti Ramos
- Department of Engineering and Exact Sciences, Faculty of Agricultural and Veterinary Sciences - Jaboticabal (FCAV), São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Eloisa Amália Vieira Ferro
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences (ICBIM), Federal University of Uberlandia, Uberlândia, Brazil
| | - Carlos Henrique Gomes Martins
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences (ICBIM), Federal University of Uberlândia (UFU), Av. Pará, 1720 - Umuarama, Uberlândia, 38405-320, Brazil.
| |
Collapse
|
3
|
Morales-López S, Ustate K, Pedrozo Z, Torres Y. Biochemical typing and evaluation of pathogenicity in vulvovaginal isolates of Candida albicans complex. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2023; 43:194-205. [PMID: 37721915 PMCID: PMC10588967 DOI: 10.7705/biomedica.6861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 02/06/2023] [Indexed: 09/20/2023]
Abstract
Introduction Candida albicans, C. dubliniensis, and C. africana form the Candida albicans complex. Objective To identify the phenotypic and pathogenic characteristics of isolates of the C. albicans complex preserved in a collection. Materials and methods Three hundred presumptive strains of the C. albicans complex were evaluated using CHROMagarTM Candida. Germ tube production was determined by three methods, chlamydospores formation was assessed and colonies were characterized in artisanal agars (Rosmarinus officinalis and Nicotiana tabacum). MALDI-TOF was used as the gold standard identification test. To detect pathogenicity factors, we evaluated the hemolytic activity of each isolate and cocultured with Staphylococcus aureus, coagulase enzyme production, and biofilm formation. Results Out of the 300 isolates, 43.7% produced germ tube in the heart-brain infusion broth and 47% of the isolates produced chlamydospores. In the artisan media, 6% of the isolates produced brown colonies on rosemary agar and 5% did so on tobacco agar. None of the strains hemolyzed the blood agar alone or cocultured with S. aureus. However, 50% of the isolates hemolyzed the potato dextrose agar supplemented with blood. All strains were coagulase producers, and biofilm production was variable. For germ tube production, the human serum method showed the same positivity as the milk broth method. All isolates were identified as C. albicans by MALDI-TOF. Conclusions The use of proteomics, molecular tests or a combination of methods is required for species identification.
Collapse
Affiliation(s)
- Soraya Morales-López
- Grupo CINBIOS, Programa de Microbiología, Universidad Popular del Cesar, Valledupar, Colombia; Laboratorios Nancy Flórez García S.A.S., Valledupar, Colombia.
| | - Keiner Ustate
- Grupo CINBIOS, Programa de Microbiología, Universidad Popular del Cesar, Valledupar, Colombia.
| | - Zulay Pedrozo
- Grupo CINBIOS, Programa de Microbiología, Universidad Popular del Cesar, Valledupar, Colombia.
| | - Yulibeth Torres
- Grupo CINBIOS, Programa de Microbiología, Universidad Popular del Cesar, Valledupar, Colombia.
| |
Collapse
|
4
|
Ramos‐Pardo A, Castro‐Álvarez R, Quindós G, Eraso E, Sevillano E, Kaberdin VR. Assessing pH-dependent activities of virulence factors secreted by Candida albicans. Microbiologyopen 2023; 12:e1342. [PMID: 36825882 PMCID: PMC9808488 DOI: 10.1002/mbo3.1342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/05/2022] [Indexed: 01/04/2023] Open
Abstract
Candida albicans is an opportunistic pathogen that can thrive under adverse conditions including suboptimal pH, nutrient scarcity, and low levels of oxygen. Its pathogenicity is associated with the production of virulence factors such as extracellular hydrolytic enzymes and toxins. This study was aimed at determining the effect of external pH, substrate nature, and strain origin on protease, lipase, and hemolysin production. To achieve this objective, agar plate assays were performed at pH 5.0, 6.5, and 7.5 with substrates suitable for the detection of each family of enzymes. Moreover, the study was conducted with 20 clinical C. albicans isolates from blood, oral cavity, skin, urine, and vagina. The hydrolytic zones formed around the colonies were further measured to calculate the Ez (enzymatic zone) indexes. We found that detection of proteases in skim milk agar plates was possible for most isolates only at pH 5 (80%) and pH 6.5 (75%), whereas BSA plates could confer protease detection exclusively at pH 5 (80%). Similarly, the percentage of isolates possessing lipolytic activities was higher at pH 5 (90%) than at pH 6.5 (70%) and pH 7.5 (35%). In contrast, hemolytic activities were detected in all isolates at pH 6.5 and 7.5 but not at pH 5. Further analysis revealed that some differences in the detected activities could potentially be attributed to the anatomical origin of these isolates. Collectively, these findings suggest that the pH of the site of infection might be critical for mimicking the microenvironment employed to experimentally discover the key virulence factors.
Collapse
Affiliation(s)
- Asier Ramos‐Pardo
- Department of Immunology, Microbiology and ParasitologyUniversity of the Basque Country UPV/EHULeioaSpain
| | - Rocío Castro‐Álvarez
- Department of Immunology, Microbiology and ParasitologyUniversity of the Basque Country UPV/EHULeioaSpain
| | - Guillermo Quindós
- Department of Immunology, Microbiology and ParasitologyUniversity of the Basque Country UPV/EHULeioaSpain
| | - Elena Eraso
- Department of Immunology, Microbiology and ParasitologyUniversity of the Basque Country UPV/EHULeioaSpain
| | - Elena Sevillano
- Department of Immunology, Microbiology and ParasitologyUniversity of the Basque Country UPV/EHULeioaSpain
| | - Vladimir R. Kaberdin
- Department of Immunology, Microbiology and ParasitologyUniversity of the Basque Country UPV/EHULeioaSpain
- IKERBASQUE, Basque Foundation for ScienceBilbaoSpain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE‐UPV/EHU)PlentziaSpain
| |
Collapse
|
5
|
Polyphyllin I Effects Candida albicans via Inhibition of Virulence Factors. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:5645500. [PMID: 36726525 PMCID: PMC9886465 DOI: 10.1155/2023/5645500] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 01/24/2023]
Abstract
Paris polyphylla is often used in Chinese medicine to treat conditions such as carbuncles, trauma, snake bites, and mosquito bites. In the present study, we investigated the effect and mechanism of the morphological transition and extracellular phospholipase activity of Candida albicans treated with polyphyllin I (PPI). First, the minimum inhibitory concentration and antifungal activity of PPI were evaluated using the multiple microdilution method and time-killing assays. Then, the effect of PPI on the morphological transition of Candida albicans in Spider liquid medium and Sabouraud-dextrose liquid medium containing 10% fetal bovine serum was observed under an inverted microscope and by scanning electron microscopy. Finally, egg yolk agar plates were used to evaluate extracellular phospholipase activity. Gene expression was detected by real-time quantitative polymerase chain reaction analysis. Our results suggest that PPI inhibited the transition from the yeast to the hyphal stage and decreased secreted aspartyl proteinase activity. We further confirmed that PPI significantly downregulated the expression of extracellular phospholipase genes and cAMP-PKA signaling pathway-related genes. Taken together, our results suggest that PPI exerts anti-Candida albicans activity by inhibiting virulence characteristics, including the yeast-to-hyphal transition and the secretion of aspartyl proteases and phospholipases. The study results also indicated that PPI could be a promising therapeutic strategy for Candida albicans.
Collapse
|
6
|
Cangui-Panchi SP, Ñacato-Toapanta AL, Enríquez-Martínez LJ, Salinas-Delgado GA, Reyes J, Garzon-Chavez D, Machado A. Battle royale: Immune response on biofilms – host-pathogen interactions. CURRENT RESEARCH IN IMMUNOLOGY 2023; 4:100057. [PMID: 37025390 PMCID: PMC10070391 DOI: 10.1016/j.crimmu.2023.100057] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/08/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
The research interest of the scientific community in biofilm-forming microorganisms is growing due to the problems caused by their infections affecting humans and animals, mainly because of the difficulty of the host immune system in eradicating these microbial complex communities and the increasing antimicrobial resistance rates worldwide. This review describes the virulence factors and their interaction with the microbial communities of four well-known and highly biofilm-forming pathogens, more exactly, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus spp., and Candida spp. The innate and adaptive immune responses caused by the infection with these microorganisms and their evasion to the host immune system by biofilm formation are discussed in the present work. The relevance of the differences in the expression of certain virulence factors and the immune response in biofilm-associated infections when compared to planktonic infections is usually described as the biofilm architecture protects the pathogen and alters the host immune responses, here we extensively discussed these mechanisms.
Collapse
Affiliation(s)
- Sandra Pamela Cangui-Panchi
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Laboratorio de Bacteriología, Quito, Ecuador
| | - Anahí Lizbeth Ñacato-Toapanta
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Laboratorio de Bacteriología, Quito, Ecuador
| | - Leonardo Joshué Enríquez-Martínez
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Laboratorio de Bacteriología, Quito, Ecuador
| | - Gabriela Alexandra Salinas-Delgado
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Laboratorio de Bacteriología, Quito, Ecuador
| | - Jorge Reyes
- Hospital del Instituto Ecuatoriano de Seguridad Social (IESS) Quito-Sur, Quito, Ecuador
- Facultad de Ciencias Químicas, Universidad Central del Ecuador, Quito, Ecuador
| | - Daniel Garzon-Chavez
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Quito, Ecuador
| | - António Machado
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Laboratorio de Bacteriología, Quito, Ecuador
- Corresponding author.
| |
Collapse
|
7
|
Candidalysin Is the Hemolytic Factor of Candida albicans. Toxins (Basel) 2022; 14:toxins14120874. [PMID: 36548771 PMCID: PMC9785678 DOI: 10.3390/toxins14120874] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Candida albicans produces an important virulence factor, the hypha-associated Ece1-derived secreted peptide toxin candidalysin, which is crucial for the establishment of mucosal and systemic infections. C. albicans has also long been known to be hemolytic, yet the hemolytic factor has not been clearly identified. Here, we show that candidalysin is the hemolytic factor of C. albicans. Its hemolytic activity is modulated by fragments of another Ece1 peptide, P7. Hemolysis by candidalysin can be neutralized by the purinergic receptor antagonist pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS). PPADS also affects candidalysin's ability to intercalate into synthetic membranes. We also describe the neutralization potential of two anti-candidalysin nanobodies, which are promising candidates for future anti-Candida therapy. This work provides evidence that the historically proposed hemolytic factor of C. albicans is in fact candidalysin and sheds more light on the complex roles of this toxin in C. albicans biology and pathogenicity.
Collapse
|
8
|
Antimicrobial, Antivirulence, and Antiparasitic Potential of Capsicum chinense Jacq. Extracts and Their Isolated Compound Capsaicin. Antibiotics (Basel) 2022; 11:antibiotics11091154. [PMID: 36139934 PMCID: PMC9495104 DOI: 10.3390/antibiotics11091154] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 12/03/2022] Open
Abstract
Bacterial, fungal, and parasitic infections increase morbimortality rates and hospital costs. This study aimed to assess the antimicrobial and antiparasitic activities of the crude extract from the seeds and peel of the pepper Capsicum chinense Jacq. and of the isolated compound capsaicin and to evaluate their ability to inhibit biofilm formation, eradicate biofilm, and reduce hemolysin production by Candida species. The crude ethanolic and hexane extracts were obtained by maceration at room temperature, and their chemical compositions were analyzed by liquid chromatography coupled to mass spectrometry (LC–MS). The antimicrobial activity of the samples was evaluated by determining the minimum inhibitory concentration. Inhibition of biofilm formation and biofilm eradication by the samples were evaluated based on biomass and cell viability. Reduction of Candida spp. hemolytic activity by the samples was determined on sheep blood agar plates. The antiparasitic action of the samples was evaluated by determining their ability to inhibit Toxoplasma gondii intracellular proliferation. LC–MS-ESI analyses helped to identify organic and phenolic acids, flavonoids, capsaicinoids, and fatty acids in the ethanolic extracts, as well as capsaicinoids and fatty acids in the hexane extracts. Antifungal action was more evident against C. glabrata and C. tropicalis. The samples inhibited biofilm formation and eradicated the biofilm formed by C. tropicalis more effectively. Sub-inhibitory concentrations of the samples significantly reduced the C. glabrata and C. tropicalis hemolytic activity. The samples only altered host cell viability when tested at higher concentrations; however, at non-toxic concentrations, they reduced T. gondii growth. In association with gold standard drugs used to treat toxoplasmosis, capsaicin improved their antiparasitic activity. These results are unprecedented and encouraging, indicating the Capsicum chinense Jacq. peel and seed extracts and capsaicin display antifungal and antiparasitic activities.
Collapse
|
9
|
Liao C, Mao F, Qian M, Wang X. Pathogen-Derived Nucleases: An Effective Weapon for Escaping Extracellular Traps. Front Immunol 2022; 13:899890. [PMID: 35865526 PMCID: PMC9294136 DOI: 10.3389/fimmu.2022.899890] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Since the 2004 publication of the first study describing extracellular traps (ETs) from human neutrophils, several reports have shown the presence of ETs in a variety of different animals and plants. ETs perform two important functions of immobilizing and killing invading microbes and are considered a novel part of the phagocytosis-independent, innate immune extracellular defense system. However, several pathogens can release nucleases that degrade the DNA backbone of ETs, reducing their effectiveness and resulting in increased pathogenicity. In this review, we examined the relevant literature and summarized the results on bacterial and fungal pathogens and parasites that produce nucleases to evade the ET-mediated host antimicrobial mechanism.
Collapse
Affiliation(s)
- Chengshui Liao
- College of Animal Science and Technology/Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, China
- *Correspondence: Chengshui Liao, ; Xiaoli Wang,
| | - Fuchao Mao
- College of Animal Science and Technology/Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, China
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang Vocational and Technical College, Luoyang, China
| | - Man Qian
- College of Animal Science and Technology/Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, China
| | - Xiaoli Wang
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
- *Correspondence: Chengshui Liao, ; Xiaoli Wang,
| |
Collapse
|
10
|
The Threat Called Candida haemulonii Species Complex in Rio de Janeiro State, Brazil: Focus on Antifungal Resistance and Virulence Attributes. J Fungi (Basel) 2022; 8:jof8060574. [PMID: 35736057 PMCID: PMC9225368 DOI: 10.3390/jof8060574] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 02/01/2023] Open
Abstract
Although considered rare, the emergent Candida haemulonii species complex, formed by C. haemulonii sensu stricto (Ch), C. duobushaemulonii (Cd) and C. haemulonii var. vulnera (Chv), is highlighted due to its profile of increased resistance to the available antifungal drugs. In the present work, 25 clinical isolates, recovered from human infections during 2011–2020 and biochemically identified by automated system as C. haemulonii, were initially assessed by molecular methods (amplification and sequencing of ITS1-5.8S-ITS2 gene) for precise species identification. Subsequently, the antifungal susceptibility of planktonic cells, biofilm formation and susceptibility of biofilms to antifungal drugs and the secretion of key molecules, such as hydrolytic enzymes, hemolysins and siderophores, were evaluated by classical methodologies. Our results revealed that 7 (28%) isolates were molecularly identified as Ch, 7 (28%) as Chv and 11 (44%) as Cd. Sixteen (64%) fungal isolates were recovered from blood. Regarding the antifungal susceptibility test, the planktonic cells were resistant to (i) fluconazole (100% of Ch and Chv, and 72.7% of Cd isolates), itraconazole and voriconazole (85.7% of Ch and Chv, and 72.7% of Cd isolates); (ii) no breakpoints were defined for posaconazole, but high MICs were observed for 85.7% of Ch and Chv, and 72.7% of Cd isolates; (iii) all isolates were resistant to amphotericin B; and (iv) all isolates were susceptible to echinocandins (except for one isolate of Cd) and to flucytosine (except for two isolates of Cd). Biofilm is a well-known virulence and resistant structure in Candida species, including the C. haemulonii complex. Herein, we showed that all isolates were able to form viable biofilms over a polystyrene surface. Moreover, the mature biofilms formed by the C. haemulonii species complex presented a higher antifungal-resistant profile than their planktonic counterparts. Secreted molecules associated with virulence were also detected in our fungal collection: 100% of the isolates yielded aspartic proteases, hemolysins and siderophores as well as phospholipase (92%), esterase (80%), phytase (80%), and caseinase (76%) activities. Our results reinforce the multidrug resistance profile of the C. haemulonii species complex, including Brazilian clinical isolates, as well as their ability to produce important virulence attributes such as biofilms and different classes of hydrolytic enzymes, hemolysins and siderophores, which typically present a strain-dependent profile.
Collapse
|
11
|
Orlandini RK, Rocha ACSD, Silva GA, Watanabe E, Motta ACF, Silva-Lovato CH, Oliveira VDC, Bollela VR, Lourenço AG. Increased diversity, fungal burden, and virulence of oral Candida spp. in patients undergoing anti-tuberculosis treatment. Microb Pathog 2021; 161:105280. [PMID: 34742893 DOI: 10.1016/j.micpath.2021.105280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 11/26/2022]
Abstract
Some studies have demonstrated a high prevalence of Candida species in patients with tuberculosis (TB). This is most likely due to long-term antimicrobial therapy. To date, no longitudinal studies addressed the effects of anti-TB treatment on the fungal burden and virulence of Candida spp. This study investigated the prevalence and virulence of Candida spp. in the oral cavity of 30 TB patients at different stages of treatment through a cohort study. These results were compared with those of 60 systemically healthy individuals in a cross-sectional study. Oral rinse samples from TB patients were collected before 45 and after 120 days of treatment. In the control group, the biological samples were collected only once. Candida spp. were identified by restriction fragment length polymorphism (RFLP) assays, and the following virulence factors were studied: phospholipase C and proteinase production, as well as Candida spp. biofilm and hyphae formation. The clinical diagnosis of TB and its treatment time were associated with the greater fungal burden (p < 0.0001), presence of non-albicans Candida (NAC) species (p = 0.0003), and increased virulence factors when compared with the Candida spp. isolated from systemically healthy individuals. The results showed that anti-TB treatment time was responsible for the increased fungal burden and isolation of NAC in TB patients (p = 0.0233). The increased prevalence, quantification, and virulence of Candida spp. isolated from the oral cavity of TB patients highlight the greater risk of oral lesions and cases of systemic dissemination in these patients.
Collapse
Affiliation(s)
- Renata Klemp Orlandini
- Department of Basic and Oral Biology, Ribeirão Preto School of Dentistry, University of São Paulo, Brazil
| | | | - Gilberto André Silva
- Department of Basic and Oral Biology, Ribeirão Preto School of Dentistry, University of São Paulo, Brazil
| | - Evandro Watanabe
- Department of Restorative Dentistry, Ribeirão Preto School of Dentistry, University of São Paulo, Brazil
| | - Ana Carolina Fragoso Motta
- Department of Stomatology, Public Oral Health, and Forensic Dentistry, Ribeirão Preto School of Dentistry, University of São Paulo, Brazil
| | - Claúdia Helena Silva-Lovato
- Department of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo, Brazil
| | - Viviane de Cássia Oliveira
- Department of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo, Brazil
| | - Valdes Roberto Bollela
- Department of Internal Medicine, Ribeirão Preto School of Medicine, University of São Paulo, Brazil
| | - Alan Grupioni Lourenço
- Department of Basic and Oral Biology, Ribeirão Preto School of Dentistry, University of São Paulo, Brazil.
| |
Collapse
|
12
|
Impeding Virulence of Candida albicans by Candesartan and Domperidone. Curr Microbiol 2021; 78:3957-3967. [PMID: 34550434 DOI: 10.1007/s00284-021-02663-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/12/2021] [Indexed: 10/20/2022]
Abstract
Candida albicans is the most common human fungal pathogen that has developed extensive virulence factors which allows successful colonization and infection of the host. Anti-virulence agents can alleviate the pathogenesis of fungi and help the immune system to eradicate them easily. This study aimed to explore the anti-virulence effect of domperidone and candesartan against C. albicans standard strain. Sub-inhibitory concentrations (1/4 and 1/8 of minimum inhibitory concentration) of domperidone and candesartan significantly inhibited the virulence factors hemolysin, lipase, protease, phospholipase, and bioflim formation. It was found that candesartan inhibited biofilm formation by 60.48-67.91%, hemolysin activity (61.21-74.14%), phospholipase activity (40-49.67%), lipase activity (58.97-73%), and protease activity (52.63%), while domperidone was found to inhibit biofilm formation by 70.54-77.49%, hemolysin activity (64.84-69.84%), phospholipase activity (49.67-60%), lipase activity (50-54.87%), and protease activity (52.63-57.9%). Quantitative real time-PCR confirmed the anti-virulence activity of domperidone and candesartan as both drugs significantly reduce the expression of the virulence genes SAP2, SAP6, PLB1, PLB2, LIP4, LIP5. In conclusion, domperidone and candesartan could serve as anti-virulence agents for treatment of C. albicans infections.
Collapse
|
13
|
Alves PGV, de Paula Menezes R, de Oliveira Brito M, de Oliveira Faria G, Silva NBS, Cruvinel RS, Penatti MPA, Dos Santos Pedroso R, de Brito Röder DVD. Cryptococcus liquefaciens isolated from the hand of a healthcare professional in a neonatal intensive care unit. Braz J Microbiol 2021; 52:2085-2089. [PMID: 34545554 DOI: 10.1007/s42770-021-00601-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 08/27/2021] [Indexed: 11/30/2022] Open
Abstract
Fungal infections are responsible for high morbidity and mortality in neonatal patients, especially in premature newborns. Infections in neonates caused by Cryptococcus spp. are rare, but it has occurred in an immunocompromised population. This study aims to describe the isolation of Cryptococcus liquefaciens from the hands of a health professional in a neonatal intensive care unit, and to evaluate the production of biofilm and virulence factors and susceptibility to antifungals. Antifungal susceptibility tests were performed according to Clinical and Laboratory Standard Institute document M27-A3. Thermotolerance virulence factors and DNase, phospholipase, proteinase, and hemolytic activities were verified through phenotypic tests; biofilm was evaluated by determining the metabolic activity and biomass. The isolate did not produce any of the tested enzymes and was susceptible to all antifungals (amphotericin B, fluconazole, and micafungin). The growth at 37 °C was very weak; however, the isolate showed a strong biomass production and low metabolic activity. This is the first report of C. liquefaciens isolated from the hands of a health professional. The isolate did not express any of the studied virulence factors in vitro, except for the low growth at 37 °C in the first 48 h, and the strong production of biofilm biomass. Cryptococcus liquefaciens can remain in the environment for a long time and is a human pathogen because it tolerates temperature variations. This report draws attention to the circulation of rare species in critical locations, information that may help in a fast and correct diagnosis and, consequently, implementation of an appropriate treatment.
Collapse
Affiliation(s)
- Priscila Guerino Vilela Alves
- Faculty of Medicine, Federal University of Uberlândia, Umuarama Campus, 111 Ave. Amazonas, Uberlândia, Minas Gerais, CEP 38400-902, Brazil
| | | | | | - Gabriel de Oliveira Faria
- Faculty of Medicine, Federal University of Uberlândia, Umuarama Campus, 111 Ave. Amazonas, Uberlândia, Minas Gerais, CEP 38400-902, Brazil.,Nurse in Neonatology, Hospital Santa Clara, Uberlândia, Minas Gerais, Brazil
| | | | - Renner Soares Cruvinel
- Institute of Biology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | | | - Reginaldo Dos Santos Pedroso
- Faculty of Medicine, Federal University of Uberlândia, Umuarama Campus, 111 Ave. Amazonas, Uberlândia, Minas Gerais, CEP 38400-902, Brazil. .,Technical School of Health, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.
| | | |
Collapse
|
14
|
Frías-De-León MG, Hernández-Castro R, Conde-Cuevas E, García-Coronel IH, Vázquez-Aceituno VA, Soriano-Ursúa MA, Farfán-García ED, Ocharán-Hernández E, Rodríguez-Cerdeira C, Arenas R, Robledo-Cayetano M, Ramírez-Lozada T, Meza-Meneses P, Pinto-Almazán R, Martínez-Herrera E. Candida glabrata Antifungal Resistance and Virulence Factors, a Perfect Pathogenic Combination. Pharmaceutics 2021; 13:pharmaceutics13101529. [PMID: 34683822 PMCID: PMC8538829 DOI: 10.3390/pharmaceutics13101529] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 02/07/2023] Open
Abstract
In recent years, a progressive increase in the incidence of invasive fungal infections (IFIs) caused by Candida glabrata has been observed. The objective of this literature review was to study the epidemiology, drug resistance, and virulence factors associated with the C. glabrata complex. For this purpose, a systematic review (January 2001-February 2021) was conducted on the PubMed, Scielo, and Cochrane search engines with the following terms: "C. glabrata complex (C. glabrata sensu stricto, C. nivariensis, C. bracarensis)" associated with "pathogenicity" or "epidemiology" or "antibiotics resistance" or "virulence factors" with language restrictions of English and Spanish. One hundred and ninety-nine articles were found during the search. Various mechanisms of drug resistance to azoles, polyenes, and echinocandins were found for the C. glabrata complex, depending on the geographical region. Among the mechanisms found are the overexpression of drug transporters, gene mutations that alter thermotolerance, the generation of hypervirulence due to increased adhesion factors, and modifications in vital enzymes that produce cell wall proteins that prevent the activity of drugs designed for its inhibition. In addition, it was observed that the C. glabrata complex has virulence factors such as the production of proteases, phospholipases, and hemolysins, and the formation of biofilms that allows the complex to evade the host immune response and generate fungal resistance. Because of this, the C. glabrata complex possesses a perfect pathogenetic combination for the invasion of the immunocompromised host.
Collapse
Affiliation(s)
- María Guadalupe Frías-De-León
- Unidad de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico; (M.G.F.-D.-L.); (M.R.-C.)
| | - Rigoberto Hernández-Castro
- Departamento de Ecología de Agentes Patógenos, Hospital General “Dr. Manuel Gea González”, Ciudad de México 14080, Mexico; (R.H.-C.); (V.A.V.-A.)
| | - Esther Conde-Cuevas
- Maestría en Ciencias de la Salud, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (E.C.-C.); (I.H.G.-C.); (P.M.-M.)
| | - Itzel H. García-Coronel
- Maestría en Ciencias de la Salud, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (E.C.-C.); (I.H.G.-C.); (P.M.-M.)
| | - Víctor Alfonso Vázquez-Aceituno
- Departamento de Ecología de Agentes Patógenos, Hospital General “Dr. Manuel Gea González”, Ciudad de México 14080, Mexico; (R.H.-C.); (V.A.V.-A.)
| | - Marvin A. Soriano-Ursúa
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (M.A.S.-U.); (E.D.F.-G.); (E.O.-H.)
| | - Eunice D. Farfán-García
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (M.A.S.-U.); (E.D.F.-G.); (E.O.-H.)
| | - Esther Ocharán-Hernández
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (M.A.S.-U.); (E.D.F.-G.); (E.O.-H.)
| | - Carmen Rodríguez-Cerdeira
- Efficiency, Quality, and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain; (C.R.-C.); (R.A.)
- Dermatology Department, Hospital Vithas Ntra. Sra. de Fátima and University of Vigo, 36206 Vigo, Spain
- Campus Universitario, University of Vigo, 36310 Vigo, Spain
| | - Roberto Arenas
- Efficiency, Quality, and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain; (C.R.-C.); (R.A.)
- Sección de Micología, Hospital General “Dr. Manuel Gea González”, Tlalpan, Ciudad de México 14080, Mexico
| | - Maura Robledo-Cayetano
- Unidad de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico; (M.G.F.-D.-L.); (M.R.-C.)
| | - Tito Ramírez-Lozada
- Servicio de Ginecología y Obstetricia, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico;
| | - Patricia Meza-Meneses
- Maestría en Ciencias de la Salud, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (E.C.-C.); (I.H.G.-C.); (P.M.-M.)
- Servicio de Infectología, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico
| | - Rodolfo Pinto-Almazán
- Unidad de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico; (M.G.F.-D.-L.); (M.R.-C.)
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (M.A.S.-U.); (E.D.F.-G.); (E.O.-H.)
- Correspondence: (R.P.-A.); (E.M.-H.); Tel.: +52-555-972-9800 (R.P.-A. or E.M.-H.)
| | - Erick Martínez-Herrera
- Unidad de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico; (M.G.F.-D.-L.); (M.R.-C.)
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (M.A.S.-U.); (E.D.F.-G.); (E.O.-H.)
- Efficiency, Quality, and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain; (C.R.-C.); (R.A.)
- Correspondence: (R.P.-A.); (E.M.-H.); Tel.: +52-555-972-9800 (R.P.-A. or E.M.-H.)
| |
Collapse
|
15
|
Segundo Zaragoza C, López Ortiz I, Contreras Caro Del Castillo DA, Domínguez Hernández YM, Rodríguez García JA. Characterization, enzymatic activity and biofilm formation of Candida species isolated from goat milk. Rev Iberoam Micol 2021; 38:175-179. [PMID: 34511397 DOI: 10.1016/j.riam.2021.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 05/20/2021] [Accepted: 06/16/2021] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND Data regarding yeast microbiota in goat milk is scarce. AIMS To isolate and identify species of the genus Candida in milk samples from clinically healthy goats, and evaluate their enzymatic activity and biofilm formation. METHODS 1092 milk samples from clinically healthy goats were collected and processed. The yeast isolates were identified by phenotypic, methods and their enzymatic activity (phospholipase, hemolysin and protease) and biofilm formation evaluated. RESULTS We obtained 221 Candida isolates belonging to six species: Candida kefyr (35.7%), Candida guilliermondii (33%), Candida famata (23.5%), Candida glabrata (5.9%), Candida albicans (1.35%) and Candida parapsilosissensu lato (0.45%). Protease activity was detected in all Candida species while hemolysin activity was only present in C. kefyr, C. guilliermondii, C. famata and C. albicans. Only C. albicans showed phospholipase activity. With the exception of C. parapsilosis sensu lato, all Candida species formed biofilm, with 60.19% of the isolates being poor producers, 9.93% moderate producers, and 1.35% strong producers. CONCLUSIONS The milk of clinically healthy goats contains several species of the genus Candida that could play a role as opportunistic pathogens in mastitis.
Collapse
Affiliation(s)
- Carolina Segundo Zaragoza
- Laboratorio de Micología Veterinaria, Unidad de Servicios de Diagnóstico y Constatación, Centro de Enseñanza, Investigación y Extensión en Producción Animal en Altiplano, Facultad de Medicina Veterinaria y Zootecnia, UNAM, Mexico.
| | - Itzel López Ortiz
- Laboratorio de Micología Veterinaria, Unidad de Servicios de Diagnóstico y Constatación, Centro de Enseñanza, Investigación y Extensión en Producción Animal en Altiplano, Facultad de Medicina Veterinaria y Zootecnia, UNAM, Mexico
| | | | - Yesmín María Domínguez Hernández
- Laboratorio de Micología Veterinaria, Unidad de Servicios de Diagnóstico y Constatación, Centro de Enseñanza, Investigación y Extensión en Producción Animal en Altiplano, Facultad de Medicina Veterinaria y Zootecnia, UNAM, Mexico
| | - Juan Antonio Rodríguez García
- Laboratorio de Micología Veterinaria, Unidad de Servicios de Diagnóstico y Constatación, Centro de Enseñanza, Investigación y Extensión en Producción Animal en Altiplano, Facultad de Medicina Veterinaria y Zootecnia, UNAM, Mexico
| |
Collapse
|
16
|
Fernández-Pacheco P, Ramos Monge IM, Fernández-González M, Poveda Colado JM, Arévalo-Villena M. Safety Evaluation of Yeasts With Probiotic Potential. Front Nutr 2021; 8:659328. [PMID: 34095190 PMCID: PMC8175779 DOI: 10.3389/fnut.2021.659328] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/23/2021] [Indexed: 11/13/2022] Open
Abstract
This work has evaluated the safety aspects of 20 yeast strains, isolated from food environments, selected in previous works due to their probiotic potential. Among the different strains, there are Saccharomyces and non-Saccharomyces yeasts. Before safety evaluation, differentiation of Saccharomyces cerevisiae strains was done by PCR amplification of inter-δ region with pairs of primers δ2-12 and δ12-21, which showed that they were all different from each other and also had different profiles to Saccharomyces boulardii (the only commercial probiotic yeast). The non-Saccharomyces ones were already known. The evaluation tests carried out were antibiotic and antifungal resistance, production of biogenic amines, deconjugation activity of bile salts, and different enzymatic activities: coagulase, deoxyribonuclease, hemolysin, proteolytic, and phospholipase. None of the studied strains demonstrated coagulase, hemolytic or DNase capacity (clear virulence factors), although all of them showed protease activity, some showed phospholipase activity, and half of the yeasts were capable of conjugating bile salts. Regarding antimicrobial compounds, all were resistant to antibiotics but showed sensitivity to the antimycotics used. Nevertheless, only one strain of Hanseniaspora osmophila was excluded for use in the food industry, due to its high production of tyramine.
Collapse
Affiliation(s)
- Pilar Fernández-Pacheco
- Analytical Chemistry and Food Technology Department, Faculty of Environmental Science and Biochemistry, Castilla-La Mancha University, Toledo, Spain
| | - Inés María Ramos Monge
- Analytical Chemistry and Food Technology Department and Instituto Regional de Investigación Científica Aplicada (IRICA), Faculty of Chemical Sciences and Technologies, Castilla-La Mancha University, Ciudad Real, Spain
| | - Mónica Fernández-González
- Analytical Chemistry and Food Technology Department and Instituto Regional de Investigación Científica Aplicada (IRICA), Faculty of Chemical Sciences and Technologies, Castilla-La Mancha University, Ciudad Real, Spain
| | - Justa María Poveda Colado
- Analytical Chemistry and Food Technology Department and Instituto Regional de Investigación Científica Aplicada (IRICA), Faculty of Chemical Sciences and Technologies, Castilla-La Mancha University, Ciudad Real, Spain
| | - María Arévalo-Villena
- Analytical Chemistry and Food Technology Department and Instituto Regional de Investigación Científica Aplicada (IRICA), Faculty of Chemical Sciences and Technologies, Castilla-La Mancha University, Ciudad Real, Spain
| |
Collapse
|
17
|
El-Kholy MA, Helaly GF, El Ghazzawi EF, El-Sawaf G, Shawky SM. Virulence Factors and Antifungal Susceptibility Profile of C. tropicalis Isolated from Various Clinical Specimens in Alexandria, Egypt. J Fungi (Basel) 2021; 7:jof7050351. [PMID: 33947158 PMCID: PMC8146935 DOI: 10.3390/jof7050351] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The incidence of candidiasis caused by non-albicans Candida (NAC) species is increasing. Candida tropicalis has emerged as one of the most important NAC species. This study aims to examine the antifungal susceptibility profile and some virulence factors of C. tropicalis isolated from various clinical specimens. METHODS A total of 71 C. tropicalis isolates from various clinical specimens (69.01%, 18.31%, 9.86%, and 2.82% of isolates were collected from urine, respiratory samples, blood, and skin and soft tissue infections, respectively) from ICU patients in Alexandria, Egypt. The isolates were identified at species level by CHROMagar Candida and VITEK 2 compact system. Furthermore, the antifungal susceptibility was determined using the VITEK 2 system AST-YS07 card containing different antifungals. Hemolysin, phospholipase, and proteinase activity and biofilm formation were also tested as virulence factors. RESULTS Only 30 isolates (42.25%) were non-susceptible (MIC ≥ 4 µg/mL) to fluconazole, of which 28 isolates showed non-susceptibility (MIC ≥ 0.25 µg/mL) to voriconazole. All isolates showed both hemolysin and proteinase activities, while only 9 isolates (12.68%) showed phospholipase production and 70 isolates (98.59%) demonstrated biofilm formation. Strong biofilm production was observed among the blood culture isolates (85.71%), followed by the respiratory and urinary isolates (61.54% and 46.94%, respectively). CONCLUSIONS This study sought to provide useful data on the antifungal susceptibility of C. tropicalis isolates from ICU patients suffering from invasive infections with an increased trend towards elevated MICs levels of both fluconazole and voriconazole. Due to the high incidence of systemic candidiasis and antifungal resistance, C. tropicalis is emerging as a serious root of infections. Therefore, early and accurate identification of Candida species along with susceptibility testing is of utmost importance.
Collapse
Affiliation(s)
- Mohammed A. El-Kholy
- Department of Microbiology and Biotechnology, Clinical and Biological Sciences Division, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), P.O. Box 1029, Alexandria, Egypt
- Correspondence:
| | - Ghada F. Helaly
- Department of Microbiology, Medical Research Institute, Alexandria University, P.O. Box 1029, Alexandria, Egypt; (G.F.H.); (E.F.E.G.); (G.E.-S.); (S.M.S.)
| | - Ebtisam F. El Ghazzawi
- Department of Microbiology, Medical Research Institute, Alexandria University, P.O. Box 1029, Alexandria, Egypt; (G.F.H.); (E.F.E.G.); (G.E.-S.); (S.M.S.)
| | - Gamal El-Sawaf
- Department of Microbiology, Medical Research Institute, Alexandria University, P.O. Box 1029, Alexandria, Egypt; (G.F.H.); (E.F.E.G.); (G.E.-S.); (S.M.S.)
| | - Sherine M. Shawky
- Department of Microbiology, Medical Research Institute, Alexandria University, P.O. Box 1029, Alexandria, Egypt; (G.F.H.); (E.F.E.G.); (G.E.-S.); (S.M.S.)
| |
Collapse
|
18
|
Mroczyńska M, Brillowska-Dąbrowska A. Virulence of Clinical Candida Isolates. Pathogens 2021; 10:pathogens10040466. [PMID: 33921490 PMCID: PMC8070227 DOI: 10.3390/pathogens10040466] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 02/07/2023] Open
Abstract
The factors enabling Candida spp. infections are secretion of hydrolytic enzymes, adherence to surfaces, biofilm formation or morphological transition, and fitness attributes. The aim of this study was to investigate the correlation between known extracellular virulence factors and survival of Galleria mellonella larvae infected with clinical Candida. The 25 isolates were tested and the activity of proteinases among 24/24, phospholipases among 7/22, esterases among 14/23, hemolysins among 18/24, and biofilm formation ability among 18/25 isolates was confirmed. Pathogenicity investigation using G. mellonella larvae as host model demonstrated that C. albicans isolates and C. glabrata isolate were the most virulent and C. krusei isolates were avirulent. C. parapsilosis virulence was identified as varied, C. inconspicua were moderately virulent, and one C. palmioleophila isolate was of low virulence and the remaining isolates of this species were moderately virulent. According to our study, virulence of Candida isolates is related to the expression of proteases, hemolysins, and esterases.
Collapse
|
19
|
Zonta YR, Dezen ALO, Della Coletta AM, Yu KST, Carvalho L, Dos Santos LA, Deprá IDC, Kratofil RM, Willson ME, Zbytnuik L, Kubes P, Ximenes VF, Dias-Melicio LA. Paracoccidioides brasiliensis Releases a DNase-Like Protein That Degrades NETs and Allows for Fungal Escape. Front Cell Infect Microbiol 2021; 10:592022. [PMID: 33643928 PMCID: PMC7902888 DOI: 10.3389/fcimb.2020.592022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/28/2020] [Indexed: 12/22/2022] Open
Abstract
Paracoccidioidomycosis is a systemic fungal disease, considered endemic in Latin America. Its etiological agents, fungi of the Paracoccidioides complex, have restricted geographic habitat, conidia as infecting form, and thermo-dimorphic characteristics. Polymorphonuclear neutrophils (PMNs) are responsible for an important defense response against fungus, releasing Neutrophil Extracellular Traps (NETs), which can wrap and destroy the yeasts. However, it has been described that some pathogens are able to evade from these DNA structures by releasing DNase as an escape mechanism. As different NETs patterns have been identified in PMNs cultures challenged with different isolates of Paracoccidioides brasiliensis, the general objective of this study was to identify if different patterns of NETs released by human PMNs challenged with Pb18 (virulent) and Pb265 (avirulent) isolates would be correlated with fungal ability to produce a DNase-like protein. To this end, PMNs from healthy subjects were isolated and challenged in vitro with both fungal isolates. The production, release, and conformation of NETs in response to the fungi were evaluated by Confocal Microscopy, Scanning Microscopy, and NETs Quantification. The identification of fungal DNase production was assessed by DNase TEST Agar, and the relative gene expression for hypothetical proteins was investigated by RT-qPCR, whose genes had been identified in the fungal genome in the GenBank (PADG_11161 and PADG_08285). It was possible to verify the NETs release by PMNs, showing different NETs formation when in contact with different isolates of the fungus. The Pb18 isolate induced the release of looser, larger, and more looking like degraded NETs compared to the Pb265 isolate, which induced the release of denser and more compact NETs. DNase TEST Agar identified the production of a DNase-like protein, showing that only Pb18 showed the capacity to degrade DNA in these plates. Besides that, we were able to identify that both PADG_08528 and PADG_11161 genes were more expressed during interaction with neutrophil by the virulent isolate, being PADG_08528 highly expressed in these cultures, demonstrating that this gene could have a greater contribution to the production of the protein. Thus, we identified that the virulent isolate is inducing more scattered and loose NETs, probably by releasing a DNase-like protein. This factor could be an important escape mechanism used by the fungus to escape the NETs action.
Collapse
Affiliation(s)
- Yohan Ricci Zonta
- Laboratory of Immunopathology and Infectious Agents - LIAI, UNIPEX - Experimental Research Unity, Sector 5, Medical School of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Ana Laura Ortega Dezen
- Laboratory of Immunopathology and Infectious Agents - LIAI, UNIPEX - Experimental Research Unity, Sector 5, Medical School of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Amanda Manoel Della Coletta
- Laboratory of Immunopathology and Infectious Agents - LIAI, UNIPEX - Experimental Research Unity, Sector 5, Medical School of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Kaio Shu Tsyr Yu
- Laboratory of Immunopathology and Infectious Agents - LIAI, UNIPEX - Experimental Research Unity, Sector 5, Medical School of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Larissa Carvalho
- Laboratory of Immunopathology and Infectious Agents - LIAI, UNIPEX - Experimental Research Unity, Sector 5, Medical School of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Leandro Alves Dos Santos
- Confocal Microscopy Laboratory, UNIPEX - Experimental Research Unity, Medical School of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Igor de Carvalho Deprá
- Laboratory of Genetic Basis of Endocrinological Diseases, Experimental Research Unity (UNIPEX), Sector 5, São Paulo State University (UNESP), Botucatu, Brazil
| | - Rachel M Kratofil
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Michelle Elizabeth Willson
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Lori Zbytnuik
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Paul Kubes
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Luciane Alarcão Dias-Melicio
- Laboratory of Immunopathology and Infectious Agents - LIAI, UNIPEX - Experimental Research Unity, Sector 5, Medical School of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil.,Confocal Microscopy Laboratory, UNIPEX - Experimental Research Unity, Medical School of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil.,Department of Pathology, Medical School of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| |
Collapse
|
20
|
Zhang S, Zhao Q, Xue W, Li Y, Guo Y, Wu X, Huo S, Li Y, Li C. The isolation and identification of Candida glabrata from avian species and a study of the antibacterial activities of Chinese herbal medicine in vitro. Poult Sci 2021; 100:101003. [PMID: 33676095 PMCID: PMC8046950 DOI: 10.1016/j.psj.2021.01.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/21/2020] [Accepted: 01/02/2021] [Indexed: 11/13/2022] Open
Abstract
Previously, a fungus was isolated from a diseased pigeon group clinically suspected of being infected with Candida. The fungus was subsequently identified as Candida glabrata using morphology, physiology, biochemistry, and molecular biology testing methods. In the present study, to determine the controlling effects of Chinese herbal medicine for C. glabrata, the bacteriostatic effects of the ethanol extracts Acorus gramineus, Sophora flavescens, Polygonum hydropiper, Cassia obtusifolia, Pulsatilla chinensis, Dandelion, and Cortex phellodendri on C. glabrata in vitro were analyzed. The results showed that the minimum inhibitory concentrations (MIC80) of Cortex phellodendri was 0.25 μg/μL. Meanwhile, that of S. flavescens was 32 μg/μL; C. obtusifolia was 56 μg/μL; A. gramineus and Polygonum hydropiper was 64 μg/μL; and P. chinensis was 112 μg/μL. However, MIC80 for Dandelion was undetectable. In addition, improved drug sensitivity tests revealed that colonies had grown after 24 h in the blank group, as well as the Polygonum hydropiper, P. chinensis, Dandelion, and ethanol groups. The colonies first appeared at the 48-hour point in the other drug-sensitive medium of Chinese herbal medicine. However, no colony growth was found in Cortex phellodendri medium, and the formation of the maximum colony diameter in that group was later than the blank group (e.g., 96 h in the blank group and 120 h in the Chinese herbal medicine group). It was observed that only 17 colony-forming units had grown in 125 μg/μL of the S. flavescens medium, which was significantly different from other groups. Also, the final colony diameter was significantly smaller than that of the other experimental groups. Therefore, it was determined that the A. gramineus, S. flavescens, Polygonum hydropiper, Cassia obtusifolia, P. chinensis, and Cortex phellodendri had certain inhibitory effects on the growth of the C. glabrata. Among those, it was observed that the Cortex phellodendri had the strongest inhibitory effects, followed by the S. flavescens. In the future, these Chinese herbal medicines are expected to be used to treat the fungal infections related to C. glabrata in poultry to improve production performance.
Collapse
Affiliation(s)
- Shuang Zhang
- The College of Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, China
| | - Qianhui Zhao
- The College of Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, China
| | - Wenhui Xue
- The College of Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, China
| | - Yurong Li
- The College of Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, China
| | - Yu Guo
- The College of Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, China
| | - Xianjun Wu
- The College of Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, China
| | - Shuying Huo
- The College of Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, China.
| | - Yong Li
- The Dingnong Corporation of Hebei, Dingzhou County, Hebei 073000, China
| | - Chenyao Li
- The Dingnong Corporation of Hebei, Dingzhou County, Hebei 073000, China
| |
Collapse
|
21
|
Zafar S, Fatima K, Faryal R. Prevalence of virulent Candida spp. in complicated urinary tract infection of nephrolithiatic patients from surgical units of tertiary care hospitals Islamabad. J Mycol Med 2020; 30:101024. [PMID: 32826154 DOI: 10.1016/j.mycmed.2020.101024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 02/07/2020] [Accepted: 07/31/2020] [Indexed: 10/23/2022]
Abstract
Candida species are the commensal organisms of human mucosa and opportunistically cause the diseases in susceptible persons. This study aimed to determine the prevalence and virulence of different Candida spp. among nephrolithiatic patients and their association with complicated UTI (cUTI). A total of 164 urine samples were collected from surgical units of two tertiary care hospitals (Poly Clinic and Pakistan Institute of Medical Sciences Hospital, Islamabad). From 74 kidney stone patients, 77 isolates of Candida spp. were confirmed through standard microbiological and molecular characterization. C. albicans was the predominant species with 51 isolates (66.2%) followed by 26 (33.8%) of C. non-albicans. The nephrolithiatic patients suffering from cUTI were more prone to be infected with Candida (P=0.047). Among all isolates, 83% (64) of the Candida isolates were biofilm formers, 80% (60) showed the esterase production and 64.9% (50) showed phospholipase production. Candida isolates positive for various virulence factors were more prevalently isolated from both catheterized and recurrent UTI patients. Among Candida spp., 16.9% (13) isolates showed resistance to fluconazole and 19.5% (15) against voriconazole and 11 isolates were resistant for both tested antifungals. Candida isolated from cUTI cases showed comparatively enhanced virulence attributes and antifungal resistance, suggesting that these factors might have role in development of cUTI in nephrolithiatic patients. Hence, this work highlights the high prevalence of both C. albicans and non albicans spp. in nephrolithiatic patients. So, there is need to administer evidence based antifungal therapy rather than empirical therapy to reduce the cUTI in nephrolithiatic patients.
Collapse
Affiliation(s)
- S Zafar
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - K Fatima
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - R Faryal
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
22
|
Ramos LS, Oliveira SSC, Braga-Silva LA, Branquinha MH, Santos ALS. Secreted aspartyl peptidases by the emerging, opportunistic and multidrug-resistant fungal pathogens comprising the Candida haemulonii complex. Fungal Biol 2020; 124:700-707. [PMID: 32690251 DOI: 10.1016/j.funbio.2020.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 01/12/2023]
Abstract
The opportunistic pathogens comprising the Candida haemulonii complex (C. haemulonii, C. duobushaemulonii and C. haemulonii var. vulnera) are notable for their intrinsic resistance to different antifungal classes. Little is known about the virulence attributes in this emerging fungal complex. However, it is well-recognized that enzymes play important roles in virulence/pathogenesis of candidiasis. Herein, we aimed to identify aspartyl-type peptidases in 12 clinical isolates belonging to the C. haemulonii complex. All isolates were able to grow in a chemically defined medium containing albumin as the sole nitrogen source, and a considerable consumption of this protein occurred after 72-96 h. C. haemulonii var. vulnera isolates showed the lowest albumin degradation capability and the poorest growth rate. The measurement of secreted aspartyl peptidase (Sap) activity, using the cathepsin D fluorogenic substrate, varied from 91.6 to 413.3 arbitrary units and the classic aspartyl peptidase inhibitor, pepstatin A, significantly blocked the Sap released by C. haemulonii complex. No differences were observed in the Sap activity among the three fungal species. Flow cytometry, using a polyclonal antibody against Sap1-3 of C. albicans, detected homologous proteins at the surface of C. haemulonii complex (anti-Sap1-3-labeled cells ranged from 24.6 to 79.1%). Additionally, the immunoblotting assay, conducted with the same Sap1-3 antibody, recognized a protein of ∼50 kDa in all fungal isolates. A glimpse in the genome of these fungi revealed several potential proteins containing Sap1-3-like conserved domain. Altogether, our results demonstrated the potential of C. haemulonii species complex to produce Saps, an important virulence factor of Candida spp.
Collapse
Affiliation(s)
- Lívia S Ramos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Simone S C Oliveira
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lys A Braga-Silva
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marta H Branquinha
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - André L S Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Programa de Pós-Graduação em Bioquímica, Instituto de Química, UFRJ, Rio de Janeiro, Brazil.
| |
Collapse
|
23
|
Gómez-Gaviria M, Mora-Montes HM. Current Aspects in the Biology, Pathogeny, and Treatment of Candida krusei, a Neglected Fungal Pathogen. Infect Drug Resist 2020; 13:1673-1689. [PMID: 32606818 PMCID: PMC7293913 DOI: 10.2147/idr.s247944] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/28/2020] [Indexed: 12/22/2022] Open
Abstract
Fungal infections represent a constant and growing menace to human health, because of the emergence of new species as causative agents of diseases and the increment of antifungal drug resistance. Candidiasis is one of the most common fungal infections in humans and is associated with a high mortality rate when the fungi infect deep-seated organs. Candida krusei belongs to the group of candidiasis etiological agents, and although it is not isolated as frequently as other Candida species, the infections caused by this organism are of special relevance in the clinical setting because of its intrinsic resistance to fluconazole. Here, we offer a thorough revision of the current literature dealing with this organism and the caused disease, focusing on its biological aspects, the host-fungus interaction, the diagnosis, and the infection treatment. Of particular relevance, we provide the most recent genomic information, including the gene prediction of some putative virulence factors, like proteases, adhesins, regulators of biofilm formation and dimorphism. Moreover, C. krusei veterinary aspects and the exploration of natural products with anti-C. krusei activity are also included.
Collapse
Affiliation(s)
- Manuela Gómez-Gaviria
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, Gto, México
| | - Héctor M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, Gto, México
| |
Collapse
|
24
|
Pandey N, Gupta MK, Tilak R. Extracellular hydrolytic enzyme activities of the different Candida spp. isolated from the blood of the Intensive Care Unit-admitted patients. J Lab Physicians 2020; 10:392-396. [PMID: 30498309 PMCID: PMC6210849 DOI: 10.4103/jlp.jlp_81_18] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Candida spp. secretes various extracellular hydrolytic enzymes. These enzymes are the important virulence factor for the pathogenesis of Candida. We assessed four different enzymatic activities of Candida isolates obtained from bloodstream infections. MATERIALS AND METHODS We isolated 79 strains of different Candida species from the blood of the Intensive Care Unit-admitted patients. Species were identified by conventional methods including culture characteristic, germ tube, sugar assimilation, and Dalmau's culture technique. Phospholipase, proteinase, hemolysin, and esterase enzymatic activities were determined by the Plate method. RESULTS Non albicans candida were the most common isolates from the blood of the ICU admitted patient with a predominance of Candida tropicalis. Hemolytic activity was the most prominent enzyme activity followed by the proteinase activity. Candida albicans (89.86%) was the major proteinase producer, while 95.8% of C. tropicalis produced hemolysin. No esterase activity was shown by the Candida glabrata and Candida krusei. CONCLUSION No significant difference was observed between the two most common causative agents of candidemia: C. albicans and C. tropicalis.
Collapse
Affiliation(s)
- Nidhi Pandey
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Munesh Kumar Gupta
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ragini Tilak
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
25
|
de Paula Menezes R, de Oliveira Melo SG, Bessa MAS, Silva FF, Alves PGV, Araújo LB, Penatti MPA, Abdallah VOS, von Dollinger de Brito Röder D, Dos Santos Pedroso R. Candidemia by Candida parapsilosis in a neonatal intensive care unit: human and environmental reservoirs, virulence factors, and antifungal susceptibility. Braz J Microbiol 2020; 51:851-860. [PMID: 32060797 DOI: 10.1007/s42770-020-00232-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/18/2020] [Indexed: 12/19/2022] Open
Abstract
The Candida parapsilosis complex has emerged as one of the main causes of candidemia worldwide. This study aims to evaluate possible C. parapsilosis sensu stricto reservoirs in a NICU, the expression of virulence factors, and antifungal susceptibility, and to analyze their genetic and phenotypic similarity. The study included 17 isolates of C. parapsilosis: seven environmental, one from a newborn's mother, and nine samples from six newborns. We used molecular and phenotypic tests to characterize the isolates and to trace possible routes of infection. The genetic similarity was determined by random amplified polymorphic DNA. The hemolytic and DNAse activity was determined using sheep's blood and DNAse agar, biofilm production by XTT method, and the susceptibility to antifungals through microdilution methodology. Two environmental strains isolated in the same month had high similarity. The 17 isolates expressed at least one of the three virulence factors studied, and one environmental isolate was resistant to fluconazole. This study shows that environmental contamination can be an important reservoir of potentially pathogenic microorganisms, since isolates of C. parapsilosis sensu stricto collected from the hospital environment were able to express virulence factors. Therefore, we emphasized the importance of determining the transmission routes in NICU in order to detect pathogen sources and reservoirs, as well as to establish prevention measures, such as adequate disinfection of the environment.
Collapse
Affiliation(s)
- Ralciane de Paula Menezes
- HealthTechnical School, Federal University of Uberlandia, Av. Amazonas s/no - Block 4K - 111-Campus Umuarama, Umuarama, Uberlândia, MG, ZIP 38400-902, Brazil.
| | | | - Meliza Arantes Souza Bessa
- Undergraduation in Biology - Institute of Biology, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| | - Felipe Flávio Silva
- Health Sciences Postgraduate Program, Faculty of Medicine, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| | - Priscila Guerino Vilela Alves
- Health Sciences Postgraduate Program, Faculty of Medicine, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| | - Lúcio Borges Araújo
- Mathematics College, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| | - Mário Paulo Amante Penatti
- HealthTechnical School, Federal University of Uberlandia, Av. Amazonas s/no - Block 4K - 111-Campus Umuarama, Umuarama, Uberlândia, MG, ZIP 38400-902, Brazil
| | - Vânia Olivetti Steffen Abdallah
- Health Sciences Postgraduate Program, Faculty of Medicine, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| | - Denise von Dollinger de Brito Röder
- Health Sciences Postgraduate Program, Faculty of Medicine, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil.,Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| | - Reginaldo Dos Santos Pedroso
- HealthTechnical School, Federal University of Uberlandia, Av. Amazonas s/no - Block 4K - 111-Campus Umuarama, Umuarama, Uberlândia, MG, ZIP 38400-902, Brazil.,Health Sciences Postgraduate Program, Faculty of Medicine, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| |
Collapse
|
26
|
de Paula Menezes R, Silva FF, Melo SGO, Alves PGV, Brito MO, de Souza Bessa MA, Amante Penatti MP, Pedroso RS, Abdallah VOS, Röder DVDB. Characterization of Candida species isolated from the hands of the healthcare workers in the neonatal intensive care unit. Med Mycol 2019; 57:588-594. [PMID: 30388269 DOI: 10.1093/mmy/myy101] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 09/06/2018] [Accepted: 09/13/2018] [Indexed: 01/01/2023] Open
Abstract
Colonization of health professional hands by potentially pathogenic microorganisms capable to expressing virulence factors, such as Candida spp., is worrisome because of the high contact between patients and professionals. The study aims to evaluate, in vitro, the following virulence factors: hemolytic activity, DNAse expression, biofilm formation, and susceptibility for antifungal agents of Candida species isolated from health professionals hands of a neonatal intensive care unit (NICU). The study includes 50 isolates of Candida spp.: 19 C. parapsilosis sensu stricto, three C. metapsilosis, one C. orthopsilosis, seven C. albicans, six C. famata, five C. lusitaniae, three C. krusei, two C. kefyr, two C. tropicalis, one C. glabrata, and one C. guilliermondii. The hemolytic activity and DNAse were investigated using blood agar and DNAse agar, respectively. Biofilm production was evaluated through XTT sodium salt reduction ability, and the susceptibility of the isolates to antifungals through the microdilution methodology. Forty-nine isolates presented at least one of the three virulence factors investigated. C. albicans showed more intense hemolytic activity. DNAse production was statistically significant between the C. parapsilosis complex and C. albicans, as well as between the C. parapsilosis complex and C. krusei, even as between C. famata and C. albicans, and between C. famata and C. krusei. Forty-three isolates produced biofilm. Seventy-eight percent of the isolates were sensitive to the three antifungals tested. This study demonstrated that Candida isolated from healthcare professionals' hands has virulence.
Collapse
Affiliation(s)
- Ralciane de Paula Menezes
- HealthTechnical School- ESTES, Federal University of Uberlandia (UFU), Uberlandia, MG, Brazil
- Health Sciences Postgraduate Program, Faculty of Medicine- FAMED, UFU, Uberlandia, MG, Brazil
| | - Felipe F Silva
- Health Sciences Postgraduate Program, Faculty of Medicine- FAMED, UFU, Uberlandia, MG, Brazil
| | | | - Priscila G V Alves
- Health Sciences Postgraduate Program, Faculty of Medicine- FAMED, UFU, Uberlandia, MG, Brazil
| | - Murilo O Brito
- Health Sciences Postgraduate Program, Faculty of Medicine- FAMED, UFU, Uberlandia, MG, Brazil
| | | | | | - Reginaldo S Pedroso
- HealthTechnical School- ESTES, Federal University of Uberlandia (UFU), Uberlandia, MG, Brazil
- Health Sciences Postgraduate Program, Faculty of Medicine- FAMED, UFU, Uberlandia, MG, Brazil
| | - Vânia O S Abdallah
- Health Sciences Postgraduate Program, Faculty of Medicine- FAMED, UFU, Uberlandia, MG, Brazil
| | - Denise von D B Röder
- Health Sciences Postgraduate Program, Faculty of Medicine- FAMED, UFU, Uberlandia, MG, Brazil
- Institute of Biomedical Sciences, ICBIM, UFU, Uberlandia, MG, Brazil
| |
Collapse
|
27
|
In Vitro Determination of Hydrolytic Enzymes and Echinocandin Susceptibility in Mexican Clinical Isolates of Candida glabrata Sensu Stricto. Jundishapur J Microbiol 2019. [DOI: 10.5812/jjm.85092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
28
|
Magalhães Pinto L, de Assis Bezerra Neto F, Araújo Paulo de Medeiros M, Zuza Alves DL, Maranhão Chaves G. Candida species isolated from pigeon (Columbia livia) droppings may express virulence factors and resistance to azoles. Vet Microbiol 2019; 235:43-52. [PMID: 31282378 DOI: 10.1016/j.vetmic.2019.05.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 10/26/2022]
Abstract
Even though it is widely known that Cryptococcus spp. may transmit cryptococcosis trough aerosol formed when dried birds (mainly pigeons) droppings are dispersed and become airborne, little is known about the role of these birds in harboring other pathogenic yeasts in their gastrointestinal tract, feathers and beaks, specifically because these animals often stay and reproduce close or even above air conditioner units. Here we evaluated the prevalence of pathogenic yeasts isolated from pigeon droppings collected in the outside area of a University Hospital in Brazil. We also aimed to investigate the pathogenic potential and antifungal susceptibility of Candida species of medical interest isolated from these samples. Therefore, we performed the evaluation of virulence factors attributes expression in vitro, including the ability to adhere to human buccal epithelial cells and biofilm formation and to produce lytic enzymes, such as phospholipases, proteinases and hemolysins. Antifungal susceptibility testing against fluconazole, itraconazole, amphotericin and micafungin was also performed. The Candida genus was the most prevalent in our study, with several medically important species being isolated. Of note, these strains were able to express several virulence factors in vitro, clearly showing their pathogenic potential. Our study was able to demonstrate that Candida spp. isolated from pigeon droppings may express virulence factors in the same manner of clinical isolates, suggesting a pathogenic potential for these yeasts. The fact these strains were collected from the outside area of a tertiary hospital may be of interest, because they may be a source of infection, specifically to immunocompromised hosts.
Collapse
Affiliation(s)
- Luciana Magalhães Pinto
- Laboratory of Medical and Molecular Mycology, Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Rua. Gal. Gustavo Cordeiro de Faria S/N, Petrópolis, CEP: 59012-570. Natal, Rio Grande do Norte, Brazil.
| | - Francisco de Assis Bezerra Neto
- Laboratory of Medical and Molecular Mycology, Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Rua. Gal. Gustavo Cordeiro de Faria S/N, Petrópolis, CEP: 59012-570. Natal, Rio Grande do Norte, Brazil.
| | - Mariana Araújo Paulo de Medeiros
- Laboratory of Medical and Molecular Mycology, Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Rua. Gal. Gustavo Cordeiro de Faria S/N, Petrópolis, CEP: 59012-570. Natal, Rio Grande do Norte, Brazil.
| | - Diana Luzia Zuza Alves
- Laboratory of Medical and Molecular Mycology, Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Rua. Gal. Gustavo Cordeiro de Faria S/N, Petrópolis, CEP: 59012-570. Natal, Rio Grande do Norte, Brazil.
| | - Guilherme Maranhão Chaves
- Laboratory of Medical and Molecular Mycology, Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Rua. Gal. Gustavo Cordeiro de Faria S/N, Petrópolis, CEP: 59012-570. Natal, Rio Grande do Norte, Brazil.
| |
Collapse
|
29
|
Galocha M, Pais P, Cavalheiro M, Pereira D, Viana R, Teixeira MC. Divergent Approaches to Virulence in C. albicans and C. glabrata: Two Sides of the Same Coin. Int J Mol Sci 2019; 20:E2345. [PMID: 31083555 PMCID: PMC6539081 DOI: 10.3390/ijms20092345] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/08/2019] [Accepted: 05/08/2019] [Indexed: 12/27/2022] Open
Abstract
Candida albicans and Candida glabrata are the two most prevalent etiologic agents of candidiasis worldwide. Although both are recognized as pathogenic, their choice of virulence traits is highly divergent. Indeed, it appears that these different approaches to fungal virulence may be equally successful in causing human candidiasis. In this review, the virulence mechanisms employed by C. albicans and C. glabrata are analyzed, with emphasis on the differences between the two systems. Pathogenesis features considered in this paper include dimorphic growth, secreted enzymes and signaling molecules, and stress resistance mechanisms. The consequences of these traits in tissue invasion, biofilm formation, immune system evasion, and macrophage escape, in a species dependent manner, are discussed. This review highlights the observation that C. albicans and C. glabrata follow different paths leading to a similar outcome. It also highlights the lack of knowledge on some of the specific mechanisms underlying C. glabrata pathogenesis, which deserve future scrutiny.
Collapse
Affiliation(s)
- Mónica Galocha
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Pedro Pais
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Mafalda Cavalheiro
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Diana Pereira
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Romeu Viana
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Miguel C Teixeira
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
30
|
Furlaneto MC, Góes HP, Perini HF, Dos Santos RC, Furlaneto-Maia L. How much do we know about hemolytic capability of pathogenic Candida species? Folia Microbiol (Praha) 2018; 63:405-412. [PMID: 29335820 DOI: 10.1007/s12223-018-0584-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 01/08/2018] [Indexed: 10/18/2022]
Abstract
Hemolytic factor production by pathogenic Candida species is considered an important attribute in promoting survival within the mammal host through the ability to assimilate iron from the hemoglobin-heme group. Hemolytic capability has been evaluated for Candida species based on hemolysis zones on plate assay, analysis of hemolytic activity in liquid culture medium, and hemolysis from cell-free culture broth. The production of hemolytic factor is variable among Candida species, where C. parapsilosis is the less hemolytic species. In general, no intraspecies differences in beta-hemolytic activities are found among isolates belonging to C. albicans, C. glabrata, C. krusei, C. tropicalis, and C. parapsilosis. The production of hemolytic factor by Candida species is affected by several factors such as glucose supplementation in the culture medium, blood source, presence of erythrocytes and hemoglobin, and presence of electrolytes. On the basis of existing achievements, more researches are still needed in order to extend our knowledge about the biochemical nature of hemolytic molecules produced by distinct Candida species, the mechanism of hemolysis, and the molecular basis of the hemolytic factor expression.
Collapse
Affiliation(s)
- Márcia C Furlaneto
- Department of Microbiology, Paraná State University of Londrina, Rodovia Celso Garcia Cid, Km 380, s/n. Campus Universitário, Londrina, PR, 86057-970, Brazil.
| | - Helena P Góes
- Department of Microbiology, Paraná State University of Londrina, Rodovia Celso Garcia Cid, Km 380, s/n. Campus Universitário, Londrina, PR, 86057-970, Brazil
| | - Hugo F Perini
- Department of Microbiology, Paraná State University of Londrina, Rodovia Celso Garcia Cid, Km 380, s/n. Campus Universitário, Londrina, PR, 86057-970, Brazil
| | - Renan C Dos Santos
- Department of Microbiology, Paraná State University of Londrina, Rodovia Celso Garcia Cid, Km 380, s/n. Campus Universitário, Londrina, PR, 86057-970, Brazil
| | | |
Collapse
|
31
|
Treviño-Rangel RDJ, Bodden-Mendoza BA, Montoya AM, Villanueva-Lozano H, Elizondo-Zertuche M, Robledo-Leal E, González GM. Phenotypical characterization and molecular identification of clinical isolates of Candida tropicalis. Rev Iberoam Micol 2017; 35:17-21. [PMID: 29287631 DOI: 10.1016/j.riam.2017.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/24/2017] [Accepted: 05/18/2017] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Candida tropicalis is an increasingly important human pathogen which usually affects neutropenic oncology patients with common hematogenous seeding to peripheral organs and high mortality rates. Candida pathogenicity is facilitated by several virulence attributes, including secretion of hydrolytic enzymes; however, little is known regarding the C. tropicalis ability to secrete them and their role in the disease. AIMS To confirm by molecular means the identification of 187 clinical isolates (127 from blood, 52 from urine, and 8 from diverse clinical origins) phenotypically identified as C. tropicalis, and to investigate their in vitro aspartyl proteinase, phospholipase, esterase, hemolysin, DNase and coagulase activities. METHODS The molecular confirmation was performed by ITS sequencing, and the enzymatic determinations were conducted using plate assays with specific substrates, with the exception of coagulase, which was determined by the classical tube test. RESULTS The majority of the strains exhibited a very strong or strong activity of aspartyl proteinase, phospholipase and esterase. A 4.7% of the bloodstream isolates were hemolysin producers, and all were negative for the coagulase and DNase assays. CONCLUSIONS Very strong activities of aspartyl proteinase, phospholipase and esterase profiles were detected, and a statistical association between phospholipase production and blood and urine isolates was found.
Collapse
Affiliation(s)
- Rogelio de J Treviño-Rangel
- Department of Microbiology, School of Medicine, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - Byron A Bodden-Mendoza
- Department of Microbiology, School of Medicine, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - Alexandra M Montoya
- Department of Microbiology, School of Medicine, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - Hiram Villanueva-Lozano
- Department of Microbiology, School of Medicine, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - Mariana Elizondo-Zertuche
- Department of Microbiology, School of Medicine, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - Efrén Robledo-Leal
- Department of Microbiology and Immunology, School of Biological Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - Gloria M González
- Department of Microbiology, School of Medicine, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico.
| |
Collapse
|
32
|
Zuza-Alves DL, Silva-Rocha WP, Chaves GM. An Update on Candida tropicalis Based on Basic and Clinical Approaches. Front Microbiol 2017; 8:1927. [PMID: 29081766 PMCID: PMC5645804 DOI: 10.3389/fmicb.2017.01927] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/21/2017] [Indexed: 01/12/2023] Open
Abstract
Candida tropicalis has emerged as one of the most important Candida species. It has been widely considered the second most virulent Candida species, only preceded by C. albicans. Besides, this species has been recognized as a very strong biofilm producer, surpassing C. albicans in most of the studies. In addition, it produces a wide range of other virulence factors, including: adhesion to buccal epithelial and endothelial cells; the secretion of lytic enzymes, such as proteinases, phospholipases, and hemolysins, bud-to-hyphae transition (also called morphogenesis) and the phenomenon called phenotypic switching. This is a species very closely related to C. albicans and has been easily identified with both phenotypic and molecular methods. In addition, no cryptic sibling species were yet described in the literature, what is contradictory to some other medically important Candida species. C. tropicalis is a clinically relevant species and may be the second or third etiological agent of candidemia, specifically in Latin American countries and Asia. Antifungal resistance to the azoles, polyenes, and echinocandins has already been described. Apart from all these characteristics, C. tropicalis has been considered an osmotolerant microorganism and this ability to survive to high salt concentration may be important for fungal persistence in saline environments. This physiological characteristic makes this species suitable for use in biotechnology processes. Here we describe an update of C. tropicalis, focusing on all these previously mentioned subjects.
Collapse
Affiliation(s)
| | | | - Guilherme M. Chaves
- Laboratory of Medical and Molecular Mycology, Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
33
|
Canela HMS, Cardoso B, Vitali LH, Coelho HC, Martinez R, Ferreira MEDS. Prevalence, virulence factors and antifungal susceptibility of Candida spp. isolated from bloodstream infections in a tertiary care hospital in Brazil. Mycoses 2017; 61:11-21. [PMID: 28940753 DOI: 10.1111/myc.12695] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/20/2017] [Accepted: 08/22/2017] [Indexed: 12/13/2022]
Abstract
Candida spp. are responsible for 80% of all systemic fungal infections and are associated with high mortality rates. This study characterised 79 bloodstream isolates of C. albicans, C. glabrata, C. orthopsilosis, C. parapsilosis and C. tropicalis from patients in a Brazilian hospital. The susceptibility to amphotericin B, caspofungin, fluconazole and voriconazole was determined; virulence factor production was assessed based on haemolysin, phospholipase and proteinase activities, and the patients' clinical characteristics were analysed. C. albicans was the predominant species (44%), followed by C. glabrata (19%), C. tropicalis (19%), C. parapsilosis (14%) and C. orthopsilosis (4%). The candidemia incidence was 1.52 per 1000 admissions, and the crude mortality rate was 52%. One C. albicans isolate was resistant to fluconazole and voriconazole. Moreover, 20.2%, 2.5% and 3.8% of the isolates exhibited dose-dependent susceptibility to fluconazole, voriconazole and caspofungin, respectively. In conclusion, although the C. glabrata incidence was higher than that usually described in Brazil, its increase was previously observed in studies conducted worldwide. Furthermore, the azole resistance of the C. albicans isolate could be due to previous exposure to these antifungals. These results highlight the importance of epidemiological studies and will facilitate an improved understanding of candidemia in the studied hospital.
Collapse
Affiliation(s)
- Heliara Maria Spina Canela
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto-Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Bárbara Cardoso
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto-Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Lucia Helena Vitali
- Faculdade de Medicina de Ribeirão Preto-Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Harnoldo Colares Coelho
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto-Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Roberto Martinez
- Faculdade de Medicina de Ribeirão Preto-Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | |
Collapse
|
34
|
Fatahinia M, Halvaeezadeh M, Rezaei-Matehkolaei A. Comparison of enzymatic activities in different Candida species isolated from women with vulvovaginitis. J Mycol Med 2017; 27:188-194. [DOI: 10.1016/j.mycmed.2017.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 12/25/2016] [Accepted: 01/11/2017] [Indexed: 01/12/2023]
|
35
|
Zuza-Alves DL, de Medeiros SSTQ, de Souza LBFC, Silva-Rocha WP, Francisco EC, de Araújo MCB, Lima-Neto RG, Neves RP, Melo ASDA, Chaves GM. Evaluation of Virulence Factors In vitro, Resistance to Osmotic Stress and Antifungal Susceptibility of Candida tropicalis Isolated from the Coastal Environment of Northeast Brazil. Front Microbiol 2016; 7:1783. [PMID: 27895625 PMCID: PMC5108815 DOI: 10.3389/fmicb.2016.01783] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 10/24/2016] [Indexed: 12/01/2022] Open
Abstract
Several studies have been developed regarding human health risks associated with the recreational use of beaches contaminated with domestic sewage. These wastes contain various micro-organisms, including Candida tropicalis. In this context, the objective of this study was to characterize C. tropicalis isolates from the sandy beach of Ponta Negra, Natal, Rio Grande do Norte, Brazil, regarding the expression of in vitro virulence factors, adaptation to osmotic stress and susceptibility to antifungal drugs. We analyzed 62 environmental isolates and observed a great variation among them for the various virulence factors evaluated. In general, environmental isolates were more adherent to human buccal epithelial cells (HBEC) than C. tropicalis ATCC13803 reference strain, and they also showed increased biofilm production. Most of the isolates presented wrinkled phenotypes on Spider medium (34 isolates, 54.8%). The majority of the isolates also showed higher proteinase production than control strains, but low phospholipase activity. In addition, 35 isolates (56.4%) had high hemolytic activity (hemolysis index > 0.55). With regard to C. tropicalis resistance to osmotic stress, 85.4% of the isolates were able to grow in a liquid medium containing 15% sodium chloride. The strains were highly resistant to the azoles tested (fluconazole, voriconazole and itraconazole). Fifteen strains were resistant to the three azoles tested (24.2%). Some strains were also resistant to amphotericin B (14 isolates; 22.6%), while all of them were susceptible for the echinocandins tested, except for a single strain of intermediate susceptibility to micafungin. Our results demonstrate that C. tropicalis isolated from the sand can fully express virulence attributes and showed a high persistence capacity on the coastal environment; in addition of showing high minimal inhibitory concentrations to several antifungal drugs used in current clinical practice, demonstrating that environmental isolates may have pathogenic potential.
Collapse
Affiliation(s)
- Diana L Zuza-Alves
- Medical and Molecular Micology Laboratory, Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte Natal, Brazil
| | - Sayama S T Q de Medeiros
- Medical and Molecular Micology Laboratory, Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte Natal, Brazil
| | - Luanda B F C de Souza
- Medical and Molecular Micology Laboratory, Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte Natal, Brazil
| | - Walicyranison P Silva-Rocha
- Medical and Molecular Micology Laboratory, Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte Natal, Brazil
| | - Elaine C Francisco
- Department of Mycology, Federal University of Pernambuco São Paulo, Brazil
| | - Maria C B de Araújo
- Department of Oceanography and Limnology, Federal University of Rio Grande do Norte Natal, Brazil
| | | | - Rejane P Neves
- Department of Mycology, Federal University of Pernambuco, Recife Pernambuco, Brazil
| | | | - Guilherme M Chaves
- Medical and Molecular Micology Laboratory, Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte Natal, Brazil
| |
Collapse
|
36
|
Brilhante RSN, Oliveira JSD, Evangelista AJDJ, Serpa R, Silva ALD, Aguiar FRMD, Pereira VS, Castelo-Branco DDSCM, Pereira-Neto WA, Cordeiro RDA, Sidrim JJC, Rocha MFG. Candida tropicalis from veterinary and human sources shows similar in vitro hemolytic activity, antifungal biofilm susceptibility and pathogenesis against Caenorhabditis elegans. Vet Microbiol 2016; 192:213-219. [PMID: 27527785 DOI: 10.1016/j.vetmic.2016.07.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 10/21/2022]
Abstract
The aim of this study was to evaluate the in vitro hemolytic activity and biofilm antifungal susceptibility of veterinary and human Candida tropicalis strains, as well as their pathogenesis against Caenorhabditis elegans. Twenty veterinary isolates and 20 human clinical isolates of C. tropicalis were used. The strains were evaluated for their hemolytic activity and biofilm production. Biofilm susceptibility to itraconazole, fluconazole, voriconazole, amphotericin B and caspofungin was assessed using broth microdilution assay. The in vivo evaluation of strain pathogenicity was investigated using the nematode C. elegans. Hemolytic factor was observed in 95% of the strains and 97.5% of the isolates showed ability to form biofilm. Caspofungin and amphotericin B showed better results than azole antifungals against mature biofilms. Paradoxical effect on mature biofilm metabolic activity was observed at elevated concentrations of caspofungin (8-64μg/mL). Azole antifungals were not able to inhibit mature C. tropicalis biofilms, even at the higher tested concentrations. High mortality rates of C. elegans were observed when the worms were exposed to with C. tropicalis strains, reaching up to 96%, 96h after exposure of the worms to C. tropicalis strains. These results reinforce the high pathogenicity of C. tropicalis from veterinary and human sources and show the effectiveness of caspofungin and amphotericin B against mature biofilms of this species.
Collapse
Affiliation(s)
- Raimunda Sâmia Nogueira Brilhante
- Department of Pathology and Legal Medicine, School of Medicine, Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza, CE, Brazil; Postgraduate Program in Medical Sciences, Federal University of Ceará, Fortaleza, CE, Brazil.
| | - Jonathas Sales de Oliveira
- Department of Pathology and Legal Medicine, School of Medicine, Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Rosana Serpa
- Department of Pathology and Legal Medicine, School of Medicine, Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Aline Lobão da Silva
- School of Veterinary, Postgraduate Program in Veterinary Sciences, State University of Ceará, Fortaleza, CE, Brazil
| | - Felipe Rodrigues Magalhães de Aguiar
- Department of Pathology and Legal Medicine, School of Medicine, Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Vandbergue Santos Pereira
- Department of Pathology and Legal Medicine, School of Medicine, Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Débora de Souza Collares Maia Castelo-Branco
- Department of Pathology and Legal Medicine, School of Medicine, Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Waldemiro Aquino Pereira-Neto
- Department of Pathology and Legal Medicine, School of Medicine, Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Rossana de Aguiar Cordeiro
- Department of Pathology and Legal Medicine, School of Medicine, Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza, CE, Brazil; Postgraduate Program in Medical Sciences, Federal University of Ceará, Fortaleza, CE, Brazil
| | - José Júlio Costa Sidrim
- Department of Pathology and Legal Medicine, School of Medicine, Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Marcos Fábio Gadelha Rocha
- Department of Pathology and Legal Medicine, School of Medicine, Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza, CE, Brazil; School of Veterinary, Postgraduate Program in Veterinary Sciences, State University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
37
|
de Paula Menezes R, de Melo Riceto ÉB, Borges AS, de Brito Röder DVD, dos Santos Pedroso R. Evaluation of virulence factors of Candida albicans isolated from HIV-positive individuals using HAART. Arch Oral Biol 2016; 66:61-5. [PMID: 26913969 DOI: 10.1016/j.archoralbio.2016.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/10/2015] [Accepted: 02/02/2016] [Indexed: 11/19/2022]
Abstract
The colonization by Candida species is one of the most important factors related to the development of oral candidiasis in HIV-infected individuals. The aim of the study was to evaluate and discuss the phospholipase, proteinase, DNAse and haemolytic activities of Candida albicans isolated from the oral cavity of HIV individuals with high efficiency antiretroviral therapy. Seventy-five isolates of C. albicans obtained from saliva samples of patients with HIV and 41 isolates from HIV-negative individuals were studied. Haemolytic activity was determined in Sabouraud dextrose agar plates containing 3% glucose and 7% sheep red cells. Culture medium containing DNA base-agar, egg yolk, and bovine albumin were used to determine DNase, phospholipase and proteinase activities, respectively. All isolates from the HIV patients group had haemolytic activity, 98% showed phospholipase activity, 92% were positive for proteinase and 32% DNAse activity. Regarding the group of indivídios HIV negative, all 41 isolates presented hemolytic activity, 90.2% showed phospholipase and proteinase activity and 12.2% were positive for DNAse. The phospholipase activity was more intense for the group of HIV positive individuals. DNase production was more frequently observed in the group of HIV-positive individuals. The percentage of isolates having DNAse activity was also significantly different between the groups of patients not using any antiretroviral therapy, those using transcriptase inhibitors and those using transcriptase inhibitor and protease inhibitor in combination.
Collapse
Affiliation(s)
- Ralciane de Paula Menezes
- Technical School of Health, Federal University of Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil.
| | | | | | | | | |
Collapse
|
38
|
Arantes PT, Sanitá PV, Santezi C, Barbeiro CDO, Reina BD, Vergani CE, Dovigo LN. Reliability of the agar based method to assess the production of degradative enzymes in clinical isolates of Candida albicans. Med Mycol 2015; 54:266-74. [PMID: 26705836 DOI: 10.1093/mmy/myv103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/21/2015] [Indexed: 12/28/2022] Open
Abstract
The aim of this study was to establish a reproducible protocol using the methodology of hyaline zones around the colonies on specific agar plates for phospholipase and proteinase production. This was an in vitro double-blind experiment, in which the dependent variables were the enzymatic activity measurements (Pz) for the production of phospholipase (Pz-ph) and the production of secreted aspartyl proteinases (Pz-sap). Three independent variables give rise to different measurement protocols. All measurements were carried out at two different moments by four examiners (E1, E2, E3, and E4). The minimum sample size was 30 Candida albicans clinical isolates. Specific agar plates for phospholipase and SAPs production were prepared according the literature. The intra-and inter-examiner reproducibility for each protocol was estimated using the Intraclass Correlation Coefficient (ICC) and its confidence interval (95% CI). Based on the results obtained for both phospholipase and SAPs, there appears to be no consensus on the protocol chosen for each particular examiner. Measuring the colonies in triplicate may be the main factor associated with the increase in measurement accuracy and should therefore take precedence over measuring only one colony. When only one examiner is responsible for taking measurements, a standard protocol should be put in place and the statistical calibration of this researcher should be done prior to data collection. However, if two or more researchers are involved in the assessment of agar plates, our results suggest that the protocols using software to undertake plate reading is preferred.
Collapse
Affiliation(s)
- Paula Tamião Arantes
- Department of Social Dentistry, Araraquara Dental School, UNESP- Univ Estadual Paulista. Humaitá Street, 1680, 14801-903, Araraquara, SP, Brazil
| | - Paula Volpato Sanitá
- Department of Dental Materials and Prosthodontics, Araraquara Dental School, UNESP- Univ Estadual Paulista. Humaitá Street, 1680, 14801-903, Araraquara, SP, Brazil
| | - Carolina Santezi
- Department of Social Dentistry, Araraquara Dental School, UNESP- Univ Estadual Paulista. Humaitá Street, 1680, 14801-903, Araraquara, SP, Brazil
| | - Camila de Oliveira Barbeiro
- Department of Social Dentistry, Araraquara Dental School, UNESP- Univ Estadual Paulista. Humaitá Street, 1680, 14801-903, Araraquara, SP, Brazil
| | - Bárbara Donadon Reina
- Department of Social Dentistry, Araraquara Dental School, UNESP- Univ Estadual Paulista. Humaitá Street, 1680, 14801-903, Araraquara, SP, Brazil
| | - Carlos Eduardo Vergani
- Department of Dental Materials and Prosthodontics, Araraquara Dental School, UNESP- Univ Estadual Paulista. Humaitá Street, 1680, 14801-903, Araraquara, SP, Brazil
| | - Lívia Nordi Dovigo
- Department of Social Dentistry, Araraquara Dental School, UNESP- Univ Estadual Paulista. Humaitá Street, 1680, 14801-903, Araraquara, SP, Brazil
| |
Collapse
|