1
|
Ma X, Xu W. Research methodology: A bibliometric review using the spastic hand as an example. J Hand Surg Eur Vol 2024:17531934241305802. [PMID: 39668618 DOI: 10.1177/17531934241305802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Bibliometric review involves systematically analysing the academic literature on a particular topic, enabling researchers to better understand the trajectory and future trends of a specific research field. This study uses various bibliometric tools to analyse relevant research on the spastic hand over the past two decades, aiming to identify key contributors, hotspots and emerging trends. The results show that early studies focused on cerebral palsy, stroke and botulinum toxin treatment, while recent advancements highlight surgical procedures such as neurectomy and soft tissue transfer. Future research should enhance international collaboration and the use of neuroimaging and electrophysiological techniques to gain a deeper understanding of the neural mechanisms underlying spasticity, optimize surgical procedures and explore novel treatments for spastic hand.
Collapse
Affiliation(s)
- Xingyi Ma
- Department of Hand Surgery, Jing'an District Central Hospital, Branch of Huashan Hospital, the National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China
| | - Wendong Xu
- Department of Hand Surgery, Jing'an District Central Hospital, Branch of Huashan Hospital, the National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China
- Institute of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
- National Clinical Key Specialty for Limb Function Reconstruction, Shanghai, China
| |
Collapse
|
2
|
Julien L, Moreau-Pernet G, Rochette E, Lemaire JJ, Pontier B, Bourrand S, Pereira B, Chassain C, Sontheimer A, Sarret C. Robot-assisted gait training improves walking and cerebral connectivity in children with unilateral cerebral palsy. Pediatr Res 2024; 96:1306-1315. [PMID: 38769400 DOI: 10.1038/s41390-024-03240-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 02/13/2024] [Accepted: 04/03/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Robot-assisted gait training (RAGT) is promising to help walking rehabilitation in cerebral palsy, but training-induced neuroplastic effects have little been investigated. METHODS Forty unilateral cerebral palsy children aged 4-18 years were randomly allocated in a monocentric study to ten 20-minute RAGT sessions with the G-EO system, five days a week (n = 20) or to a control group (who continued conventional care with six 30-minute physiotherapy sessions, three days a week) (n = 20), two weeks running, from September 2020 to December 2021. Clinical and MRI outcomes were compared before and one month after therapy. The primary outcome was gait speed. Secondary outcomes were a 6-minute walking test distance, Gross Motor Function Measure-88 (GMFM-88) dimensions D and E, Patient Global Impression of Improvement, resting-state functional connectivity within the sensorimotor network, and structural connectivity in the corticospinal tracts. RESULTS Gait speed and the 6-minute walking test distance improved more after RAGT. Resting-state functional connectivity increased after RAGT but decreased in controls between superior and lateral healthy or lateral injured sensorimotor networks. GMFM-88 and structural connectivity in corticospinal tracts were unchanged. Impression of improvement in children was better after RAGT. CONCLUSION Short-term benefit of repetitive RAGT on walking abilities and functional cerebral connectivity was found in unilateral cerebral palsy children. IMPACT STATEMENT Short-term repetitive robot-assisted gait training improves gait speed and walking resistance and increases cerebral functional connectivity in unilateral cerebral palsy. GMFM dimensions D and E were unchanged after short-term repetitive robot-assisted gait training in unilateral cerebral palsy.
Collapse
Affiliation(s)
- Laura Julien
- Department of Pediatrics, CRECHE, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
- Clermont Auvergne University, CNRS, Clermont Auvergne INP, Institut Pascal, Clermont-Ferrand, France
| | | | - Emmanuelle Rochette
- Department of Pediatrics, CRECHE, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - Jean-Jacques Lemaire
- Clermont Auvergne University, CNRS, Clermont Auvergne INP, Institut Pascal, Clermont-Ferrand, France
- Department of Neurosurgery, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - Bénédicte Pontier
- Department of Pediatrics, CRECHE, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
- Clermont Auvergne University, CNRS, Clermont Auvergne INP, Institut Pascal, Clermont-Ferrand, France
- Department of Neurosurgery, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - Sacha Bourrand
- Clermont Auvergne University, CNRS, Clermont Auvergne INP, Institut Pascal, Clermont-Ferrand, France
| | - Bruno Pereira
- Clinical Research Division, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - Carine Chassain
- Clermont Auvergne University, CNRS, Clermont Auvergne INP, Institut Pascal, Clermont-Ferrand, France
| | - Anna Sontheimer
- Clermont Auvergne University, CNRS, Clermont Auvergne INP, Institut Pascal, Clermont-Ferrand, France
- Department of Neurosurgery, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - Catherine Sarret
- Department of Pediatrics, CRECHE, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France.
- Clermont Auvergne University, CNRS, Clermont Auvergne INP, Institut Pascal, Clermont-Ferrand, France.
| |
Collapse
|
3
|
Gehringer JE, Woodruff Jameson A, Boyer H, Konieczny J, Thomas R, Pierce Iii J, Cunha AB, Willett S. Feasibility of At-Home Hand Arm Bimanual Intensive Training in Virtual Reality: Case Study. JMIR Form Res 2024; 8:e57588. [PMID: 39241226 DOI: 10.2196/57588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 09/08/2024] Open
Abstract
This single-participant case study examines the feasibility of using custom virtual reality (VR) gaming software in the home environment for low-dose Hand Arm Bimanual Intensive Training (HABIT). A 10-year-old with right unilateral cerebral palsy participated in this trial. Fine and gross motor skills as well as personal goals for motor outcomes were assessed before and after the intervention using the Box and Blocks Test, Nine-Hole Peg Test, and Canadian Occupational Performance Measure. Movement intensities collected via the VR hardware accelerometers, VR game scores, and task accuracy were recorded via the HABIT-VR software as indices of motor performance. The child and family were instructed to use the HABIT-VR games twice daily for 30 minutes over a 14-day period and asked to record when they used the system. The child used the system and completed the 14-hour, low-dose HABIT-VR intervention across 22 days. There was no change in Box and Blocks Test and Nine-Hole Peg Test scores before and after the intervention. Canadian Occupational Performance Measure scores increased but did not reach the clinically relevant threshold, due to high scores at baseline. Changes in motor task intensities during the use of VR and mastery of the VR bimanual tasks suggested improved motor efficiency. This case study provides preliminary evidence that HABIT-VR is useful for promoting adherence to HABIT activities and for the maintenance of upper extremity motor skills in the home setting.
Collapse
Affiliation(s)
- James E Gehringer
- Virtual Reality Laboratory, Munroe-Meyer Insitute, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Physical Therapy, Munroe-Meyer Insitute, University of Nebraska Medical Center, Omaha, NE, United States
| | - Anne Woodruff Jameson
- Department of Physical Therapy, Munroe-Meyer Insitute, University of Nebraska Medical Center, Omaha, NE, United States
| | - Hailey Boyer
- Department of Physical Therapy, Munroe-Meyer Insitute, University of Nebraska Medical Center, Omaha, NE, United States
| | - Jennifer Konieczny
- Department of Occupational Therapy, Munroe-Meyer Insitute, University of Nebraska Medical Center, Omaha, NE, United States
| | - Ryan Thomas
- Virtual Reality Laboratory, Munroe-Meyer Insitute, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Physical Therapy, Munroe-Meyer Insitute, University of Nebraska Medical Center, Omaha, NE, United States
| | - James Pierce Iii
- Virtual Reality Laboratory, Munroe-Meyer Insitute, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Physical Therapy, Munroe-Meyer Insitute, University of Nebraska Medical Center, Omaha, NE, United States
| | - Andrea B Cunha
- Department of Physical Therapy, Munroe-Meyer Insitute, University of Nebraska Medical Center, Omaha, NE, United States
| | - Sandra Willett
- Department of Physical Therapy, Munroe-Meyer Insitute, University of Nebraska Medical Center, Omaha, NE, United States
- Physical Therapy Program, Department of Kinesiology, Colorado Mesa University, Grand Junction, CO, United States
| |
Collapse
|
4
|
Sudati IP, Damiano D, Rovai G, de Campos AC. Neural Correlates of Mobility in Children with Cerebral Palsy: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1039. [PMID: 39200649 PMCID: PMC11354175 DOI: 10.3390/ijerph21081039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/23/2024] [Accepted: 07/31/2024] [Indexed: 09/02/2024]
Abstract
Recent advances in brain mapping tools have enabled the study of brain activity during functional tasks, revealing neuroplasticity after early brain injuries and resulting from rehabilitation. Understanding the neural correlates of mobility limitations is crucial for treating individuals with cerebral palsy (CP). The aim is to summarize the neural correlates of mobility in children with CP and to describe the brain mapping methods that have been utilized in the existing literature. This systematic review was conducted based on PRISMA guidelines and was registered on PROSPERO (n° CRD42021240296). The literature search was conducted in the PubMed and Embase databases. Observational studies involving participants with CP, with a mean age of up to 18 years, that utilized brain mapping techniques and correlated these with mobility outcomes were included. The results were analyzed in terms of sample characteristics, brain mapping methods, mobility measures, and main results. The risk of bias was evaluated using a checklist previously created by our research group, based on STROBE guidelines, the Cochrane Handbook, and the Critical Appraisal Skills Programme (CASP). A total of 15 studies comprising 313 children with CP and 229 with typical development using both static and mobile techniques met the inclusion criteria. The studies indicate that children"with'CP have increased cerebral activity and higher variability in brain reorganization during mobility activities, such as gait, quiet standing, cycling, and gross motor tasks when compared with children with typical development. Altered brain activity and reorganization underline the importance of conducting more studies to investigate the neural correlates during mobility activities in children with CP. Such information could guide neurorehabilitation strategies targeting brain neuroplasticity for functional gains.
Collapse
Affiliation(s)
- Isabella Pessóta Sudati
- Department of Physical Therapy, Child Development Analysis Laboratory (LADI), Federal University of São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil;
| | - Diane Damiano
- Rehabilitation Medicine Department, Clinical Center, National Institutes of Health (NIH), Bethesda, MD 20892, USA;
| | - Gabriela Rovai
- Department of Physical Therapy, Child Development Analysis Laboratory (LADI), Federal University of São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil;
| | - Ana Carolina de Campos
- Department of Physical Therapy, Child Development Analysis Laboratory (LADI), Federal University of São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil;
| |
Collapse
|
5
|
Metelski N, Gu Y, Quinn L, Friel KM, Gordon AM. Safety and efficacy of non-invasive brain stimulation for the upper extremities in children with cerebral palsy: A systematic review. Dev Med Child Neurol 2024; 66:573-597. [PMID: 37528530 DOI: 10.1111/dmcn.15720] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/17/2023] [Accepted: 06/21/2023] [Indexed: 08/03/2023]
Abstract
AIM To evaluate available evidence examining safety and efficacy of non-invasive brain stimulation (NIBS) on upper extremity outcomes in children with cerebral palsy (CP). METHOD We electronically searched 12 sources up to May 2023 using JBI and Cochrane guidelines. Two reviewers selected articles with predetermined eligibility criteria, conducted data extraction, and assessed risk of bias using the Cochrane Risk of Bias criteria. RESULTS Nineteen studies were included: eight using repetitive transcranial magnetic stimulation (rTMS) and 11 using transcranial direct current stimulation (tDCS). Moderate certainty evidence supports the safety of rTMS and tDCS for children with CP. Very low to moderate certainty evidence suggests that rTMS and tDCS result in little to no difference in upper extremity outcomes. INTERPRETATION Evidence indicates that NIBS is a safe and feasible intervention to target upper extremity outcomes in children with CP, although it also indicates little to no significant impact on upper extremity outcomes. These findings are discussed in relation to the heterogeneous participants' characteristics and stimulation parameters. Larger studies of high methodological quality are required to inform future research and protocols for NIBS.
Collapse
Affiliation(s)
- Nicole Metelski
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, New York, USA
| | - Yu Gu
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, New York, USA
| | - Lori Quinn
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, New York, USA
| | - Kathleen M Friel
- Burke Neurological Institute, White Plains, New York, and Weill Cornell Medicine, New York, New York, USA
| | - Andrew M Gordon
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, New York, USA
| |
Collapse
|
6
|
Delfing D, Chin K, Hentrich L, Rachwani J, Friel KM, Santamaria V, Imms C, Gordon AM. Assessing engagement in rehabilitation: development, validity, reliability, and responsiveness to change of the Rehabilitation Observation Measure of Engagement (ROME). Disabil Rehabil 2024; 46:1888-1897. [PMID: 37161867 DOI: 10.1080/09638288.2023.2208379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/24/2023] [Indexed: 05/11/2023]
Abstract
PURPOSE We describe the development of an observational video coding tool, the Rehabilitation Observation Measure of Engagement (ROME), to quantify engagement in rehabilitative settings at the person (internal state of an individual) and between-system (interaction between individuals) level. METHODS Forty-nine children with unilateral spastic cerebral palsy (29 males; Age: M = 9.28 yrs, SD = 3.08 yrs) and their interventionists were videotaped during different activities. Construct validity was examined by correlating the ROME with the Engagement vs. Disaffection with Learning Survey and the Pediatric Rehabilitation Intervention Measure of Engagement - Observation questionnaire. Inter- and intra-rater reliability were examined using two independent raters. The ROME's responsiveness to change was examined by comparing scores across activities. RESULTS For construct validity, results showed a positive correlation for person-level engagement (r = 0.444, p = 0.003). No relationship was found between-system-level engagement. High intrarater (91.8%) and interrater (96.1%) reliability was found. The ROME's responsiveness to change was supported by children exhibiting lower engagement scores during repetitive shaping activities. CONCLUSION These findings provide evidence that the ROME is a reliable tool to objectively examine the construct of engagement within rehabilitation and is valid for quantifying person-level engagement. It provides information that cannot be extracted from questionnaires and can help guide intervention decisions.
Collapse
Affiliation(s)
- Dalina Delfing
- Department of Biobehavioral Sciences, Teachers College, Columbia University, NY, NY, United States
| | - Karen Chin
- Department of Biobehavioral Sciences, Teachers College, Columbia University, NY, NY, United States
| | - Larissa Hentrich
- Department of Biobehavioral Sciences, Teachers College, Columbia University, NY, NY, United States
| | - Jaya Rachwani
- Department of Physical Therapy, Hunter College, City University of New York, New York, NY, United States
| | - Kathleen M Friel
- Burke Neurological Institute, Weill Cornell Medicine, White Plains, NY, United States
| | - Victor Santamaria
- Department of Physical Therapy, New York Medical College, NY, United States
| | - Christine Imms
- Healthy Trajectories: A Child and Youth Disability Research Hub, Department of Pediatrics, The University of Melbourne, Melbourne, Australia
| | - Andrew M Gordon
- Department of Biobehavioral Sciences, Teachers College, Columbia University, NY, NY, United States
| |
Collapse
|
7
|
Ashtiyani M, Moradi Birgani P, Soleimani M, Jameie SB, Shahrokhi A, Mirbagheri MM, Deevband MR. Corpus Callosum Functional Activities in Children with Cerebral Palsy. J Biomed Phys Eng 2024; 14:21-30. [PMID: 38357606 PMCID: PMC10862116 DOI: 10.31661/jbpe.v0i0.2106-1354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/02/2021] [Indexed: 02/16/2024]
Abstract
Background Since cerebral palsy (CP) is a corollary to brain damage, persistent treatment should accompany an alteration in brain functional activity in line with clinical improvements. In this regard, the corpus callosum (CC), as a connecting bridge between the two hemispheres, plays an essential role. Objective This study aimed to investigate the therapeutic effects of occupational therapy (OT) on CC functional activity and walking capacity in children with cerebral palsy. Material and Methods In this clinical trial study, 4 children with CP (8.25±1.71 years) received 45 min OT sessions 3 times weekly for 8 weeks. Functional magnetic resonance imaging (fMRI) was acquired while conducting passive motor tasks to quantify CC activation. The pre-post activation changes in CC following therapy were quantified in terms of activated voxels. Walking capacity was evaluated using the timed-up-and-go (TUG), 6-minute walk test (6 MWT), and 10-meter walk test (10 MWT) in pre-and post-treatment. Results The number of activated voxels in CC indicated significant improvement in participants. Post-treatment activated voxels substantially exceeded pre-treatment active voxels. Clinical measures, including TUG, 6 MWT, and 10 MWT are improved by 11.9%, 12.6%, and 25.4%, respectively. Conclusion Passive task-based fMRI can detect the effects of OT on CC functional activity in children with CP. According to the results, OT improves CC functional activity in addition to gait and balance performance.
Collapse
Affiliation(s)
- Meghdad Ashtiyani
- Department of Biomedical Engineering and Medical Physics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parmida Moradi Birgani
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Soleimani
- Department of Basic Science, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | - Amin Shahrokhi
- Department of Basic Science, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | - Mohammad Reza Deevband
- Department of Biomedical Engineering and Medical Physics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Blatt K, Lewis J, Bican R, Leonard J. Selective Dorsal Rhizotomy: Patient Demographics and Postoperative Physical Therapy. Pediatr Neurol 2023; 147:56-62. [PMID: 37556940 DOI: 10.1016/j.pediatrneurol.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 05/18/2023] [Accepted: 07/07/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND Selective dorsal rhizotomy (SDR) is a surgical procedure that permanently alters lower extremity spasticity, common in children with spastic cerebral palsy (CP). Intensive postoperative physical therapy (PT) is recommended following SDR. The first purpose of this study is to describe and compare patient demographics between children who received SDR and the population of children with CP at one institution. The second purpose of this study is to compare the completed dose of postoperative PT with the clinically recommended dose for a subset of ambulatory children who underwent SDR. METHODS This retrospective, observational study included 60 children with spastic CP following SDR. A subset (n = 12 ambulatory children) was included to describe the dose of postoperative PT. Information gathered from electronic medical records included age at the time of SDR, sex, Gross Motor Function Classification System level, anatomic distribution, race, county-level habitancy, health insurance provider, timed current procedural terminology codes, and location for postoperative PT encounters within a single institution. RESULTS Black or African American children (P = 0.002), children living in large central metro areas (P = 0.033), and children with public insurance (P ≤ 0.001) were significantly less likely to receive SDR. Children undergoing SDR do not achieve the recommended dose of PT after hospital discharge. CONCLUSION SDR is not equally accessed by patient populations, and postoperative PT frequency is below current recommendations throughout the rehabilitation process. Future studies need to investigate why these disparities exist and what prevents children from meeting the clinically recommended dose of postoperative PT after SDR.
Collapse
Affiliation(s)
- Kristen Blatt
- Division of Clinical Therapies, Department of Physical Therapy, Nationwide Children's Hospital, Columbus, Ohio.
| | - Jessica Lewis
- Division of Clinical Therapies, Department of Physical Therapy, Nationwide Children's Hospital, Columbus, Ohio
| | - Rachel Bican
- Division of Physical Therapy, School of Rehabilitation and Communication Sciences, Ohio University, Athens, Ohio
| | - Jeffrey Leonard
- Department of Pediatric Neurosurgery, Nationwide Children's Hospital, Columbus, Ohio
| |
Collapse
|
9
|
Martinie O, Karan P, Traverse E, Mercier C, Descoteaux M, Robert MT. The Challenge of Diffusion Magnetic Resonance Imaging in Cerebral Palsy: A Proposed Method to Identify White Matter Pathways. Brain Sci 2023; 13:1386. [PMID: 37891755 PMCID: PMC10605121 DOI: 10.3390/brainsci13101386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Cerebral palsy (CP), a neuromotor disorder characterized by prenatal brain lesions, leads to white matter alterations and sensorimotor deficits. However, the CP-related diffusion neuroimaging literature lacks rigorous and consensual methodology for preprocessing and analyzing data due to methodological challenges caused by the lesion extent. Advanced methods are available to reconstruct diffusion signals and can update current advances in CP. Our study demonstrates the feasibility of analyzing diffusion CP data using a standardized and open-source pipeline. Eight children with CP (8-12 years old) underwent a single diffusion magnetic resonance imaging (MRI) session on a 3T scanner (Achieva 3.0T (TX), Philips Healthcare Medical Systems, Best, The Netherlands). Exclusion criteria were contraindication to MRI and claustrophobia. Anatomical and diffusion images were acquired. Data were corrected and analyzed using Tractoflow 2.3.0 version, an open-source and robust tool. The tracts were extracted with customized procedures based on existing atlases and freely accessed standardized libraries (ANTs, Scilpy). DTI, CSD, and NODDI metrics were computed for each tract. Despite lesion heterogeneity and size, we successfully reconstructed major pathways, except for a participant with a larger lesion. Our results highlight the feasibility of identifying and quantifying subtle white matter pathways. Ultimately, this will increase our understanding of the clinical symptoms to provide precision medicine and optimize rehabilitation.
Collapse
Affiliation(s)
- Ophélie Martinie
- Centre for Interdisciplinary Research in Rehabilitation and Social Integration, Québec, QC G1M 2S8, Canada; (O.M.); (E.T.); (C.M.)
- Department of Rehabilitation, Université Laval, Québec, QC G1V 0A6, Canada
| | - Philippe Karan
- Department of Computer Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (P.K.); (M.D.)
| | - Elodie Traverse
- Centre for Interdisciplinary Research in Rehabilitation and Social Integration, Québec, QC G1M 2S8, Canada; (O.M.); (E.T.); (C.M.)
- Department of Rehabilitation, Université Laval, Québec, QC G1V 0A6, Canada
| | - Catherine Mercier
- Centre for Interdisciplinary Research in Rehabilitation and Social Integration, Québec, QC G1M 2S8, Canada; (O.M.); (E.T.); (C.M.)
- Department of Rehabilitation, Université Laval, Québec, QC G1V 0A6, Canada
| | - Maxime Descoteaux
- Department of Computer Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (P.K.); (M.D.)
| | - Maxime T. Robert
- Centre for Interdisciplinary Research in Rehabilitation and Social Integration, Québec, QC G1M 2S8, Canada; (O.M.); (E.T.); (C.M.)
- Department of Rehabilitation, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
10
|
Surkar SM, Willson JD, Cassidy JM, Kantak S, Patterson CG. Remote ischaemic conditioning combined with bimanual task training to enhance bimanual skill learning and corticospinal excitability in children with unilateral cerebral palsy: a study protocol of a single centre, phase II randomised controlled trial. BMJ Open 2023; 13:e076881. [PMID: 37770277 PMCID: PMC10546168 DOI: 10.1136/bmjopen-2023-076881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/22/2023] [Indexed: 09/30/2023] Open
Abstract
INTRODUCTION Children with unilateral cerebral palsy (UCP) have difficulty in bimanual coordination that restricts the child's independence in daily activities. Although several efficacious interventions to improve bimanual coordination exist, these interventions often require higher training doses and have modest effect sizes. Thus, there is a critical need to find an effective priming agent that, when paired with task-specific training, will facilitate neurobiological processes to enhance the magnitude of training effects and subsequently improve functional capabilities of children with UCP. The aim of this study is to determine the effects of a novel priming agent, remote ischaemic conditioning (RIC), combined with bimanual training on bimanual skill learning and corticospinal excitability in children with UCP. METHODS AND ANALYSES 46 children, aged 8-16 years, will be randomly assigned to receive RIC or sham conditioning combined with 5 days of bimanual skill (cup stacking) training (15 trials per session). RIC or sham conditioning will be performed with a standard conditioning protocol of five cycles of alternative inflation and deflation of a pressure cuff on the affected arm with the pressure of at least 20 mm Hg above systolic blood pressure for RIC and 25 mm Hg for sham conditioning. Primary outcomes will be movement time and corticospinal excitability measures determined with a single-pulse transcranial magnetic stimulation (TMS). Secondary outcomes include Assisting Hand Assessment, spatio-temporal kinematic variables and paired pulse TMS measures. All measures will be conducted before and immediately after the intervention. A mixed model analysis of variance will test the group×time interaction for all outcomes with group (RIC and sham) as between-subject and time (preintervention, postintervention) as within-subject factors. ETHICS AND DISSEMINATION The study has been approved by the University Medical Centre Institutional Review Board (UMCIRB #21-001913). We will disseminate the study findings via peer-reviewed publications and presentations at professional conferences. TRIAL REGISTRATION NUMBER NCT05777070.
Collapse
Affiliation(s)
- Swati M Surkar
- Physical Therapy, East Carolina University, Greenville, North Carolina, USA
| | - John D Willson
- Physical Therapy, East Carolina University, Greenville, North Carolina, USA
| | - Jessica M Cassidy
- Department of Health Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shailesh Kantak
- Department of Physical Therapy, Arcadia University, Glenside, Pennsylvania, USA
- Department of Rehabilitation Medicine, Moss Rehabilitation Research Institute, Philadelphia, PA, USA
| | - Charity G Patterson
- Department of Physical Therapy and School of Health and Rehabilitation Sciences Data Center, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
11
|
Gangwani RR, Mark JI, Vaughn RM, Holland H, Thorpe DE, Alexander JJ, Surkar SM, Cassidy JM. Corticomuscular Coherence in Children with Unilateral Cerebral Palsy: A Feasibility and Preliminary Protocol Study. J Child Neurol 2023; 38:357-366. [PMID: 37448333 PMCID: PMC10466949 DOI: 10.1177/08830738231187010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/02/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023]
Abstract
Objective This study assessed the feasibility of corticomuscular coherence measurement during a goal-directed task in children with unilateral cerebral palsy while establishing optimal experimental parameters. Methods Participants (Manual Ability Classification System levels I-III) completed a submaximal isometric goal-directed grip task during simultaneous electroencephalography and electromyography (EMG) acquisition. Results All participants (n = 11, 6 females, mean age 11.3 ±2.4 years) completed corticomuscular coherence procedures. Of the 40 trials obtained per extremity, an average of 29 (n = 9) and 27 (n = 10) trials were retained from the more- and less-affected extremities, respectively. Obtaining measurement stability required an average of 28 trials per extremity. Conclusion Findings from this work support the feasibility of corticomuscular coherence measurement in children with unilateral cerebral palsy. Acquiring 28 to 40 corticomuscular coherence trials per extremity is ideal. The experimental parameters established in this work will inform future corticomuscular coherence application in pediatric unilateral cerebral palsy.
Collapse
Affiliation(s)
- Rachana R. Gangwani
- Department of Health Sciences, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jasper I. Mark
- Department of Health Sciences, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rachel M. Vaughn
- Department of Health Sciences, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Deborah E. Thorpe
- Department of Health Sciences, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joshua J. Alexander
- Departments of Physical Medicine and Rehabilitation and Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Swati M. Surkar
- Department of Physical Therapy, East Carolina University, Greenville, NC, USA
| | - Jessica M. Cassidy
- Department of Health Sciences, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
12
|
Steinbusch CVM, Defesche A, van der Leij B, Rameckers EAA, Knijnenburg ACS, Vermeulen JRJ, Janssen-Potten YJM. The Effect of Bimanual Intensive Functional Training on Somatosensory Hand Function in Children with Unilateral Spastic Cerebral Palsy: An Observational Study. J Clin Med 2023; 12:jcm12041595. [PMID: 36836129 PMCID: PMC9960591 DOI: 10.3390/jcm12041595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
(1) Background: Next to motor impairments, children with unilateral spastic cerebral palsy (CP) often experience sensory impairments. Intensive bimanual training is well known for improving motor abilities, though its effect on sensory impairments is less known. (2) Objective: To investigate whether bimanual intensive functional therapy without using enriched sensory materials improves somatosensory hand function. (3) Methods: A total of twenty-four participants with CP (12-17 years of age) received 80-90 h of intensive functional training aimed at improving bimanual performance in daily life. Somatosensory hand function was measured before training, directly after training, and at six months follow-up. Outcome measures were: proprioception, measured by thumb and wrist position tasks and thumb localization tasks; vibration sensation; tactile perception; and stereognosis. (4) Results: Next to improving on their individual treatment goals, after training, participants also showed significant improvements in the perception of thumb and wrist position, vibration sensation, tactile perception, and stereognosis of the more affected hand. Improvements were retained at six months follow-up. Conversely, proprioception measured by the thumb localization tasks did not improve after training. (5) Conclusions: Intensive functional bimanual training without environmental tactile enrichment may improve the somatosensory function of the more affected hand in children with unilateral spastic CP.
Collapse
Affiliation(s)
- Catherine V. M. Steinbusch
- Adelante Rehabilitation Centre, 6301 KA Valkenburg, The Netherlands
- Research School CAPHRI, Department of Rehabilitation Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
- Correspondence:
| | - Anke Defesche
- Adelante Rehabilitation Centre, 6301 KA Valkenburg, The Netherlands
| | | | - Eugene A. A. Rameckers
- Research School CAPHRI, Department of Rehabilitation Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
- Adelante Centre of Expertise in Rehabilitation and Audiology, 6432 CC Hoensbroek, The Netherlands
- Paediatric Rehabilitation, Biomed, Faculty of Medicine & Health Science, Hasselt University, 3500 Hasselt, Belgium
| | - Annemarie C. S. Knijnenburg
- Department of Neurology, Maastricht University Medical Centre+, 6229 ER Maastricht, The Netherlands
- Research School Mental Health and NeuroScience, Maastricht University Medical Centre+, 6229 ER Maastricht, The Netherlands
| | - Jeroen R. J. Vermeulen
- Department of Neurology, Maastricht University Medical Centre+, 6229 ER Maastricht, The Netherlands
- Research School Mental Health and NeuroScience, Maastricht University Medical Centre+, 6229 ER Maastricht, The Netherlands
| | - Yvonne J. M. Janssen-Potten
- Research School CAPHRI, Department of Rehabilitation Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
- Adelante Centre of Expertise in Rehabilitation and Audiology, 6432 CC Hoensbroek, The Netherlands
| |
Collapse
|
13
|
Hilderley AJ, Wright FV, Taylor MJ, Chen JL, Fehlings D. Functional Neuroplasticity and Motor Skill Change Following Gross Motor Interventions for Children With Diplegic Cerebral Palsy. Neurorehabil Neural Repair 2023; 37:16-26. [PMID: 36524254 PMCID: PMC9896542 DOI: 10.1177/15459683221143503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Gross motor intervention designs for children with diplegic cerebral palsy (DCP) require an improved understanding of the children's potential for neuroplasticity. OBJECTIVE To identify relations between functional neuroplasticity and motor skill changes following gross motor interventions for children with DCP. METHODS There were 17 participants with DCP (ages 8-16 years; 6 females; Gross Motor Function Classification System Level I [n = 9] and II [n = 8]). Each completed a 6-week gross motor intervention program that was directed toward achievement of individualized motor/physical activity goals. Outcomes were assessed pre/post and 4 to 6 months post-intervention (follow-up). An active ankle dorsiflexion task was completed during functional magnetic resonance imaging. The ratio of motor cortical activation volume in each hemisphere was calculated using a laterality index. The Challenge was the primary gross motor skill measure. Change over time and relations among outcomes were evaluated. RESULTS Challenge scores improved post-intervention (4.57% points [SD 4.45], P = .004) and were maintained at follow-up (0.75% [SD 6.57], P = 1.000). The laterality index for dominant ankle dorsiflexion increased (P = .033), while non-dominant change was variable (P = .534). Contralateral activation (laterality index ≥+0.75) was most common for both ankles. Challenge improvements correlated with increased ipsilateral activity (negative laterality index) during non-dominant dorsiflexion (r = -.56, P = .045). Smaller activation volume during non-dominant dorsiflexion predicted continued gross motor gains at follow-up (R2 = .30, P = .040). CONCLUSIONS Motor cortical activation during non-dominant ankle dorsiflexion is a modest indicator of the potential for gross motor skill change. Further investigation of patterns of neuroplastic change will improve our understanding of effects. CLINICALTRIALS.GOV REGISTRY NCT02584491 and NCT02754128.
Collapse
Affiliation(s)
- Alicia J. Hilderley
- Bloorview Research Institute, Holland
Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - F. Virginia Wright
- Bloorview Research Institute, Holland
Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada,Department of Physical Therapy,
University of Toronto, Toronto, ON, Canada
| | - Margot J. Taylor
- Diagnostic Imaging, The Hospital for
Sick Children, Toronto, ON, Canada,Department of Medical Imaging,
University of Toronto, Toronto, ON, Canada,Department of Psychology, University of
Toronto, Toronto, ON, Canada
| | - Joyce L. Chen
- Faculty of Kinesiology and Physical
Education, University of Toronto, Toronto, ON, Canada,Hurvitz Brain Sciences Program,
Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto,
ON, Canada
| | - Darcy Fehlings
- Bloorview Research Institute, Holland
Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada,Department of Paediatrics, Faculty of
Medicine, University of Toronto, Toronto, ON, Canada,Darcy Fehlings, Holland Bloorview Kids
Rehabilitation Hospital, 150 Kilgour Road, Toronto, ON M4G 1R8, Canada.
| |
Collapse
|
14
|
Butera CD, Rhee C, Kelly CE, Dhollander T, Thompson DK, Wisnowski J, Molinini RM, Sargent B, Lepore N, Vorona G, Bessom D, Shall MS, Burnsed J, Stevenson RD, Brown S, Harper A, Hendricks-Muñoz KD, Dusing SC. Effect of a NICU to Home Physical Therapy Intervention on White Matter Trajectories, Motor Skills, and Problem-Solving Skills of Infants Born Very Preterm: A Case Series. J Pers Med 2022; 12:2024. [PMID: 36556244 PMCID: PMC9784100 DOI: 10.3390/jpm12122024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Infants born very preterm (VPT; ≤29 weeks of gestation) are at high risk of developmental disabilities and abnormalities in neural white matter characteristics. Early physical therapy interventions such as Supporting Play Exploration and Early Development Intervention (SPEEDI2) are associated with improvements in developmental outcomes. Six VPT infants were enrolled in a randomised clinical trial of SPEEDI2 during the transition from the neonatal intensive care unit to home over four time points. Magnetic resonance imaging scans and fixel-based analysis were performed, and fibre density (FD), fibre cross-section (FC), and fibre density and cross-section values (FDC) were computed. Changes in white matter microstructure and macrostructure were positively correlated with cognitive, motor, and motor-based problem solving over time on developmental assessments. In all infants, the greatest increase in FD, FC, and FDC occurred between Visit 1 and 2 (mean chronological age: 2.68-6.22 months), suggesting that this is a potential window of time to optimally support adaptive development. Results warrant further studies with larger groups to formally compare the impact of intervention and disparity on neurodevelopmental outcomes in infants born VPT.
Collapse
Affiliation(s)
- Christiana Dodd Butera
- Division of Biokinesiology and Physical Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Claire Rhee
- Division of Biokinesiology and Physical Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Claire E. Kelly
- Victorian Infant Brain Studies and Developmental Imaging, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC 3000, Australia
| | - Thijs Dhollander
- Developmental Imaging, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| | - Deanne K. Thompson
- Victorian Infant Brain Studies and Developmental Imaging, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Jessica Wisnowski
- Departments of Radiology and Pediatrics (Neonatology), Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Rebecca M. Molinini
- Department of Physical Therapy, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Barbara Sargent
- Division of Biokinesiology and Physical Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Natasha Lepore
- CIBORG Laboratory, Department of Radiology, University of Southern California, Los Angeles, CA 90089, USA
- Departments of Pediatrics and Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Greg Vorona
- Department of Radiology, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Dave Bessom
- Department of Radiology, Children’s Hospital of Richmond at VCU, Richmond, VA 23284, USA
| | - Mary S. Shall
- Department of Physical Therapy, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Jennifer Burnsed
- Division of Neonatology, Departments of Pediatrics and Neurology, University of Virginia, Charlottesville, VA 22903, USA
| | - Richard D. Stevenson
- Division of Neurodevelopmental and Behavioral Pediatrics, Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Shaaron Brown
- Department of Physical Therapy, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Amy Harper
- Department of Neurology, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Karen D. Hendricks-Muñoz
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, Children’s Hospital of Richmond at VCU, Richmond, VA 23284, USA
| | - Stacey C. Dusing
- Division of Biokinesiology and Physical Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
- Department of Physical Therapy, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
15
|
Mills-Finnerty C, Frangos E, Allen K, Komisaruk B, Wise N. Functional Magnetic Resonance Imaging Studies in Sexual Medicine: A Primer. J Sex Med 2022; 19:1073-1089. [DOI: 10.1016/j.jsxm.2022.03.217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 01/27/2022] [Accepted: 03/04/2022] [Indexed: 11/17/2022]
|
16
|
Cox CS, Juranek J, Kosmach S, Pedroza C, Thakur N, Dempsey A, Rennie K, Scott MC, Jackson M, Kumar A, Aertker B, Caplan H, Triolo F, Savitz SI. Autologous cellular therapy for cerebral palsy: a randomized, crossover trial. Brain Commun 2022; 4:fcac131. [PMID: 35702731 PMCID: PMC9188321 DOI: 10.1093/braincomms/fcac131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/24/2022] [Accepted: 05/17/2022] [Indexed: 11/14/2022] Open
Abstract
We examined an autologous mononuclear-cell-therapy-based approach to treat cerebral palsy using autologous umbilical cord blood or bone-marrow-derived mononuclear cells. The primary objective was to determine if autologous cells are safe to administer in children with cerebral palsy. The secondary objectives were to determine if there was improvement in motor function of patients 12 months after infusion using the Gross Motor Function Measure and to evaluate impact of treatment on corticospinal tract microstructure as determined by radial diffusivity measurement. This Phase 1/2a trial was a randomized, blinded, placebo-controlled, crossover study in children aged 2-10 years of age with cerebral palsy enrolled between November 2013 and November 2016. Participants were randomized to 2:1 treatment:placebo. Treatment was either autologous bone-marrow-derived mononuclear cells or autologous umbilical cord blood. All participants who enrolled and completed their baseline visit planned to return for follow-up visits at 6 months, 12 months and 24 months after the baseline visit. At the 12-month post-treatment visit, participants who originally received the placebo received either bone-marrow-derived mononuclear cell or umbilical cord blood treatment. Twenty participants were included; 7 initially randomized to placebo, and 13 randomized to treatment. Five participants randomized to placebo received bone-marrow-derived mononuclear cells, and 2 received umbilical cord blood at the 12-month visit. None of the participants experienced adverse events related to the stem cell infusion. Cell infusion at the doses used in our study did not dramatically alter motor function. We observed concordant bilateral changes in radial diffusivity in 10 of 15 cases where each corticospinal tract could be reconstructed in each hemisphere. In 60% of these cases (6/10), concordant decreases in bilateral corticospinal tract radial diffusivity occurred post-treatment. In addition, 100% of unilateral corticospinal tract cases (3/3) exhibited decreased corticospinal tract radial diffusivity post-treatment. In our discordant cases (n = 5), directionality of changes in corticospinal tract radial diffusivity appeared to coincide with handedness. There was a significant improvement in corticospinal tract radial diffusivity that appears related to handedness. Connectivity strength increased in either or both pathways (corticio-striatal and thalamo-cortical) in each participant at 12 months post-treatment. These data suggest that both stem cell infusions are safe. There may be an improvement in myelination in some groups of patients that correlate with small improvements in the Gross Motor Function Measure scales. A larger autologous cord blood trial is impractical at current rates of blood banking. Either increased private banking or matched units would be required to perform a larger-scale trial.
Collapse
Affiliation(s)
- Charles S. Cox
- Department of Pediatric Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Program in Pediatric Regenerative Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Jenifer Juranek
- Department of Pediatric Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Program in Pediatric Regenerative Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Steven Kosmach
- Department of Pediatric Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Claudia Pedroza
- Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Nivedita Thakur
- Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Allison Dempsey
- Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Kimberly Rennie
- Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Department of Neuropsychology, NeuroBehavioral Health, Milwaukee, WI, USA
| | - Michael C. Scott
- Department of Pediatric Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Margaret Jackson
- Department of Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Akshita Kumar
- Department of Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Benjamin Aertker
- Department of Neurology, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Henry Caplan
- Department of Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Fabio Triolo
- Department of Pediatric Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Program in Pediatric Regenerative Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Sean I. Savitz
- Department of Neurology, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| |
Collapse
|
17
|
Ha SY, Sung YH. Changes of Neural Pathways after Vojta Approach in a Child with Developmental Delay. CHILDREN-BASEL 2021; 8:children8100918. [PMID: 34682183 PMCID: PMC8534406 DOI: 10.3390/children8100918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/06/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022]
Abstract
The development of motor function is related to the development of neural pathways in the white matter. Children with developmental delay (DD) and hypotonia have reduced motor function, and their neural pathways are observed differently from those of typically developed children. We investigated changes in neural pathways through diffusion tensor imaging (DTI) after utilizing the Vojta approach. The participant was a child with DD and hypotonia, and had delayed motor function. Although he had no brain damage on magnetic resonance imaging findings, damage to the neural pathway was confirmed through DTI due to cytomegalovirus infection in the mother's womb. From 11 months of age, the Vojta approach was performed for a total of 8 months. In this study, we found that in CST, the left FA and right TV increased in follow-up DTI more than in the initial DTI. In CRP, Wallerian degeneration was observed in the left FA, MD, and TV in follow-up DTI. GMFM-88 improved after intervention. The structural change of neural pathways through the Vojta approach influenced the improvement of gross motor function. Therefore, it is thought that the Vojta approach can be suggested as a meaningful intervention for children with DD and hypotonia.
Collapse
Affiliation(s)
- Sun-Young Ha
- Department of Physical Therapy, Graduate School, Kyungnam University, Changwon 51767, Korea;
| | - Yun-Hee Sung
- Department of Physical Therapy, Graduate School, Kyungnam University, Changwon 51767, Korea;
- Department of Physical Therapy, College of Health Sciences, Kyungnam University, Changwon 51767, Korea
- Correspondence: ; Tel.: +82-55-249-6334
| |
Collapse
|
18
|
Nardone R, Sebastianelli L, Ferrazzoli D, Brigo F, Lochner P, Saltuari L, Trinka E, Versace V. Brain functional reorganization in children with hemiplegic cerebral palsy: Assessment with TMS and therapeutic perspectives. Neurophysiol Clin 2021; 51:391-408. [PMID: 34615605 DOI: 10.1016/j.neucli.2021.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) can be a useful tool for the assessment of the brain functional reorganization in subjects with hemiplegic cerebral palsy (HCP). In this review, we performed a systematic search of all studies using TMS in order to explore the neuroplastic changes that occur in HCP patients. We aimed at investigating the usefulness of TMS to explore cortical excitability, plasticity and connectivity changes in HCP. Children with HCP due to unilateral lesions of the corticospinal system had ipsilateral motor evoked potentials (MEPs) similar to those recorded contralaterally. TMS studies demonstrated that occupational and constraint-induced movement therapy were associated with significant improvements in contralateral and ipsilateral corticomotor projection patterns. In addition, after intensive bimanual therapy, children with HCP showed increased activation and size of the motor areas controlling the affected hand. A TMS mapping study revealed a mediolateral location of the upper and lower extremity map motor cortical representations. Deficits in intracortical and interhemispheric inhibitory mechanisms were observed in HCP. Early hand function impairment correlated with the extension of brain damage, number of involved areas, and radiological signs of corticospinal tract (CST) degeneration. Clinical mirror movements (MMs) correlated with disability and CST organization in subjects with HCP and a positive relationship was found between MMs and MEPs strength. Therefore, TMS studies have shed light on important pathophysiological aspects of motor cortex and CST reorganization in HCP patients. Furthermore, repetitive TMS (rTMS) might have therapeutic effects on CST activities, functional connectivity and clinical status in children with HCP.
Collapse
Affiliation(s)
- Raffaele Nardone
- Department of Neurology, Hospital of Merano (SABES-ASDAA), Merano-Meran, Italy; Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Austria; Karl Landsteiner Institut für Neurorehabilitation und Raumfahrtneurologie, Salzburg, Austria.
| | - Luca Sebastianelli
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy; Research Unit for Neurorehabilitation South Tyrol, Bolzano, Italy
| | - Davide Ferrazzoli
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy; Research Unit for Neurorehabilitation South Tyrol, Bolzano, Italy
| | - Francesco Brigo
- Department of Neurology, Hospital of Merano (SABES-ASDAA), Merano-Meran, Italy; Department of Neuroscience, Biomedicine and Movement Science, University of Verona, Italy
| | - Piergiorgio Lochner
- Department of Neurology, Saarland University Medical Center, Homburg, Germany
| | - Leopold Saltuari
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy; Research Unit for Neurorehabilitation South Tyrol, Bolzano, Italy
| | - Eugen Trinka
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria; Centre for Cognitive Neuroscience, Salzburg, Austria; University for Medical Informatics and Health Technology, UMIT, Hall in Tirol, Austria
| | - Viviana Versace
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy; Research Unit for Neurorehabilitation South Tyrol, Bolzano, Italy
| |
Collapse
|
19
|
Khurana S, Evans ME, Kelly CE, Thompson DK, Burnsed J, Harper A, Hendricks-Munoz K, Shall MS, Stevenson RD, Inamdar K, Vorona G, Dusing SC. Longitudinal Changes in the Sensorimotor Pathways of Very Preterm Infants During the First Year of Life With and Without Intervention: A Pilot Study. Dev Neurorehabil 2021; 24:448-455. [PMID: 34160340 PMCID: PMC8429051 DOI: 10.1080/17518423.2021.1903602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Objective: Evaluate longitudinal changes in brain microstructure and volumes in very preterm infants during the first year of life with and without intervention.Design: Descriptive pilot study.Methods: Five preterm infants in a three-arm clinical trial, one SPEEDI Early, two SPEEDI Late, and two usual care. Brain structural and diffusion MRI's were acquired within 72 hours after neonatal intensive care unit discharge (n = 5), three months post-baseline (n = 5), and six months post-baseline (n = 3). Fractional anisotropy (FA), Mean diffusivity (MD), and volume metrics were computed for five brain regions.Results: More than 60% of eligible participants completed 100% of the scheduled MRIs. FA and volume increased from baseline to six months across all brain regions. Rate of white matter volume change from baseline to six months was highest in SPEEDI Early.Conclusions: Non-sedated longitudinal MRI is feasible in very preterm infants and appears to demonstrate longitudinal changes in brain structure and connectivity.
Collapse
Affiliation(s)
- Sonia Khurana
- Motor Development Lab, Virginia Commonwealth University, Richmond, Virginia
| | - Megan E Evans
- Motor Development Lab, Virginia Commonwealth University, Richmond, Virginia
| | - Claire E Kelly
- Victorian Infant Brain Studies (VIBeS) and Developmental Imaging, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
| | - Deanne K Thompson
- Victorian Infant Brain Studies (VIBeS) and Developmental Imaging, Murdoch Children’s Research Institute, Parkville, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia
| | - Jennifer Burnsed
- Division of Neonatology, University of Virginia, Charlottesville, Virginia
| | - Amy Harper
- Department of Neurology, Virginia Commonwealth University, Richmond, Virginia
| | - Karen Hendricks-Munoz
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, Children’s Hospital of Richmond at VCU Richmond, Virginia
| | - Mary S Shall
- Department of Physical Therapy, Virginia Commonwealth University, Richmond, Virginia
| | - Richard D Stevenson
- Division of Neurodevelopmental and Behavioral Pediatrics, Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Ketaki Inamdar
- Rehabilitation and Movement Sciences, Motor Development Lab, Virginia Commonwealth University, Richmond, Virginia
| | - Greg Vorona
- Department of Radiology, Virginia Commonwealth University, Richmond, Virginia
| | - Stacey C Dusing
- Motor Development Lab, Department of Biokinesiology and Physical Therapy, University of Southern California
| |
Collapse
|
20
|
Parmar ST, Kanitkar A, Sepehri N, Bhairannawar S, Szturm T. Computer Game-Based Telerehabilitation Platform Targeting Manual Dexterity: Exercise Is Fun. "You Are Kidding-Right?". SENSORS (BASEL, SWITZERLAND) 2021; 21:5766. [PMID: 34502656 PMCID: PMC8434447 DOI: 10.3390/s21175766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/12/2021] [Accepted: 08/20/2021] [Indexed: 11/24/2022]
Abstract
There is a need for innovation to improve the engagement and accessibility of rehabilitation programs for children and adults with upper extremity motor impairments due to neurodevelopmental disorders, acquired brain injuries, or spinal cord injuries. For this purpose, a computer game-based telerehabilitation platform (GTP) was developed to address this need. Through the application of a miniature inertial-based computer mouse and the wide variety of commercial computer games, the developed GTP can provide engaging task-specific exercises for the rehabilitation of manual dexterity (object handling and manipulation). A purpose-built repetitive task practice software (RTP) was also developed to gather event data and synchronize it with patient movements during gameplays. This provides automated monitoring and quantification of patients' motor skills, while they practice a range of game-based exercises with their hand and/or arm. The GTP would initially be used in a supervised clinical setting followed by a transition to function at home and be monitored by clinician specialists. Clinical support for home and rural communities, with protocols that can be easily updated, will help increase accessibility to targeted and personalized solutions for patients and achieve the desired training effect.
Collapse
Affiliation(s)
| | - Anuprita Kanitkar
- College of Rehabilitation Science, University of Manitoba, Winnipeg, MB R3T 5V6, Canada;
| | - Nariman Sepehri
- Department of Mechanical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada;
| | - Satish Bhairannawar
- Department of Electronics and Communication Engineering, SDM College of Engineering and Technology, Dharwad 580009, Karnataka, India;
| | - Tony Szturm
- College of Rehabilitation Science, University of Manitoba, Winnipeg, MB R3T 5V6, Canada;
| |
Collapse
|
21
|
Perinatal stroke: mapping and modulating developmental plasticity. Nat Rev Neurol 2021; 17:415-432. [PMID: 34127850 DOI: 10.1038/s41582-021-00503-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2021] [Indexed: 02/04/2023]
Abstract
Most cases of hemiparetic cerebral palsy are caused by perinatal stroke, resulting in lifelong disability for millions of people. However, our understanding of how the motor system develops following such early unilateral brain injury is increasing. Tools such as neuroimaging and brain stimulation are generating informed maps of the unique motor networks that emerge following perinatal stroke. As a focal injury of defined timing in an otherwise healthy brain, perinatal stroke represents an ideal human model of developmental plasticity. Here, we provide an introduction to perinatal stroke epidemiology and outcomes, before reviewing models of developmental plasticity after perinatal stroke. We then examine existing therapeutic approaches, including constraint, bimanual and other occupational therapies, and their potential synergy with non-invasive neurostimulation. We end by discussing the promise of exciting new therapies, including novel neurostimulation, brain-computer interfaces and robotics, all focused on improving outcomes after perinatal stroke.
Collapse
|
22
|
Kanitkar A, Parmar ST, Szturm TJ, Restall G, Rempel G, Naik N, Gaonkar N, Sepehri N, Ankolekar B. Reliability and validity of a computer game-based tool of upper extremity assessment for object manipulation tasks in children with cerebral palsy. J Rehabil Assist Technol Eng 2021; 8:20556683211014023. [PMID: 34123406 PMCID: PMC8175827 DOI: 10.1177/20556683211014023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 04/13/2021] [Indexed: 11/15/2022] Open
Abstract
Introduction A computer game-based upper extremity (CUE) assessment tool is developed to quantify manual dexterity of children with Cerebral Palsy (CP). The purpose of this study was to determine test-retest reliability of the CUE performance measures (success rate, movement onset time, movement error, and movement variation) and convergent validity with the Peabody Developmental Motor Scale version 2 (PDMS-2) and the Quality of Upper Extremity Skills Test (QUEST). Methods Thirty-five children with CP aged four to ten years were tested on two occasions two weeks apart. Results CUE performance measures of five chosen object manipulation tasks exhibited high to moderate intra-class correlation coefficient (ICC) values. There was no significant difference in the CUE performance measures between test periods. With few exceptions, there was no significant correlation between the CUE performance measures and the PDMS-2 or the QUEST test scores. Conclusions The high to moderate ICC values and lack of systematic errors indicate that the CUE assessment tool has the ability to repeatedly record reliable performance measures of different object manipulation tasks. The lack of a correlation between the CUE and the PDMS-2 or QUEST scores indicates that performance measures of these assessment tools represent distinct attributes of manual dexterity.
Collapse
Affiliation(s)
- Anuprita Kanitkar
- Department of Applied Health Sciences, University of Manitoba, Winnipeg, Canada
- Anuprita Kanitkar, University of Manitoba 771 McDermot Avenue, Winnipeg, MB Manitoba R3E 0T6 Canada 204 789-3897.
| | - Sanjay T Parmar
- SDM College of Physiotherapy, Shri Dharamshala Manjunatheshwara University, Dharwad, India
| | - Tony J Szturm
- College of Rehabilitation Sciences, University of Manitoba, Winnipeg, Canada
| | - Gayle Restall
- College of Rehabilitation Sciences, University of Manitoba, Winnipeg, Canada
| | - Gina Rempel
- Pediatrics & Child Health, University of Manitoba, Winnipeg, Canada
| | - Nilashri Naik
- Department of Physiotherapy, Ushas School for Exceptional Children, Hubli, India
| | | | - Nariman Sepehri
- Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | | |
Collapse
|
23
|
Add-on Home-Centered Activity-Based Therapy vs Conventional Physiotherapy in Improving Walking Ability at 6-Months in Children With Diplegic Cerebral Palsy: A Randomized Controlled Trial. Indian Pediatr 2021. [DOI: 10.1007/s13312-021-2301-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Neurophysiological Assessments of Brain and Spinal Cord Associated with Lower Limb Functions in Children with Cerebral Palsy: A Protocol for Systematic Review and Meta-Analysis. Brain Sci 2021; 11:brainsci11050628. [PMID: 34068265 PMCID: PMC8153104 DOI: 10.3390/brainsci11050628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 11/25/2022] Open
Abstract
Background: Task-dependent neurophysiological adaptations in people with cerebral palsy have been examined using various techniques such as functional magnetic resonance imaging, peripheral nerve stimulation in order to assess H-reflexes, and transcranial magnetic stimulation. This activity-dependent plasticity is hypothesized to improve specific gross motor function in individuals with cerebral palsy. Although these adaptations have been examined extensively, most studies examined tasks utilizing the upper limbs. The aim of this review is to assess the neurophysiological adaptations of the central nervous system in individuals with cerebral palsy during lower limb functional tasks. Methods: A systematic review and meta-analysis will be conducted to evaluate the neurophysiological changes in the brain and spinal cord associated with lower extremity tasks in individuals with cerebral palsy. We will search within PubMed, MEDLINE, Embase, PsychINFO, and CINAHL using a predetermined search string to identify and evaluate relevant studies. Two independent reviewers will screen these studies against our inclusion criteria and risks of bias, and will extract the data from each study. A third reviewer will be used to resolve any disagreement regarding the inclusion of a study between reviewers. Randomized controlled trials as well as cross-sectional studies published in English 10 years before May 2021 that investigate the neurophysiological adaptations in the brain and spinal cord in people with cerebral palsy will be included if they meet the eligibility criteria. Primary outcomes will include scalar values of fractional anisotropy (FA), H-reflex gains or measures of amplitude, as well as motor cortex (M1) cortical excitability as measured by transcranial magnetic stimulation. Discussion: Since no identifiable data will be involved in this study, no ethical approval is required. Our results will provide insight into the neurophysiological adaptations in children with cerebral palsy, which will be useful in guiding directions for clinical decision making and future development of targeted interventions in pediatrics rehabilitation for children with cerebral palsy. Systematic review registration: The protocol for this systematic review is registered with the International Prospective Register of Systematic Reviews (PROSPERO; registration number: CRD42020215902).
Collapse
|
25
|
Friel KM, Ferre CL, Brandao M, Kuo HC, Chin K, Hung YC, Robert MT, Flamand VH, Smorenburg A, Bleyenheuft Y, Carmel JB, Campos T, Gordon AM. Improvements in Upper Extremity Function Following Intensive Training Are Independent of Corticospinal Tract Organization in Children With Unilateral Spastic Cerebral Palsy: A Clinical Randomized Trial. Front Neurol 2021; 12:660780. [PMID: 34012418 PMCID: PMC8127842 DOI: 10.3389/fneur.2021.660780] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/06/2021] [Indexed: 12/30/2022] Open
Abstract
Background/Objectives: Intensive training of the more affected upper extremity (UE) has been shown to be effective for children with unilateral spastic cerebral palsy (USCP). Two types of UE training have been particularly successful: Constraint-Induced Movement Therapy (CIMT) and Bimanual training. Reorganization of the corticospinal tract (CST) early during development often occurs in USCP. Prior studies have suggested that children with an ipsilateral CST controlling the affected UE may improve less following CIMT than children with a contralateral CST. We tested the hypothesis that improvements in UE function after intensive training depend on CST laterality. Study Participants and Setting: Eighty-two children with USCP, age 5 years 10 months to 17 years, University laboratory setting. Materials/Methods: Single-pulse transcranial magnetic stimulation (TMS) was used to determine each child's CST connectivity pattern. Children were stratified by age, sex, baseline hand function and CST connectivity pattern, and randomized to receive either CIMT or Bimanual training, each of which were provided in a day-camp setting (90 h). Hand function was tested before, immediately and 6 months after the intervention with the Jebsen-Taylor Test of Hand Function, the Assisting Hand Assessment, the Box and Block Test, and ABILHAND-Kids. The Canadian Occupational Performance Measure was used to track goal achievement and the Pediatric Evaluation of Disability Inventory was used to assess functioning in daily living activities at home. Results: In contrast to our hypothesis, participants had statistically similar improvements for both CIMT and Bimanual training for all measures independent of their CST connectivity pattern (contralateral, ipsilateral, or bilateral) (p < 0.05 in all cases). Conclusions/Significance: The efficacy of CIMT and Bimanual training is independent of CST connectivity pattern. Children with an ipsilateral CST, previously thought to be maladaptive, have the capacity to improve as well as children with a contralateral or bilateral CST following intensive CIMT or Bimanual training. Clinical Trial Registration:www.ClinicalTrials.gov, identifier NCT02918890.
Collapse
Affiliation(s)
- Kathleen M Friel
- Burke Neurological Institute, White Plains, NY, United States.,Weill Cornell Medicine, New York, NY, United States
| | - Claudio L Ferre
- Burke Neurological Institute, White Plains, NY, United States.,Teachers College, Columbia University, New York, NY, United States
| | - Marina Brandao
- Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Hsing-Ching Kuo
- Teachers College, Columbia University, New York, NY, United States
| | - Karen Chin
- Burke Neurological Institute, White Plains, NY, United States.,Teachers College, Columbia University, New York, NY, United States
| | - Ya-Ching Hung
- Queens College, City University of New York, New York, NY, United States
| | - Maxime T Robert
- Burke Neurological Institute, White Plains, NY, United States.,Weill Cornell Medicine, New York, NY, United States
| | | | - Ana Smorenburg
- Burke Neurological Institute, White Plains, NY, United States.,Weill Cornell Medicine, New York, NY, United States
| | | | - Jason B Carmel
- Weinberg Family Cerebral Palsy Center, Columbia University Medical Center, New York, NY, United States
| | - Talita Campos
- Burke Neurological Institute, White Plains, NY, United States.,Teachers College, Columbia University, New York, NY, United States
| | - Andrew M Gordon
- Teachers College, Columbia University, New York, NY, United States
| |
Collapse
|
26
|
Wu F, Wang X, Li X, Jiang H, Huang T, Liu C, Wang M, Zhai Z, Zhang X, Zhang J, Liu H, Yang J. The Most Cited Original Articles in Brain Imaging of Children With Cerebral Palsy: A Bibliometric Analysis Between 1984 and 2019. Front Neurol 2020; 11:955. [PMID: 33013636 PMCID: PMC7508001 DOI: 10.3389/fneur.2020.00955] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/23/2020] [Indexed: 12/23/2022] Open
Abstract
Objective: Brain imaging is important in diagnosing children with cerebral palsy (CP) and in identifying its etiology. To provide study navigation in this field, a bibliometric analysis was conducted by analyzing the most highly cited articles. Methods: The Web of Science All Databases were used for literature search in this study. All original articles on imaging in children with CP were searched. Two reviewers screened the search results independently and eliminated articles based on exclusion criteria such as participants over 20 years old, topics referring to images outside of the brain, or trauma. According to descending order of yearly citation counts, the top 25% of all included articles were considered as highly cited articles. Information such as yearly citations, research purposes, imaging modalities, CP types, and study designs were recorded and analyzed. Results: A total of 50 highly cited articles ranked by yearly citations (from 23.85 to 3.33, 1991–2018) were included in this study. Considering different research purposes, these studies were classified into three categories: diagnosis studies (n = 25; 1991–2017, median: 2011), mechanism studies (n = 15; 1999–2018; median: 2014), and prognosis and therapeutic effect studies (n = 10; 2008–2017; median: 2014.5). First, for diagnosis studies, 22 studies used single modality and three used multi-modalities; the majority of these studies focused on diagnostic value evaluation (n = 10) and image performance (n = 12) of a single type of CP (n = 15) by using descriptive (n = 14) or cross-sectional approaches (n = 10). Second, for mechanism studies, the ratio between single and multi-modality was 8:7; most of these studies concentrated on a single subtype of spastic CP (hemiplegia = 10, quadriplegia = 2) with a cross-sectional study design (n = 10). Third, regarding the prognosis and therapeutic effect studies, the single vs. multi-modality ratio was 5:5, and these studies were dedicated to the efficiency of constraint-induced movement therapy in children with hemiplegia; paired design trials (n = 6) and randomized controlled trials (n = 2) were used more frequently. Conclusion: Studies using multi-modality and high-level evidence-based design to provide information regarding mechanism, prognosis, and therapeutic efficacy may be the potential future research direction in the field of CP research.
Collapse
Affiliation(s)
- Fan Wu
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Radiology, Guangzhou Women and Children's Medical Center, Affiliated Guangzhou Medical University, Guangzhou, China
| | - Xiaoyu Wang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xianjun Li
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Haoxiang Jiang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Tingting Huang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Radiology, The First Affiliated Hospital of Henan University of TCM, Zhengzhou, China
| | - Congcong Liu
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Miaomiao Wang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | | | | | - Jingjing Zhang
- Department of Radiology, Medical Imaging Center of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Heng Liu
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Radiology, Medical Imaging Center of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jian Yang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
27
|
Kinematic and Somatosensory Gains in Infants with Cerebral Palsy After a Multi-Component Upper-Extremity Intervention: A Randomized Controlled Trial. Brain Topogr 2020; 33:751-766. [DOI: 10.1007/s10548-020-00790-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023]
|
28
|
Carneiro MIS, Russo C, Masson R, Rossi Sebastiano D, Baranello G, Turati C, Bolognini N. Motor learning in unilateral cerebral palsy and the influence of corticospinal tract reorganization. Eur J Paediatr Neurol 2020; 27:49-59. [PMID: 32417186 DOI: 10.1016/j.ejpn.2020.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 04/06/2020] [Accepted: 04/25/2020] [Indexed: 11/28/2022]
Abstract
Cerebral Palsy (CP) is a complex neurological disorder, characterized by congenital motor disability associated with behaviour, perception and cognition disorders. The sensorimotor impairments represent the main hallmark of the disease, significantly impacting the quality of life. So far, few studies have investigated motor learning abilities in CP and their association with the plastic reorganization of the motor system remains largely unknown. The present proof-of-principle study explored explicit motor sequence learning in children with unilateral CP and different patterns of motor system reorganization (bilateral, ipsilateral, contralateral). Children with unilateral CP, and a group of age-matched typically developing (TD) children, underwent a sequential finger tapping task, performed with the affected hand by children with CP and with the non-dominant hand by TD children. The pattern of corticospinal tract projections in hemiparetic patients was assessed by single-pulse Transcranial Magnetic Stimulation (TMS). Results showed the presence of finger dexterity impairments in children with unilateral CP presenting with a bilateral or an ipsilateral control of the affected (trained) hand, as compared to TD children. Conversely, motor sequence learning was impaired in unilateral CP with ipsilateral or contralateral corticospinal reorganization, but not in the case of a bilateral control of the paretic hand. These preliminary findings, although referred to small clinical samples, suggest that unilateral control of the paretic upper-limb, from the ipsilateral or the contralateral motor cortex, may not be sufficient to develop typical motor learning with the affected hand, which seems to require a bilateral representation in the motor cortex. This evidence has potential implications for fine motor skills rehabilitation in CP.
Collapse
Affiliation(s)
- Maíra I S Carneiro
- University of Milano-Bicocca, Department of Psychology & NeuroMI - Milan Center for Neuroscience, Milan, Italy.
| | - Cristina Russo
- University of Milano-Bicocca, Department of Psychology & NeuroMI - Milan Center for Neuroscience, Milan, Italy
| | - Riccardo Masson
- Fondazione IRCCS Istituto Neurologico C. Besta, Developmental Neurology Unit, Milan, Italy
| | | | - Giovanni Baranello
- Fondazione IRCCS Istituto Neurologico C. Besta, Developmental Neurology Unit, Milan, Italy
| | - Chiara Turati
- University of Milano-Bicocca, Department of Psychology & NeuroMI - Milan Center for Neuroscience, Milan, Italy
| | - Nadia Bolognini
- University of Milano-Bicocca, Department of Psychology & NeuroMI - Milan Center for Neuroscience, Milan, Italy; IRCCS Istituto Auxologico, Laboratory of Neuropsychology, Milan, Italy.
| |
Collapse
|
29
|
Ravault L, Darbois N, Pinsault N. Methodological Considerations to Investigate Dosage Parameters of Intensive Upper Limb Rehabilitation in Children with Unilateral Spastic Cerebral Palsy: A Scoping Review of RCTs. Dev Neurorehabil 2020; 23:309-320. [PMID: 31710245 DOI: 10.1080/17518423.2019.1687599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 10/25/2022]
Abstract
PURPOSES To identify and synthesize RCTs on the isolated effect of dosage parameters of upper limb Intensive Motor Rehabilitation Treatments (IMRT) of children with Unilateral Spastic Cerebral Palsy (USCP); to identify the most frequent methodological weaknesses. METHODS Searches were conducted until September 2018 in gray and published literature databases and supplemented by exploring the identified studies' references. Inclusion criteria applied: RCT; children aged 1.5 to 19 years with USCP; upper limb IMRT differing only from ≥1/4 dosage parameters between groups. Literature analyses conducted: qualitative and descriptive. RESULTS We identified 461 studies. Seventeen were included: three presented a rehabilitation dosage distinction between groups in Frequency-Time, four in Intensity-Progressivity, three in Intensity-Restraint, two in Intensity-Environment and five presented ≥3 distinctions above. CONCLUSIONS Inconsistencies were noted between USCP lifelong issues, and the short follow-ups and lack of participation assessments. Confounding factors and misstatements in Intent To Treat (ITT) analyses were identified. A meta-analysis was considered irrelevant. ABBREVIATIONS USCP, CP: Unilateral Spastic Cerebral Palsy, Cerebral Palsy; RCT: Randomized Controlled Trial; IMRT: Intensive Motor Rehabilitation Treatment.
Collapse
Affiliation(s)
- Lucas Ravault
- Grenoble Alps University Hospital , Grenoble, France
| | | | - Nicolas Pinsault
- Grenoble Alps University Hospital , Grenoble, France
- Grenoble Alps University , Grenoble, France
- ThEMAS team, TIMC-IMAG Laboratory, UMR CNRS-UGA 5525 , Grenoble, France
| |
Collapse
|
30
|
Bleyenheuft Y, Dricot L, Ebner-Karestinos D, Paradis J, Saussez G, Renders A, De Volder A, Araneda R, Gordon AM, Friel KM. Motor Skill Training May Restore Impaired Corticospinal Tract Fibers in Children With Cerebral Palsy. Neurorehabil Neural Repair 2020; 34:533-546. [PMID: 32407247 DOI: 10.1177/1545968320918841] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background. In children with unilateral cerebral palsy (UCP), the fibers of the corticospinal tract (CST) emerging from the lesioned hemisphere are damaged following the initial brain injury. The extent to which the integrity of these fibers is restorable with training is unknown. Objective. To assess changes in CST integrity in children with UCP following Hand-and-Arm-Bimanual-Intensive-Therapy-Including-Lower-Extremity (HABIT-ILE) compared to a control group. Methods. Forty-four children with UCP participated in this study. Integrity of the CSTs was measured using diffusion tensor imaging before and after 2 weeks of HABIT-ILE (treatment group, n = 23) or 2 weeks apart without intensive treatment (control group, n = 18). Fractional anisotropy (FA) and mean diffusivity (MD) were the endpoints for assessing the integrity of CST. Results. As highlighted in our whole tract analysis, the FA of the CST originating from the nonlesioned and lesioned hemispheres increased significantly after therapy in the treatment group compared to the control group (group * test session interaction: P < .001 and P = .049, respectively). A decrease in MD was also observed in the CST emerging from the nonlesioned and lesioned hemispheres (group * time interaction: both P < .001). In addition, changes in manual ability correlated with changes in FA in both CSTs (r = 0.463, P = .024; r = 0.643, P < .001) and changes in MD in CST emerging from nonlesioned hemisphere (r = -0.662, P < .001). Conclusions. HABIT-ILE improves FA/MD in the CST and hand function of children with UCP, suggesting that CST fibers retain a capacity for functional restoration. This finding supports the application of intensive motor skill training in clinical practice for the benefit of numerous patients.
Collapse
Affiliation(s)
- Yannick Bleyenheuft
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Laurence Dricot
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | | | - Julie Paradis
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Geoffroy Saussez
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Anne Renders
- Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Anne De Volder
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Rodrigo Araneda
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | | | - Kathleen M Friel
- Teachers College, Columbia University, New York, NY, USA.,Burke-Cornell Medical Research Institute, White Plains, NY, USA
| |
Collapse
|
31
|
Abstract
Significant advances in the field of neonatal imaging has resulted in the generation of large complex data sets of relevant information for routine daily clinical practice, and basic and translational research. The evaluation of this data is a complex task for the neonatal imager who must distinguish normal and incidental findings from clinically significant abnormalities which are often adjunctive data points applicable to clinical evaluation and treatment. This review provides an overview of the imaging manifestations of disease processes commonly encountered in the neonatal brain. Since MRI is currently the highest yield technique for the diagnosis and characterization of the normal and abnormal brain, it is therefore the focus of the majority of this review. When applicable, discussion of some of the pertinent known pathophysiology and neuropathological aspects of disease processes are reviewed.
Collapse
|
32
|
Hung YC, Spingarn A, Friel KM, Gordon AM. Intensive Unimanual Training Leads to Better Reaching and Head Control than Bimanual Training in Children with Unilateral Cerebral Palsy. Phys Occup Ther Pediatr 2020; 40:491-505. [PMID: 31942818 DOI: 10.1080/01942638.2020.1712513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
AIMS To quantify the changes in joint movement control and motor planning of the more-affected upper extremity (UE) during a reach-grasp-eat task in children with Unilateral Spastic Cerebral Palsy (USCP) after either constraint-induced movement therapy (CIMT) or hand-arm bimanual intensive therapy (HABIT). METHODS Twenty children with USCP (average age 7.7; MACS levels I-II) were randomized into either a CIMT or HABIT group. Both groups received intensive training 6 h a day for 15 days. Children performed a reach-grasp-eat task before and after training with their more-affected hand using 3D kinematic analysis. RESULTS Both groups illustrated shorter movement time during reaching, grasping, and eating phases after training (p < 0.05). Additionally, both intensive training approaches improved joint control with decreased trunk involvement, greater elbow, and wrist excursions during the reaching phase, and greater elbow excursion during the eating phase (p < 0.05). However, only the CIMT group decreased hand curvature during reaching, lowered hand position at grasp, and decreased head rotation during the eating phase (p < 0.05). CONCLUSIONS The current findings showed that both CIMT and HABIT improved UE joint control, but there were greater effects of CIMT on the more-affected UE motor planning and head control for children with USCP.
Collapse
Affiliation(s)
- Ya-Ching Hung
- Department of Family, Nutrition, and Exercise Sciences, Queens College, City University of New York, Flushing, NY, USA
| | - Aryeh Spingarn
- Department of Family, Nutrition, and Exercise Sciences, Queens College, City University of New York, Flushing, NY, USA
| | - Kathleen M Friel
- Neuroscience, Burke Medical Research Institute, Weill Cornell Medicine, White Plains, NY, USA
| | - Andrew M Gordon
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, NY, USA
| |
Collapse
|
33
|
Forman CR, Svane C, Kruuse C, Gracies JM, Nielsen JB, Lorentzen J. Sustained involuntary muscle activity in cerebral palsy and stroke: same symptom, diverse mechanisms. Brain Commun 2019; 1:fcz037. [PMID: 33033798 PMCID: PMC7531180 DOI: 10.1093/braincomms/fcz037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 10/24/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022] Open
Abstract
Individuals with lesions of central motor pathways frequently suffer from sustained
involuntary muscle activity. This symptom shares clinical characteristics with dystonia
but is observable in individuals classified as spastic. The term spastic dystonia has been
introduced, although the underlying mechanisms of involuntary activity are not clarified
and vary between individuals depending on the disorder. This study aimed to investigate
the nature and pathophysiology of sustained involuntary muscle activity in adults with
cerebral palsy and stroke. Seventeen adults with cerebral palsy (Gross Motor Function
Classification System I–V), 8 adults with chronic stroke and 14 control individuals
participated in the study. All individuals with cerebral palsy or stroke showed increased
resistance to passive movement with Modified Ashworth Scale >1. Two-minute surface EMG
recordings were obtained from the biceps muscle during attempted rest in three positions
of the elbow joint; a maximally flexed position, a 90-degree position and a maximally
extended position. Cross-correlation analysis of sustained involuntary muscle activity
from individuals with cerebral palsy and stroke, and recordings of voluntary isometric
contractions from control individuals were performed to examine common synaptic drive. In
total, 13 out of 17 individuals with cerebral palsy and all 8 individuals with stroke
contained sustained involuntary muscle activity. In individuals with cerebral palsy, the
level of muscle activity was not affected by the joint position. In individuals with
stroke, the level of muscle activity significantly (P < 0.05)
increased from the flexed position to the 90 degree and extended position. Cumulant
density function indicated significant short-term synchronization of motor unit activities
in all recordings. All groups exhibited significant coherence in the alpha (6–15 Hz), beta
(16–35 Hz) and early gamma band (36–60 Hz). The cerebral palsy group had lower alpha band
coherence estimates, but higher gamma band coherence estimates compared with the stroke
group. Individuals with increased resistance to passive movement due to cerebral palsy or
stroke frequently suffer sustained involuntary muscle activity, which cannot exclusively
be described by spasticity. The sustained involuntary muscle activity in both groups
originated from a common synaptic input to the motor neuron pool, but the generating
mechanisms could differ between groups. In cerebral palsy it seemed to originate more from
central mechanisms, whereas peripheral mechanisms likely play a larger role in stroke. The
sustained involuntary muscle activity should not be treated simply like the spinal stretch
reflex mediated symptom of spasticity and should not either be treated identically in both
groups.
Collapse
Affiliation(s)
| | - Christian Svane
- Department of Neuroscience, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Christina Kruuse
- Department of Neurology, Neurovascular Research Unit, Herlev Gentofte Hospital, 2730 Herlev Gentofte, Denmark
| | - Jean-Michel Gracies
- EA 7377 BIOTN, Université Paris-Est Creteil, Hospital Albert Chenevier-Henri Mondor, Service de Rééducation Neurolocomotrice, APHP, Créteil, France
| | - Jens Bo Nielsen
- Department of Neuroscience, University of Copenhagen, 2200 Copenhagen, Denmark.,Elsass Institute, 2830 Charlottenlund, Denmark
| | - Jakob Lorentzen
- Department of Neuroscience, University of Copenhagen, 2200 Copenhagen, Denmark.,Elsass Institute, 2830 Charlottenlund, Denmark
| |
Collapse
|
34
|
Hoffman RM, Wilson TW, Kurz MJ. Hand Motor Actions of Children With Cerebral Palsy Are Associated With Abnormal Sensorimotor Cortical Oscillations. Neurorehabil Neural Repair 2019; 33:1018-1028. [PMID: 31679451 DOI: 10.1177/1545968319883880] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Background. The neuroimaging literature on cerebral palsy (CP) has predominantly focused on identifying the structural aberrations (eg, fiber track integrity), with very few studies examining neural activity within the key networks that serve the production of hand movements. Objective. We aimed to start to fill this knowledge gap by using magnetoencephalographic brain imaging to quantify the temporal dynamics of the sensorimotor oscillations during a hand motor action. Methods: Children with CP (n = 12; MACS [Manual Abilities Classification System] levels I-III) and typically developing (TD) children (n = 26) performed an arrow-based version of the Eriksen flanker task where a button press was performed with either the second or third digit of the right hand depending on the arrow's direction. Results: Overall, the children with CP were less accurate and had slower reaction times compared with the TD children. These behavioral differences were closely linked with aberrant sensorimotor cortical oscillations seen in the children with CP. Compared with the TD children, the children with CP had a weaker gamma (68-82 Hz) response during motor execution and a weaker post-movement beta rebound (PMBR; 14-26 Hz) response on movement termination. Moreover, we observed a significant correlation between the amplitude of the gamma and PMBR with reaction time, with weaker gamma and PMBR responses being linked with slower reaction times. Conclusions: Overall, these results suggest that aberrations in motor-related gamma and beta cortical oscillations are associated with the impaired hand motor actions seen in children with CP.
Collapse
Affiliation(s)
| | - Tony W Wilson
- University of Nebraska Medical Center, Omaha, NE, USA
| | - Max J Kurz
- University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
35
|
Azizi S, Rasooli AH, Soleimani M, Irani A, Shahrokhi A, Mirbagheri MM. The impact of AlterG training on balance and structure of vestibulospinal tract in cerebral palsy children. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2018:2499-2502. [PMID: 30440915 DOI: 10.1109/embc.2018.8512772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We aimed to investigate the effects of an antigravity treadmill (AlterG) on the balance and structure of the vestibulospinal tract. The AlterG can reduce the weightbearing of patients and hence can facilitate their locomotion. Three children with cerebral palsy (CP) received AlterG training three days per week for eight weeks with each session lasting 45 minutes. The balance of children was evaluated using the Berg balance test and the Timed Up and Go (TUG) test. The diffusion tensor imaging (DTI) method was employed to quantify changes of the structure of the vestibulospinal tract. Evaluations were performed before and after the 8-week training. DTI metrics including fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD) and axial diffusivity (AD) were measured to evaluate the vestibulospinal tract structure. The results showed that the mean FA of the vestibulospinal tract increased and other metrics decreased for all subjects. Our findings indicated that the balance and structure of the vestibulospinal tract were improved up to 30% for all children following the 8-week AlterG training. This indicates that the balance improvement of the CP children following the AlterG training was accompanied with persistent neuroplasticity in their brain. The clinical implication is that the AlterG training has a potential to be used as an effective therapeutic tool for the treatment of balance impairment in CP children.
Collapse
|
36
|
Nemanich ST, Rich TL, Chen CY, Menk J, Rudser K, Chen M, Meekins G, Gillick BT. Influence of Combined Transcranial Direct Current Stimulation and Motor Training on Corticospinal Excitability in Children With Unilateral Cerebral Palsy. Front Hum Neurosci 2019; 13:137. [PMID: 31105541 PMCID: PMC6492624 DOI: 10.3389/fnhum.2019.00137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/08/2019] [Indexed: 11/13/2022] Open
Abstract
Combined non-invasive brain stimulation (NIBS) and rehabilitation interventions have the potential to improve function in children with unilateral cerebral palsy (UCP), however their effects on developing brain function are not well understood. In a proof-of-principle study, we used single-pulse transcranial magnetic stimulation (TMS) to measure changes in corticospinal excitability and relationships to motor performance following a randomized controlled trial consisting of 10 days of combined constraint-induced movement therapy (CIMT) and cathodal transcranial direct current stimulation (tDCS) applied to the contralesional motor cortex. Twenty children and young adults (mean age = 12 years, 9 months, range = 7 years, 7 months, 21 years, 7 months) with UCP participated. TMS testing was performed before, after, and 6 months after the intervention to measure motor evoked potential (MEP) amplitude and cortical silent period (CSP) duration. The association between neurophysiologic and motor outcomes and differences in excitability between hemispheres were examined. Contralesional MEP amplitude decreased as hypothesized in five of five participants receiving active tDCS immediately after and 6 months after the intervention, however no statistically significant differences between intervention groups were noted for MEP amplitude [mean difference = −323.9 μV, 95% CI = (−989, 341), p = 0.34] or CSP duration [mean difference = 3.9 ms, 95% CI = (−7.7, 15.5), p = 0.51]. Changes in corticospinal excitability were not statistically associated with improvements in hand function after the intervention. Across all participants, MEP amplitudes measured in the more-affected hand from both contralesional (mean difference = −474.5 μV) and ipsilesional hemispheres (−624.5 μV) were smaller compared to the less-affected hand. Assessing neurophysiologic changes after tDCS in children with UCP provides an understanding of long-term effects on brain excitability to help determine its potential as a therapeutic intervention. Additional investigation into the neurophysiologic effects of tDCS in larger samples of children with UCP are needed to confirm these findings.
Collapse
Affiliation(s)
- Samuel T Nemanich
- Divisions of Physical Therapy and Rehabilitation Science, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Tonya L Rich
- Divisions of Physical Therapy and Rehabilitation Science, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Chao-Ying Chen
- Divisions of Physical Therapy and Rehabilitation Science, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, United States.,Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Jeremiah Menk
- Clinical and Translational Science Institute, Biostatistics, Design, and Analysis Center, University of Minnesota, Minneapolis, MN, United States
| | - Kyle Rudser
- School of Public Health, Division of Biostatistics, University of Minnesota, Minneapolis, MN, United States
| | - Mo Chen
- Non-invasive Neuromodulation Laboratory, University of Minnesota, Minneapolis, MN, United States
| | - Gregg Meekins
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Bernadette T Gillick
- Divisions of Physical Therapy and Rehabilitation Science, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
37
|
Impairments of Visuospatial Attention in Children with Unilateral Spastic Cerebral Palsy. Neural Plast 2018; 2018:1435808. [PMID: 30647728 PMCID: PMC6311787 DOI: 10.1155/2018/1435808] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/10/2018] [Accepted: 09/17/2018] [Indexed: 12/20/2022] Open
Abstract
Aim This observational study aimed at assessing the prevalence of visuospatial attention deficits in children with unilateral spastic cerebral palsy (USCP), taking into consideration the affected hemibody and the localization of the brain lesion. Method Seventy-five children with USCP were assessed with four visuospatial attention tests: star cancellation, Ogden figure copy, line bisection, and proprioceptive pointing. Results A majority (64%) of children with USCP presented a deficit in at least one test compared to the reference values. The alterations observed in children with left or right USCP were related to egocentric or allocentric neglect, respectively. Children with cortico/subcortical lesion presented more often visuospatial attention deficits than children with periventricular lesion. Visuospatial attention deficits were not associated with brain lesion locations. Interpretation Visuospatial attention deficits are prevalent in children with USCP and should be taken into account during their rehabilitation process. The present results shed new light on the interpretation of motor impairments in children with USCP as they may be influenced by the frequent presence of visuospatial deficits.
Collapse
|
38
|
Izadi-Najafabadi S, Rinat S, Zwicker JG. Rehabilitation-induced brain changes detected through magnetic resonance imaging in children with neurodevelopmental disorders: A systematic review. Int J Dev Neurosci 2018; 73:66-82. [PMID: 30550748 DOI: 10.1016/j.ijdevneu.2018.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/19/2018] [Accepted: 12/07/2018] [Indexed: 01/08/2023] Open
Abstract
AIM The aim of this study was to systematically review evidence about rehabilitation-induced neuroplasticity measured by magnetic resonance imaging (MRI) in children with neurodevelopmental disorders. METHOD The following databases were searched: MEDLINE, EMBASE, CINAHL, and PsycINFO. Two independent reviewers screened articles according to inclusion criteria: (1) peer-review study published in a scientific journal; (2) studies that evaluated a rehabilitation-based intervention; (3) participants aged less than 19 years with a neurodevelopmental disorder; and (4) studies that used at least one MRI modality as an outcome measure. Twenty-seven studies met the criteria for the review and their quality was assessed by two independent reviewers using the Effective Public Health Practice Project Quality Assessment Tool. RESULTS Based on an assessment of bias and overall quality, 11% of the papers were rated as strong; 30% moderate; and 59% weak. Outcomes were categorized into structural connectivity, functional connectivity, cortical activation, and structural volume. Cortical activation and structural connectivity were the most commonly reported measures. Most studies were able to identify brain changes in children with neurodevelopmental disorders after therapy. INTERPRETATIONS Rehabilitation is shown to induce MRI-detectable neuroplastic changes in children with neurodevelopmental disorders. Structural connectivity might need greater intensity and/or duration of intervention to induce change.
Collapse
Affiliation(s)
- Sara Izadi-Najafabadi
- Department of Occupational Science & Occupational Therapy, University of British Columbia, Vancouver, Canada; BC Children's Hospital Research Institute, Vancouver, Canada
| | - Shie Rinat
- Department of Occupational Science & Occupational Therapy, University of British Columbia, Vancouver, Canada; BC Children's Hospital Research Institute, Vancouver, Canada
| | - Jill G Zwicker
- Department of Occupational Science & Occupational Therapy, University of British Columbia, Vancouver, Canada; BC Children's Hospital Research Institute, Vancouver, Canada; Department of Pediatrics, University of British Columbia, Vancouver, Canada; Sunny Hill Health Centre for Children, Vancouver, Canada.
| |
Collapse
|
39
|
Azizi S, Birgani PM, Marzbani H, Nourian R, Kohanpour M, Mirbagheri MM. Assessment of neuroplasticity of corticospinal tract induced by antigravity treadmill (AlterG) in cerebral palsy children. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:2495-2498. [PMID: 30440914 DOI: 10.1109/embc.2018.8512730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The aim of this study was to assess neuroplasticity that occurred in the corticospinal tract (CST) following antigravity treadmill (AlterG) training. AlterG can facilitate walking by having up to an 80% reduction of weight-bearing in patients. Systematic and intensive gait training for sufficient periods of time may lead to neuroplasticity and walking capacity improvement. AlterG gait training was done for eight weeks, 3 sessions per week, and 45 minutes each session. Three cerebral palsy (CP) children participated in this study. The function and structure of CST on the brain's more affected side were evaluated using Transcranial Magnetic Stimulation (TMS) and Diffusion Tensor Imaging (DTI). Also, some common clinical tests were performed to evaluate walking capacity and endurance. DTI features such as fractional anisotropy (FA) and mean diffusivity (MD) as well as some TMS features were extracted to estimate structural changes of the CST. The evaluations were performed before and after 8week AlterG training. The results showed an improvement in the DTI metrics of the CST following AlterG training. Also, TMS parameters were improved and these changes in CST function and structure were concurrent with changes in walking capacity. These results suggest that AlterG training can be used as a therapeutic tool to provide an effective and persistent gait improvement in CP children.
Collapse
|
40
|
Musselman KE, Manns P, Dawe J, Delgado R, Yang JF. The Feasibility of Functional Electrical Stimulation to Improve Upper Extremity Function in a Two-year-old Child with Perinatal Stroke: A Case Report. Phys Occup Ther Pediatr 2018; 38:97-112. [PMID: 28071962 DOI: 10.1080/01942638.2016.1255291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AIMS To evaluate the effectiveness and feasibility (i.e. tolerability, adherence) of functional electrical stimulation (FES) for the upper extremity (UE) in a two-year-old child with perinatal stroke. METHODS Forty hours of FES over eight weeks was prescribed. FES to the hemiplegic triceps, extensor carpi radialis longus and brevis, extensor carpi ulnaris and extensor digitorum was timed with reaching during play. Assessments were performed before, during, and two months post-intervention. UE function (Melbourne Assessment 2 (MA2), Assisting Hand Assessment (AHA)) and spasticity (Modified Tardieu with electrogoniometry and electromyography) were measured. The mother completed a semi-structured interview post-intervention. Descriptive statistics were used for adherence and UE measures. A repeated-measures ANOVA compared Modified Tardieu parameters (e.g. catch angle) over time. Conventional content analysis was used for the interview data. RESULTS The child completed 39.2/40 hours. Immediately post-intervention, improvements were observed on MA2's Range of Motion subscale and catch angle (Modified Tardieu, p < 0.001). Two months post-intervention, improvements were observed on MA2's Accuracy and Fluency subscales. No change in AHA score occurred. Three themes emerged from the interview: (1) Ingredients for program success; (2) Information about the FES device; and (3) The child's response. CONCLUSIONS UE FES was feasible in a two-year-old child with hemiplegia.
Collapse
Affiliation(s)
- Kristin E Musselman
- a Toronto Rehabilitation Institute-University Health Network , Toronto , ON , Canada.,b Department of Physical Therapy , Faculty of Medicine, University of Toronto , Toronto , ON , Canada.,c School of Physical Therapy, College of Medicine, University of Saskatchewan , Saskatoon , SK , Canada.,d Rehabilitation Sciences Institute, University of Toronto , Toronto , ON , Canada
| | - Patricia Manns
- e Department of Physical Therapy , Faculty of Rehabilitation Medicine, University of Alberta , Edmonton , AB , Canada
| | - Jaclyn Dawe
- d Rehabilitation Sciences Institute, University of Toronto , Toronto , ON , Canada
| | - Rhina Delgado
- f University of Alberta Hospital , Edmonton , AB , Canada
| | - Jaynie F Yang
- e Department of Physical Therapy , Faculty of Rehabilitation Medicine, University of Alberta , Edmonton , AB , Canada.,g Neuroscience & Mental Health Institute, University of Alberta , Edmonton , AB , Canada
| |
Collapse
|
41
|
Gillick BT, Gordon AM, Feyma T, Krach LE, Carmel J, Rich TL, Bleyenheuft Y, Friel K. Non-Invasive Brain Stimulation in Children With Unilateral Cerebral Palsy: A Protocol and Risk Mitigation Guide. Front Pediatr 2018; 6:56. [PMID: 29616203 PMCID: PMC5864860 DOI: 10.3389/fped.2018.00056] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 02/26/2018] [Indexed: 01/04/2023] Open
Abstract
Non-invasive brain stimulation has been increasingly investigated, mainly in adults, with the aims of influencing motor recovery after stroke. However, a consensus on safety and optimal study design has not been established in pediatrics. The low incidence of reported major adverse events in adults with and without clinical conditions has expedited the exploration of NIBS in children with paralleled purposes to influence motor skill development after neurological injury. Considering developmental variability in children, with or without a neurologic diagnosis, adult dosing and protocols may not be appropriate. The purpose of this paper is to present recommendations and tools for the prevention and mitigation of adverse events (AEs) during NIBS in children with unilateral cerebral palsy (UCP). Our recommendations provide a framework for pediatric NIBS study design. The key components of this report on NIBS AEs are (a) a summary of related literature to provide the background evidence and (b) tools for anticipating and managing AEs from four international pediatric laboratories. These recommendations provide a preliminary guide for the assessment of safety and risk mitigation of NIBS in children with UCP. Consistent reporting of safety, feasibility, and tolerability will refine NIBS practice guidelines contributing to future clinical translations of NIBS.
Collapse
Affiliation(s)
- Bernadette T Gillick
- Physical Therapy Division, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Andrew M Gordon
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, NY, United States
| | - Tim Feyma
- Gillette Children's Specialty Healthcare, Pediatric Neurology, St. Paul, MN, United States
| | - Linda E Krach
- Courage Kenny Rehabilitation Institute, Minneapolis, MN, United States
| | - Jason Carmel
- Weill-Cornell Medical College, Blythedale Children's Hospital, Burke Medical Research Institute, White Plains, NY, United States
| | - Tonya L Rich
- Rehabilitation Science, University of Minnesota, Minneapolis, MN, United States
| | - Yannick Bleyenheuft
- Institute of Neuroscience (IoNS), Universite catholique de Louvain, Brussels, Belgium
| | - Kathleen Friel
- Weill-Cornell Medical College, Blythedale Children's Hospital, Burke Medical Research Institute, White Plains, NY, United States
| |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW To demonstrate how neurophysiological tools have advanced our understanding of the pathophysiology of paediatric movement disorders, and of neuroplasticity in the developing brain. RECENT FINDINGS Delineation of corticospinal tract connectivity using transcranial magnetic stimulation (TMS) is being investigated as a potential biomarker for response to therapy. TMS measures of cortical excitability and neuroplasticity are also being used to investigate the effects of therapy, demonstrating neuroplastic changes that relate to functional improvements. Analyses of evoked potentials and event-related changes in the electroencephalogaphy spectral activity provide growing evidence for the important role of aberrant sensory processing in the pathophysiology of many different movement disorders. Neurophysiological findings demonstrate that children with clinically similar phenotypes may have differing underlying pathophysiology, which in turn may explain differential response to therapy. Neurophysiological parameters can act as biomarkers, providing a means to stratify individuals, and are well suited to provide biofeedback. They therefore have enormous potential to facilitate improvements to therapy. SUMMARY Although currently a small field, the role of neurophysiology in paediatric movement disorders is poised to expand, both fuelled by and contributing to the rapidly growing fields of neuro-rehabilitation and neuromodulation and the move towards a more individualized therapeutic approach.
Collapse
|
43
|
Gordon AM. Impaired Voluntary Movement Control and Its Rehabilitation in Cerebral Palsy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 957:291-311. [PMID: 28035572 DOI: 10.1007/978-3-319-47313-0_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Cerebral palsy is caused by early damage to the developing brain, as the most common pediatric neurological disorder. Hemiplegia (unilateral spastic cerebral palsy) is the most common subtype, and the resulting impairments, lateralized to one body side, especially affect the upper extremity, limiting daily function. This chapter first describes the pathophysiology and mechanisms underlying impaired upper extremity control of cerebral palsy. It will be shown that the severity of impaired hand function closely relates to the integrity of the corticospinal tract innervating the affected hand. It will also shown that the developing corticospinal tract can reorganize its connectivity depending on the timing and location of CNS injury, which also has implications for the severity of hand impairments and rehabilitation. The mechanisms underlying impaired motor function will be highlighted, including deficits in movement execution and planning and sensorimotor integration. It will be shown that despite having unimanual hand impairments, bimanual movement control deficits and mirror movements also impact function. Evidence for motor learning-based therapies including Constraint-Induced Movement Therapy and Bimanual Training, and the possible pathophysiological predictors of treatment outcome and plasticity will be described. Finally, future directions for rehabilitations will be presented.
Collapse
Affiliation(s)
- Andrew M Gordon
- Department of Biobehavioral Sciences, Teachers College, Columbia University, 525 West 120th Street, New York, New York, Box 93, 10027, USA.
| |
Collapse
|
44
|
Hinojosa-Rodríguez M, Harmony T, Carrillo-Prado C, Van Horn JD, Irimia A, Torgerson C, Jacokes Z. Clinical neuroimaging in the preterm infant: Diagnosis and prognosis. Neuroimage Clin 2017; 16:355-368. [PMID: 28861337 PMCID: PMC5568883 DOI: 10.1016/j.nicl.2017.08.015] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 08/11/2017] [Accepted: 08/12/2017] [Indexed: 01/30/2023]
Abstract
Perinatal care advances emerging over the past twenty years have helped to diminish the mortality and severe neurological morbidity of extremely and very preterm neonates (e.g., cystic Periventricular Leukomalacia [c-PVL] and Germinal Matrix Hemorrhage - Intraventricular Hemorrhage [GMH-IVH grade 3-4/4]; 22 to < 32 weeks of gestational age, GA). However, motor and/or cognitive disabilities associated with mild-to-moderate white and gray matter injury are frequently present in this population (e.g., non-cystic Periventricular Leukomalacia [non-cystic PVL], neuronal-axonal injury and GMH-IVH grade 1-2/4). Brain research studies using magnetic resonance imaging (MRI) report that 50% to 80% of extremely and very preterm neonates have diffuse white matter abnormalities (WMA) which correspond to only the minimum grade of severity. Nevertheless, mild-to-moderate diffuse WMA has also been associated with significant affectations of motor and cognitive activities. Due to increased neonatal survival and the intrinsic characteristics of diffuse WMA, there is a growing need to study the brain of the premature infant using non-invasive neuroimaging techniques sensitive to microscopic and/or diffuse lesions. This emerging need has led the scientific community to try to bridge the gap between concepts or ideas from different methodologies and approaches; for instance, neuropathology, neuroimaging and clinical findings. This is evident from the combination of intense pre-clinical and clinicopathologic research along with neonatal neurology and quantitative neuroimaging research. In the following review, we explore literature relating the most frequently observed neuropathological patterns with the recent neuroimaging findings in preterm newborns and infants with perinatal brain injury. Specifically, we focus our discussions on the use of neuroimaging to aid diagnosis, measure morphometric brain damage, and track long-term neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Manuel Hinojosa-Rodríguez
- Unidad de Investigación en Neurodesarrollo, Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus Juriquilla, Mexico
| | - Thalía Harmony
- Unidad de Investigación en Neurodesarrollo, Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus Juriquilla, Mexico
| | - Cristina Carrillo-Prado
- Unidad de Investigación en Neurodesarrollo, Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus Juriquilla, Mexico
| | - John Darrell Van Horn
- USC Mark and Mary Stevens Neuroimaging and Informatics Institute, 2025 Zonal Avenue, SHN, Los Angeles, California 90033, USA
| | - Andrei Irimia
- USC Mark and Mary Stevens Neuroimaging and Informatics Institute, 2025 Zonal Avenue, SHN, Los Angeles, California 90033, USA
| | - Carinna Torgerson
- USC Mark and Mary Stevens Neuroimaging and Informatics Institute, 2025 Zonal Avenue, SHN, Los Angeles, California 90033, USA
| | - Zachary Jacokes
- USC Mark and Mary Stevens Neuroimaging and Informatics Institute, 2025 Zonal Avenue, SHN, Los Angeles, California 90033, USA
| |
Collapse
|
45
|
Bleyenheuft Y, Ebner-Karestinos D, Surana B, Paradis J, Sidiropoulos A, Renders A, Friel KM, Brandao M, Rameckers E, Gordon AM. Intensive upper- and lower-extremity training for children with bilateral cerebral palsy: a quasi-randomized trial. Dev Med Child Neurol 2017; 59:625-633. [PMID: 28133725 DOI: 10.1111/dmcn.13379] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/25/2016] [Indexed: 11/26/2022]
Abstract
AIM An approach that simultaneously engages both the upper and lower extremities, hand-arm bimanual intensive therapy including lower extremity (HABIT-ILE), has recently demonstrated improvements in upper and lower extremities in children with unilateral cerebral palsy (CP). It is not known whether children with bilateral CP would benefit from this approach. The aim of this study was to examine the efficacy of HABIT-ILE in children with bilateral CP. METHOD A quasi-randomized trial design was used, whereby 20 participants (age 6-15y, Gross Motor Function Classification System levels II-IV, Manual Ability Classification System levels I-III) were assigned to a treatment (HABIT-ILE) or a comparison group in the order in which they were enrolled. Children in the HABIT-ILE group were assessed before and after 84 hours of intervention over 13 days, as well as at 3 months' follow-up. Children in the comparison group were assessed at the same time points. Children in both groups were assessed using the Gross Motor Function Measure (GMFM-66) and ABILHAND-Kids (primary measures), and six secondary measures. RESULTS A group×test session interaction indicated significant improvements in the HABIT-ILE group as assessed by the GMFM-66, lower-extremity performance (6-Minute Walk Test; Pediatric Balance Scale), functional upper-extremity abilities (ABILHAND-Kids/Pediatric Evaluation of Disability Inventory), and the dexterity of the less affected upper extremity. CONCLUSION HABIT-ILE is efficacious for improving both upper- and lower-extremity function in children with bilateral CP.
Collapse
Affiliation(s)
- Yannick Bleyenheuft
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | | | - Bhavini Surana
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, NY, USA
| | - Julie Paradis
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Alexis Sidiropoulos
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, NY, USA
| | - Anne Renders
- Physical and Rehabilitation Medicine Department, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Kathleen M Friel
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, NY, USA.,Burke-Cornell Medical Research Institute, White Plains, NY, USA
| | - Marina Brandao
- Departamento de Terapia Ocupacional, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Eugene Rameckers
- Research in Function and Rehabilitation, Rehabilitation Medicine, CAPHRI, Maastricht University, Maastricht, the Netherlands.,Center of Expertise, Adelante Rehabilitation, Hoensbroek, the Netherlands.,Avans Plus, Breda, the Netherlands
| | - Andrew M Gordon
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, NY, USA
| |
Collapse
|
46
|
Rich T, Cassidy J, Menk J, Van Heest A, Krach L, Carey J, Gillick BT. Stability of stereognosis after pediatric repetitive transcranial magnetic stimulation and constraint-induced movement therapy clinical trial. Dev Neurorehabil 2017; 20:169-172. [PMID: 26985568 PMCID: PMC5490365 DOI: 10.3109/17518423.2016.1139008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Poor sensibility affecting stereognosis, the ability to discriminate objects without visual input, can potentiate disuse of the paretic limb following stroke. The purpose of this study was to examine potential change in stereognosis after intervention. METHODS Stereognosis testing in a secondary subgroup of 10 children with hemiparesis and baseline stereognosis deficits (ages 11-16) after a 13-day clinical trial of real or sham repetitive transcranial magnetic stimulation (rTMS) and constraint-induced movement therapy (CIMT) is reported. All children received 10 h of CIMT while wearing a cast full-time. RESULTS Post-trial, 80% of participants from both intervention groups demonstrated improvement in stereognosis (95% CI: 44.4%-97.5%). Pre-trial to long-term follow-up (range: 21-57 months), 60% retained gains or improved (95% CI: 26.2%-87.8%). Between-group differences were not detected. DISCUSSION Children demonstrated stereognosis change following intervention. Research on this change and potential minimal clinically important differences are indicated.
Collapse
Affiliation(s)
- Tonya Rich
- Department of Physical Medicine and Rehabilitation Medical School, University of Minnesota, Minneapolis, MN, USA
| | - Jessica Cassidy
- Department of Physical Medicine and Rehabilitation Medical School, University of Minnesota, Minneapolis, MN, USA
| | - Jeremiah Menk
- Biostatistician Clinical and Translational Science Institute, Minneapolis, MN, USA
| | - Ann Van Heest
- Department of Orthopedic Surgery, Minneapolis, MN, USA
| | - Linda Krach
- Courage Kenny Rehabilitation Institute, part of Allina Health, Minneapolis, MN, USA
| | - James Carey
- Department of Physical Medicine and Rehabilitation Medical School, University of Minnesota, Minneapolis, MN, USA
| | - Bernadette T. Gillick
- Department of Physical Medicine and Rehabilitation Medical School, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
47
|
Safety of Transcranial Magnetic Stimulation in Children: A Systematic Review of the Literature. Pediatr Neurol 2017; 68:3-17. [PMID: 28216033 PMCID: PMC5346461 DOI: 10.1016/j.pediatrneurol.2016.12.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 12/02/2016] [Accepted: 12/19/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND Data and best practice recommendations for transcranial magnetic stimulation (TMS) use in adults are largely available. Although there are fewer data in pediatric populations and no published guidelines, its practice in children continues to grow. METHODS We performed a literature search through PubMed to review all TMS studies from 1985 to 2016 involving children and documented any adverse events. Crude risks were calculated per session. RESULTS Following data screening we identified 42 single-pulse and/or paired-pulse TMS studies involving 639 healthy children, 482 children with central nervous system disorders, and 84 children with epilepsy. Adverse events occurred at rates of 3.42%, 5.97%, and 4.55% respective to population and number of sessions. We also report 23 repetitive TMS studies involving 230 central nervous system and 24 children with epilepsy with adverse event rates of 3.78% and 0.0%, respectively. We finally identified three theta-burst stimulation studies involving 90 healthy children, 40 children with central nervous system disorder, and no epileptic children, with adverse event rates of 9.78% and 10.11%, respectively. Three seizures were found to have occurred in central nervous system disorder individuals during repetitive TMS, with a risk of 0.14% per session. There was no significant difference in frequency of adverse events by group (P = 0.988) or modality (P = 0.928). CONCLUSIONS Available data suggest that risk from TMS/theta-burst stimulation in children is similar to adults. We recommend that TMS users in this population follow the most recent adult safety guidelines until sufficient data are available for pediatric specific guidelines. We also encourage continued surveillance through surveys and assessments on a session basis.
Collapse
|
48
|
Brown-Lum M, Zwicker JG. Neuroimaging and Occupational Therapy: Bridging the Gap to Advance Rehabilitation in Developmental Coordination Disorder. J Mot Behav 2017; 49:98-110. [DOI: 10.1080/00222895.2016.1271295] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Meisan Brown-Lum
- Department of Occupational Science & Occupational Therapy, University of British Columbia, Vancouver, Canada
- BC Children's Hospital Research Institute, Vancouver, Canada
| | - Jill G. Zwicker
- Department of Occupational Science & Occupational Therapy, University of British Columbia, Vancouver, Canada
- BC Children's Hospital Research Institute, Vancouver, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
- Sunny Hill Health Centre for Children, Vancouver, Canada
- CanChild Centre for Childhood Disability Research, Hamilton, Canada
| |
Collapse
|
49
|
Hung YC, Brandão MB, Gordon AM. Structured skill practice during intensive bimanual training leads to better trunk and arm control than unstructured practice in children with unilateral spastic cerebral palsy. RESEARCH IN DEVELOPMENTAL DISABILITIES 2017; 60:65-76. [PMID: 27912104 DOI: 10.1016/j.ridd.2016.11.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 10/25/2016] [Accepted: 11/19/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Recently, intensive practice showed good efficacy in improving upper extremity function for children with unilateral spastic cerebral palsy (USCP). However, little is known about the significance of skill progression frequently used during intensive practice. AIMS We evaluate the importance of skill progression during intensive bimanual practice on movement coordination. METHODS AND PROCEDURES Twenty children with USCP (average age: 8.5; MACS levels: I-III) participated in the study. Ten children were randomly allocated to a structured practice group (SPG) with skill progression, and the other 10 children randomized to an unstructured practice group (UPG) without skill progression. Both groups practiced bimanual activities 6h a day for 15days. Children were asked to perform a bimanual drawer-opening task before and after intensive practice using 3-D kinematic analyses. OUTCOMES AND RESULTS Both groups showed improved temporal bimanual coordination with increased normalized movement overlap of the two hands (p=0.005) and decreased goal synchronization time (p=0.002). However, only the SPG showed decreased trunk involvement (p=0.01) and increased elbow joint excursion (p=0.017) with decreased variability (p=0.015 and 0.048 respectively). CONCLUSIONS AND IMPLICATIONS The results highlighted the importance of skill progression for intensive practice to improve upper extremity and trunk movement control and consistency for children with USCP.
Collapse
Affiliation(s)
- Ya-Ching Hung
- Department of Family, Nutrition, and Exercise Sciences, Queens College, City University of New York, 65-30 Kissena Blvd, Flushing, NY 11367, USA.
| | - Marina B Brandão
- Departamento de Terapia Ocupacional, Universidade Federal de Minas Gerais, Av. Pres. Antonio Carlos, 6627, Belo Horizonte, MG, 31270901, Brazil
| | - Andrew M Gordon
- Department of Biobehavioral Sciences, Teachers College, Columbia University, 525 West 120th Street, Box 93, New York, NY 10027, USA
| |
Collapse
|
50
|
Smorenburg ARP, Gordon AM, Kuo HC, Ferre CL, Brandao M, Bleyenheuft Y, Carmel JB, Friel KM. Does Corticospinal Tract Connectivity Influence the Response to Intensive Bimanual Therapy in Children With Unilateral Cerebral Palsy? Neurorehabil Neural Repair 2016; 31:250-260. [PMID: 27856938 DOI: 10.1177/1545968316675427] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Reorganization of the corticospinal tract (CST) can occur in unilateral spastic cerebral palsy (USCP). The affected hand can be controlled via (1) typical contralateral projections from the lesioned hemisphere, (2) ipsilateral projections from the nonlesioned hemisphere, and (3) a combination of contralateral and ipsilateral projections (ie, bilateral). Intensive bimanual therapy and constraint-induced movement therapy (CIMT) improve hand function of children with USCP. Earlier it was suggested that the CST connectivity pattern may influence the efficacy of CIMT. OBJECTIVE To examine whether CST projection pattern influences the efficacy of intensive bimanual therapy in children with USCP. PARTICIPANTS Thirty-three children with USCP (age 8.9 ± 2.6 years, 16 females). METHODS Bimanual therapy was provided in a day-camp setting (90 hours). Participants were involved in different bimanual play and functional activities actively engaging both hands. Hand function was tested before and after the intervention with the Jebsen-Taylor Test of Hand Function, Assisting Hand Assessment, ABILHAND-Kids, and the Canadian Occupational Performance Measure. Single-pulse transcranial magnetic stimulation (TMS) was used to determine each child's CST projection pattern (ie, ipsilateral, contralateral, or bilateral). RESULTS Children whose affected hand was controlled only by ipsilateral CST projections had worse Jebsen-Taylor Test of Hand Function and Assisting Hand Assessment scores than children in the contralateral group at baseline. Bimanual hand use and functional hand use was independent of CST projection pattern. After bimanual therapy, improvements on all outcome measures were observed, and these improvements were independent of the CST connectivity pattern. CONCLUSION The efficacy of bimanual therapy on hand function in children with USCP appears to be independent of CST connectivity pattern.
Collapse
Affiliation(s)
| | | | - Hsing-Ching Kuo
- 1 Burke-Cornell Medical Research Institute, White Plains, NY, USA.,2 Teachers College, Columbia University, New York, NY, USA
| | - Claudio L Ferre
- 1 Burke-Cornell Medical Research Institute, White Plains, NY, USA.,2 Teachers College, Columbia University, New York, NY, USA
| | - Marina Brandao
- 3 Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Jason B Carmel
- 1 Burke-Cornell Medical Research Institute, White Plains, NY, USA.,5 Weill Cornell Medical College, New York, NY, USA
| | - Kathleen M Friel
- 1 Burke-Cornell Medical Research Institute, White Plains, NY, USA.,5 Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|