1
|
Roe T, Silveira S, Luo Z, Osborne EL, Senthil Murugan G, Grocott MPW, Postle AD, Dushianthan A. Particles in Exhaled Air (PExA): Clinical Uses and Future Implications. Diagnostics (Basel) 2024; 14:972. [PMID: 38786270 PMCID: PMC11119244 DOI: 10.3390/diagnostics14100972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Access to distal airway samples to assess respiratory diseases is not straightforward and requires invasive procedures such as bronchoscopy and bronchoalveolar lavage. The particles in exhaled air (PExA) device provides a non-invasive means of assessing small airways; it captures distal airway particles (PEx) sized around 0.5-7 μm and contains particles of respiratory tract lining fluid (RTLF) that originate during airway closure and opening. The PExA device can count particles and measure particle mass according to their size. The PEx particles can be analysed for metabolites on various analytical platforms to quantitatively measure targeted and untargeted lung specific markers of inflammation. As such, the measurement of distal airway components may help to evaluate acute and chronic inflammatory conditions such as asthma, chronic obstructive pulmonary disease, acute respiratory distress syndrome, and more recently, acute viral infections such as COVID-19. PExA may provide an alternative to traditional methods of airway sampling, such as induced sputum, tracheal aspirate, or bronchoalveolar lavage. The measurement of specific biomarkers of airway inflammation obtained directly from the RTLF by PExA enables a more accurate and comprehensive understanding of pathophysiological changes at the molecular level in patients with acute and chronic lung diseases.
Collapse
Affiliation(s)
- Thomas Roe
- General Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Siona Silveira
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Zixing Luo
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
- Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK
| | - Eleanor L Osborne
- Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK
| | | | - Michael P W Grocott
- General Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Anthony D Postle
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Ahilanandan Dushianthan
- General Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
2
|
Bang G, Park JH, Park C, Kim KJ, Kim JK, Lee SY, Kim JY, Park YH. High-resolution metabolomics-based biomarker discovery using exhaled breath condensate from patients with lung cancer. J Anal Sci Technol 2022. [DOI: 10.1186/s40543-022-00347-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractEarly diagnosis and treatment are critical for improving the survival of patients with lung cancer, which is the leading cause of cancer-related deaths worldwide. In this study, we investigated whether the metabolomics analysis of exhaled breath condensate (EBC) from patients with lung cancer can provide biomarkers that can be used for noninvasive screening for lung cancer diagnosis. EBC samples obtained from patients with lung cancer (n = 20) and healthy individuals (n = 5) were subjected to high-resolution metabolomics (HRM) using liquid chromatography–mass spectrometry (LC–MS). Univariate analysis, with a false discovery rate (FDR), q = 0.05, and hierarchical clustering analysis were performed to discover significantly different metabolites between the healthy controls and patients with lung cancer. This was followed by the identification of the metabolites using the METLIN database. Pathway analysis based on the identified metabolites revealed that arachidonic acid (AA) metabolism was the most significantly affected pathway. Finally, 5-hydroxyicosatetraenoic acid (HETE) (m/z 343.2233, [M + Na]+), a metabolite involved in AA metabolism, was found to be significantly higher in patients with lung cancer than in healthy counterparts. Our finding suggested that the HRM of EBC samples is a useful approach for identifying biomarkers for noninvasive screening for lung cancer diagnosis.
Collapse
|
3
|
Hemmendinger M, Sauvain JJ, Hopf NB, Suárez G, Guseva Canu I. Challenges in Quantifying 8-OHdG and 8-Isoprostane in Exhaled Breath Condensate. Antioxidants (Basel) 2022; 11:antiox11050830. [PMID: 35624694 PMCID: PMC9138069 DOI: 10.3390/antiox11050830] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/21/2022] Open
Abstract
Exhaled breath condensate (EBC) has attracted substantial interest in the last few years, enabling the assessment of airway inflammation with a non-invasive method. Concentrations of 8-Hydroxydesoxyguanosine (8-OHdG) and 8-isoprostane in EBC have been suggested as candidate biomarkers for lung diseases associated with inflammation and oxidative stress. EBC is a diluted biological matrix and consequently, requires highly sensitive chemical analytic methods (picomolar range) for biomarker quantification. We developed a new liquid chromatography coupled to tandem mass spectrometry method to quantify 8-OHdG and 8-isoprostane in EBC simultaneously. We applied this novel biomarker method in EBC obtained from 10 healthy subjects, 7 asthmatic subjects, and 9 subjects with chronic obstructive pulmonary disease. Both biomarkers were below the limit of detection (LOD) despite the good sensitivity of the chemical analytical method (LOD = 0.5 pg/mL for 8-OHdG; 1 pg/mL for 8-isoprostane). This lack of detection might result from factors affecting EBC collections. These findings are in line with methodological concerns already raised regarding the reliability of EBC collection for quantification of 8-OHdG and 8-isoprostane. Precaution is therefore needed when comparing literature results without considering methodological issues relative to EBC collection and analysis. Loss of analyte during EBC collection procedures still needs to be resolved before using these oxidative stress biomarkers in EBC.
Collapse
|
4
|
Nwanochie E, Linnes JC. Review of non-invasive detection of SARS-CoV-2 and other respiratory pathogens in exhaled breath condensate. J Breath Res 2022; 16:10.1088/1752-7163/ac59c7. [PMID: 35235925 PMCID: PMC9104940 DOI: 10.1088/1752-7163/ac59c7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/02/2022] [Indexed: 11/12/2022]
Abstract
In 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged to cause high viral infectivity and severe respiratory illness in humans (COVID-19). Worldwide, limited pandemic mitigation strategies, including lack of diagnostic test availability, resulted in COVID-19 overrunning health systems and spreading throughout the global population. Currently, proximal respiratory tract (PRT) specimens such as nasopharyngeal swabs are used to diagnose COVID-19 because of their relative ease of collection and applicability in large scale screening. However, localization of SARS-CoV-2 in the distal respiratory tract (DRT) is associated with more severe infection and symptoms. Exhaled breath condensate (EBC) is a sample matrix comprising aerosolized droplets originating from alveolar lining fluid that are further diluted in the DRT and then PRT and collected via condensation during tidal breathing. The COVID-19 pandemic has resulted in recent resurgence of interest in EBC collection as an alternative, non-invasive sampling method for the staging and accurate detection of SARS-CoV-2 infections. Herein, we review the potential utility of EBC collection for detection of SARS-CoV-2 and other respiratory infections. While much remains to be discovered in fundamental EBC physiology, pathogen-airway interactions, and optimal sampling protocols, EBC, combined with emerging detection methods, presents a promising non-invasive sample matrix for detection of SARS-CoV-2.
Collapse
Affiliation(s)
- Emeka Nwanochie
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Jacqueline C Linnes
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America
| |
Collapse
|
5
|
Tereshchenko SY, Malinchik MA, Smolnikova MV. Inflammatory markers in exhaled breath condensate in bronchial asthma. MEDITSINSKIY SOVET = MEDICAL COUNCIL 2021. [DOI: 10.21518/2079-701x-2021-16-212-223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chronic respiratory diseases are among the most common non- infection diseases. In particular, it is bronchial asthma (BA), characterized by bronchial hyperreactivity and varying degrees of airway obstruction that is the cause of morbidity and mortality. The methods available for the information about the presence of inflammation in the airways, such as bronchoscopy and bronchial biopsy to be obtained have currently been invasive and difficult in everyday clinical practice, especially for children and seriously ill patients. In this regard, recently there has been an increase in the development of non-invasive methods for diagnosing the respiratory system, being comfortable and painless for trial subjects, especially children, also providing the inflammatory process control in the lungs, the severity assessment and monitoring the treatment process. The exhaled breath condensate (EBC) is of great attention, which is a source of various biomolecules, including nitric oxide (NO), leukotrienes, 8-isoprostane, prostaglandins, etc., being locally or systemically associated with disease processes in the body. Of particular interest is the presence of cytokines in EBC, namely the specific proteins produced by various cells of the body that play a key role in inflammatory processes in AD and provide cell communication (cytokine network). Thereby, it becomes possible for the severity and control level of childhood bronchial asthma using only the EBC analysis to be assessed. In addition, the non-invasiveness of this method allows it to be reused for monitoring lung diseases of even the smallest patients, including infants. Thus, the field of metabolite analysis in EBC has been developing and, in the near future, the given method is likely to be the most common for diagnosing the respiratory system diseases in both children and adults.
Collapse
Affiliation(s)
- S. Yu. Tereshchenko
- Scientific Research Institute of Medical Problems of the North, Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences
| | - M. A. Malinchik
- Scientific Research Institute of Medical Problems of the North, Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences
| | - M. V. Smolnikova
- Scientific Research Institute of Medical Problems of the North, Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences
| |
Collapse
|
6
|
Pierucci P, Vaschetto R, Carpagnano GE. Is it feasible to collect exhaled breath condensate in COVID-19 patients undergoing noninvasive ventilatory support? ERJ Open Res 2021; 7:00071-2021. [PMID: 34041296 PMCID: PMC8039504 DOI: 10.1183/23120541.00071-2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/27/2021] [Indexed: 11/05/2022] Open
Abstract
The article recently published by Hjembaek-Brandtet al. [1] focused on humidification during the collection of exhaled breath condensate (EBC) in patients undergoing invasive mechanical ventilation (IMV). Indeed, in the current guidelines, it is still unclear which standard humidification setting and technique should be used [2, 3]. In some studies, the EBC has been performed with active humidification [4], while others have removed it before collection [5]. Hjembaek-Brandtet al. [1] demonstrated that diverse settings of active humidification may vary the amount of sample collected quite remarkably. The authors concluded that the EBC collection should be performed with no humidification, turning off the humidifier 10 min before starting the exam [1]. In patients with #COVID19-related acute hypoxic respiratory failure requiring noninvasive ventilatory support, EBC collection with adequate precautions may be feasible and future studies will be needed to explore this research fieldhttps://bit.ly/39OxufF
Collapse
Affiliation(s)
- Paola Pierucci
- Cardio Thoracic Dept, Respiratory and Intensive Care Unit, Policlinico di Bari, and "Aldo Moro" University School of Medicine, Bari, Italy
| | | | - Giovanna E Carpagnano
- Cardio Thoracic Dept, Respiratory and Intensive Care Unit, Policlinico di Bari, and "Aldo Moro" University School of Medicine, Bari, Italy
| |
Collapse
|
7
|
Kotru S, Klimuntowski M, Ridha H, Uddin Z, Askhar AA, Singh G, Howlader MMR. Electrochemical sensing: A prognostic tool in the fight against COVID-19. Trends Analyt Chem 2021; 136:116198. [PMID: 33518850 PMCID: PMC7825925 DOI: 10.1016/j.trac.2021.116198] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The COVID-19 pandemic has devastated the world, despite all efforts in infection control and treatment/vaccine development. Hospitals are currently overcrowded, with health statuses of patients often being hard to gauge. Therefore, methods for determining infection severity need to be developed so that high-risk patients can be prioritized, resources can be efficiently distributed, and fatalities can be prevented. Electrochemical prognostic biosensing of various biomarkers may hold promise in solving these problems as they are low-cost and provide timely results. Therefore, we have reviewed the literature and extracted the most promising biomarkers along with their most favourable electrochemical sensors. The biomarkers discussed in this paper are C-reactive protein (CRP), interleukins (ILs), tumour necrosis factor alpha (TNFα), interferons (IFNs), glutamate, breath pH, lymphocytes, platelets, neutrophils and D-dimer. Metabolic syndrome is also discussed as comorbidity for COVID-19 patients, as it increases infection severity and raises chances of becoming infected. Cannabinoids, especially cannabidiol (CBD), are discussed as a potential adjunct therapy for COVID-19 as their medicinal properties may be desirable in minimizing the neurodegenerative or severe inflammatory damage caused by severe COVID-19 infection. Currently, hospitals are struggling to provide adequate care; thus, point-of-care electrochemical sensor development needs to be prioritized to provide an approximate prognosis for hospital patients. During and following the immediate aftermath of the pandemic, electrochemical sensors can also be integrated into wearable and portable devices to help patients monitor recovery while returning to their daily lives. Beyond the COVID-19 pandemic, these sensors will also prove useful for monitoring inflammation-based diseases such as cancer and cardiovascular disease.
Collapse
Affiliation(s)
- Sharda Kotru
- Department of Integrated Biomedical Engineering and Health Sciences, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Martin Klimuntowski
- Department of Electrical and Computer Engineering, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Hashim Ridha
- School of Interdisciplinary Science, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Zakir Uddin
- School of Rehabilitation Science, McMaster University, 1400 Main St W, Hamilton, ON, L8S 1C7, Canada
| | - Ali A Askhar
- Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Gurmit Singh
- Department of Pathology and Molecular Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Matiar M R Howlader
- Department of Electrical and Computer Engineering, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
8
|
Gade IL, Schultz JG, Cehofski LJ, Kjaergaard B, Severinsen MT, Rasmussen BS, Vorum H, Honoré B, Kristensen SR. Exhaled breath condensate in acute pulmonary embolism; a porcine study of effect of condensing temperature and feasibility of protein analysis by mass spectrometry. J Breath Res 2020; 15. [PMID: 33321479 DOI: 10.1088/1752-7163/abd3f2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/15/2020] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The search for diagnostic biomarkers for pulmonary embolism (PE) has mainly been focused on blood samples. Exhaled breath condensate (EBC) is a possible source for biomarkers specific for chronic lung diseases and cancer, yet no previous studies have investigated the potential of EBC for diagnosis of PE. The protein content in the EBC is very low, and efficient condensing of the EBC is important in order to obtain high quality samples for protein analysis. We investigated if advanced proteomic techniques in a porcine model of acute intermediate-high-risk PE was feasible using two different condensing temperatures for EBC collection. METHODS Seven pigs were anaesthetized and intubated. EBC was collected one hour after intubation. Two autologous emboli were induced through the right external jugular vein. Two hours after the emboli were administered, EBC was collected again. Condensing temperature was either -21 °C or -80 °C. Nano liquid chromatography - tandem mass spectrometry (nLC-MS/MS) was used to identify and quantify proteins of the EBC. RESULTS A condensing temperature of - 80 °C significantly increased the EBC volume compared with -21 °C (1.78±0.25 ml vs 0.71±0.12 ml) while the protein concentration in the EBC was unaltered. The mean protein concentration in the EBCs was 5.85±0.93 µg/ml, unaltered after PE. In total, 254 proteins were identified in the EBCs. Identified proteins included proteins of the cytoplasm, nucleus, plasma membrane and extracellular region. The protein composition did not differ according to condensing temperature. CONCLUSION The EBC from pigs with acute intermediate-high-risk PE contained sufficient amounts of protein for analysis by nLC-MS/MS. The proteins were from relevant cellular compartments, indicating that EBC is a possible source for biomarkers for acute PE.
Collapse
Affiliation(s)
- Inger Lise Gade
- Department of Clinical Biochemistry, Aalborg University Hospital, Hobrovej 18-22, Aalborg, 9000, DENMARK
| | | | | | - Benedict Kjaergaard
- Department of Cardiothoracic Surgery, Aalborg University Hospital, Aalborg, DENMARK
| | | | - Bodil Steen Rasmussen
- Department of Anesthesiology and Intensive Care, Aalborg University Hospital, Aalborg, DENMARK
| | - Henrik Vorum
- Department of Ophthalmology, Aalborg University Hospital, Aalborg, DENMARK
| | - Bent Honoré
- Department of Biomedicine, Aarhus University, Aarhus, DENMARK
| | | |
Collapse
|
9
|
Davis MD, Winters BR, Madden MC, Pleil JD, Sessler CN, Wallace MAG, Ward-Caviness CK, Montpetit AJ. Exhaled breath condensate biomarkers in critically ill, mechanically ventilated patients. J Breath Res 2020; 15:016011. [DOI: 10.1088/1752-7163/abc235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Hjembaek-Brandt J, Hindborg M, Jensen AK, Dalby Sørensen CA, Rasmussen BS, Maltesen RG, Bestle MH. The influence of active and passive air humidification on exhaled breath condensate volume. ERJ Open Res 2020; 6:00009-2020. [PMID: 33123551 PMCID: PMC7569156 DOI: 10.1183/23120541.00009-2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/17/2020] [Indexed: 11/05/2022] Open
Abstract
Exhaled breath condensate (EBC) is safely collected in mechanically ventilated (MV) patients, but there are no guidelines regarding humidification of inhaled air during EBC collection. We investigated the influence of active and passive air humidification on EBC volumes obtained from MV patients. We collected 29 EBC samples from 21 critically ill MV patients with one condition of active humidification and four different conditions of non-humidification; 19 samples from 19 surgical MV patients with passive humidification and two samples from artificial lungs MV with active humidification. The main outcome was the obtained EBC volume per 100 L exhaled air. When collected with different conditions of non-humidification, mean [95% CI] EBC volumes did not differ significantly (1.35 [1.23; 1.46] versus 1.16 [1.05; 1.28] versus 1.27 [1.13; 1.41] versus 1.17 [1.00; 1.33] mL/100 L, p=0.114). EBC volumes were higher with active humidification than with non-humidification (2.05 [1.91; 2.19] versus 1.25 [1.17; 1.32] mL/100 L, p<0.001). The volume difference between these corresponded to the EBC volume obtained from artificial lungs (0.81 [0.62; 0.99] versus 0.89 mL/100 L, p=0.287). EBC volumes were lower for surgical MV patients with passive humidification compared to critically ill MV patients with non-humidification (0.55 [0.47; 0.63] versus 1.25 [1.17; 1.32] mL/100 L, p<0.001). While active humidification increases EBC volumes, passive humidification decreases EBC volumes and possibly influences EBC composition by other mechanisms. We propose that EBC should be collected from MV patients without air humidification to improve reproducibility and comparability across studies, and that humidification conditions should always be reported.
Collapse
Affiliation(s)
- Jeppe Hjembaek-Brandt
- Dept of Anaesthesia and Intensive Care, Nordsjællands Hospital, Hillerød, Denmark.,Dept of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mathias Hindborg
- Dept of Anaesthesia and Intensive Care, Nordsjællands Hospital, Hillerød, Denmark.,Dept of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Andreas K Jensen
- Dept of Public Health, Section of Biostatistics, University of Copenhagen, Copenhagen, Denmark.,Dept of Clinical Research, Nordsjaellands Hospital, Hillerød, Denmark
| | - Christian Ari Dalby Sørensen
- Dept of Anaesthesia and Intensive Care, Nordsjællands Hospital, Hillerød, Denmark.,Dept of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Bodil Steen Rasmussen
- Dept of Anaesthesia and Intensive Care, Aalborg University Hospital, Aalborg, Denmark.,Clinical Institute, Aalborg Universitet, Aalborg, Denmark
| | | | - Morten Heiberg Bestle
- Dept of Anaesthesia and Intensive Care, Nordsjællands Hospital, Hillerød, Denmark.,Dept of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Exhaled Breath Condensate (EBC): Is It a Viable Source of Biomarkers for Lung Diseases? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1195:13-18. [PMID: 32468452 DOI: 10.1007/978-3-030-32633-3_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The exhaled breath condensate is a source of biomarkers with many advantages and benefits compared to other traditional sampling techniques in respiratory medicine. It is a biological product that is formed by cooling the exhaled air via its guidance through a condenser. It is characterized as a cocktail of volatile and non-volatile compounds with water being the predominant constituent. Its composition presents a non-uniformed structure as the volatile and the non-volatile compounds vary in type and ratio. All these compounds originate from the whole respiratory tract. Some of them fulfil the criteria to be characterized as biomarkers since there is a similarity between the content of the exhaled breath condensate and the respiratory tract lining fluid. In addition, the potential biomarkers of the exhaled breath condensate and those from other biological fluids are equivalent.Advantages and Disadvantages Its place in the respiratory medicine as a matrix of biomarkers relies on its various strengths. Some of them are very important and make it exceptional regarding its application, such as its totally non-invasive character and its usage in all ages, while others present a more potential action regarding its purpose such as the categorization of respiratory diseases. However, there are limitations in its application due to the lack of standardization of its conduct which can be minimized by following the official recommendations. Additional studies are needed to develop said standardization.Aim The aim of this paper is to present a brief and comprehensive picture of the sampling technique of the exhaled breath condensate, as well as the criteria to make it a preferred choice as a source of biomarkers.
Collapse
|
12
|
Cytokines and Chemokines Are Detectable in Swivel-Derived Exhaled Breath Condensate (SEBC): A Pilot Study in Mechanically Ventilated Patients. DISEASE MARKERS 2020; 2020:2696317. [PMID: 31998415 PMCID: PMC6977328 DOI: 10.1155/2020/2696317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/05/2019] [Accepted: 12/27/2019] [Indexed: 12/18/2022]
Abstract
Introduction Exhaled breath condensate (EBC) is a noninvasive method to collect samples from the respiratory tract. Usually, a thermoelectric cooling module is required to collect sufficient EBC volume for analyses. In here, we assessed the feasibility of cytokine and chemokine detection in EBC collected directly from the ventilator circuit without the use of a cooling module: swivel-derived exhaled breath condensate (SEBC). Methods SEBC was prospectively collected from the swivel adapter and stored at -80°C. The objective of this study was to detect cytokines and chemokines in SEBC with a multiplex immunoassay. Secondary outcomes were to assess the correlation between cytokine and chemokine concentrations in SEBC and mechanical ventilation parameters, systemic inflammation parameters, and hemodynamic parameters. Results Twenty-nine SEBC samples were obtained from 13 ICU patients. IL-1β, IL-4, IL-8, and IL-17 were detected in more than 90% of SEBC samples, and significant correlations between multiple cytokines and chemokines were found. Several significant correlations were found between cytokines and chemokines in SEBC and mechanical ventilation parameters and serum lactate concentrations. Conclusion This pilot study showed that it is feasible to detect cytokines and chemokines in SEBC samples obtained without a cooling module. Despite small sample size, correlations were found between cytokines and chemokines in SEBC and mechanical ventilation parameters, as well as serum lactate concentrations. This simple SEBC collection method provides the opportunity to collect EBC samples in large prospective ICU cohorts.
Collapse
|
13
|
Mäkitie AA, Almangush A, Youssef O, Metsälä M, Silén S, Nixon IJ, Haigentz M, Rodrigo JP, Saba NF, Vander Poorten V, Ferlito A. Exhaled breath analysis in the diagnosis of head and neck cancer. Head Neck 2019; 42:787-793. [PMID: 31854494 DOI: 10.1002/hed.26043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/15/2019] [Accepted: 12/03/2019] [Indexed: 12/24/2022] Open
Abstract
Head and neck cancer (HNC) comprises a heterogeneous group of upper aerodigestive tract malignant neoplasms, the most frequent of which is squamous cell carcinoma. HNC forms the eighth most common cancer type and the incidence is increasing. However, survival has improved only moderately during the past decades. Currently, early diagnosis remains the mainstay for improving treatment outcomes in this patient population. Unfortunately, screening methods to allow early detection of HNC are not yet established. Therefore, many cases are still diagnosed at advanced stage, compromising outcomes. Exhaled breath analysis (EBA) is a diagnostic tool that has been recently introduced for many cancers. Breath analysis is non-invasive, cost-effective, time-saving, and can potentially be applied for cancer screening. Here, we provide a summary of the accumulated evidence on the feasibility of EBA in the diagnosis of HNC.
Collapse
Affiliation(s)
- Antti A Mäkitie
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet and Karolinska Hospital, Stockholm, Sweden
| | - Alhadi Almangush
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Pathology, University of Helsinki, Helsinki, Finland.,Institute of Biomedicine, Pathology, University of Turku, Turku, Finland.,Faculty of Dentistry, University of Misurata, Misurata, Libya
| | - Omar Youssef
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Markus Metsälä
- Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Suvi Silén
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Iain J Nixon
- Department of Otolaryngology, Head and Neck Surgery, NHS Lothian, Edinburgh University, Edinburgh, UK
| | - Missak Haigentz
- Division of Hematology/Oncology, Department of Medicine, Morristown Medical Center/Atlantic Health System, Morristown, New Jersey
| | - Juan P Rodrigo
- Department of Otolaryngology, Hospital Universitario Central de Asturias-University of Oviedo, ISPA, IUOPA, CIBERONC, Oviedo, Spain
| | - Nabil F Saba
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Vincent Vander Poorten
- Otorhinolaryngology-Head and Neck Surgery and Department of Oncology, Section of Head and Neck Oncology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Alfio Ferlito
- International Head and Neck Scientific Group, Padua, Italy
| |
Collapse
|
14
|
Taniselass S, Arshad MM, Gopinath SC. Graphene-based electrochemical biosensors for monitoring noncommunicable disease biomarkers. Biosens Bioelectron 2019; 130:276-292. [DOI: 10.1016/j.bios.2019.01.047] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 02/07/2023]
|
15
|
Peterová E, Chládek J, Kohoutová D, Knoblochová V, Morávková P, Vávrová J, Řezáčová M, Bureš J. Exhaled Breath Condensate: Pilot Study of the Method and Initial Experience in Healthy Subjects. ACTA MEDICA (HRADEC KRÁLOVÉ) 2018; 61:8-16. [PMID: 30012244 DOI: 10.14712/18059694.2018.17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Analysis of Exhaled breath condensate (EBC) is a re-discovered approach to monitoring the course of the disease and reduce invasive methods of patient investigation. However, the major disadvantage and shortcoming of the EBC is lack of reliable and reproducible standardization of the method. Despite many articles published on EBC, until now there is no clear consensus on whether the analysis of EBC can provide a clue to diagnosis of the diseases. The purpose of this paper is to investigate our own method, to search for possible standardization and to obtain our own initial experience. Thirty healthy volunteers provided the EBC, in which we monitored the density, pH, protein, chloride and urea concentration. Our results show that EBC pH is influenced by smoking, and urea concentrations are affected by the gender of subjects. Age of subjects does not play a role. The smallest coefficient of variation between individual volunteers is for density determination. Current limitations of EBC measurements are the low concentration of many biomarkers. Standardization needs to be specific for each individual biomarker, with focusing on optimal condensate collection. EBC analysis has a potential become diagnostic test, not only for lung diseases.
Collapse
Affiliation(s)
- Eva Peterová
- 2nd Department of Internal Medicine - Gastroenterology, Charles University, Faculty of Medicine in Hradec Králové, University Hospital Hradec Králové, Czech Republic. .,Department of Medical Biochemistry, Charles University, Faculty of Medicine in Hradec Králové, Czech Republic.
| | - Jaroslav Chládek
- Department of Pharmacology, Charles University, Faculty of Medicine in Hradec Králové, Czech Republic
| | - Darina Kohoutová
- 2nd Department of Internal Medicine - Gastroenterology, Charles University, Faculty of Medicine in Hradec Králové, University Hospital Hradec Králové, Czech Republic
| | - Veronika Knoblochová
- 2nd Department of Internal Medicine - Gastroenterology, Charles University, Faculty of Medicine in Hradec Králové, University Hospital Hradec Králové, Czech Republic
| | - Paula Morávková
- 2nd Department of Internal Medicine - Gastroenterology, Charles University, Faculty of Medicine in Hradec Králové, University Hospital Hradec Králové, Czech Republic
| | - Jaroslava Vávrová
- Institute of Clinical Biochemistry and Diagnostics, Charles University, Faculty of Medicine in Hradec Králové, University Hospital Hradec Králové, Czech Republic
| | - Martina Řezáčová
- Department of Medical Biochemistry, Charles University, Faculty of Medicine in Hradec Králové, Czech Republic
| | - Jan Bureš
- 2nd Department of Internal Medicine - Gastroenterology, Charles University, Faculty of Medicine in Hradec Králové, University Hospital Hradec Králové, Czech Republic
| |
Collapse
|
16
|
Abstract
Exhaled breath condensate (EBC) is a promising source of biomarkers of lung disease. EBC research and utility has increased substantially over the past 2 decades. This review summarizes many of the factors regarding the composition of EBC, its collection, and analysis for the utility of both clinicians and researchers.
Collapse
Affiliation(s)
- Michael D Davis
- Division of Pulmonary Medicine, Children's Hospital of Richmond at VCU, Hermes A. Kontos Medical Sciences Building, Room 215, 1217 East Marshall Street, Richmond, VA 23298, USA.
| | - Alison J Montpetit
- VCU Medical Center, Department of Emergency Medicine, Box 980401, Richmond, VA 23298-0401, USA
| |
Collapse
|
17
|
A feasibility study into adenosine triphosphate measurement in exhaled breath condensate: a potential bedside method to monitor alveolar deformation. Purinergic Signal 2018; 14:215-221. [PMID: 29752619 PMCID: PMC6107466 DOI: 10.1007/s11302-018-9607-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/24/2018] [Indexed: 12/13/2022] Open
Abstract
Recent research suggested an important role for pulmonary extracellular adenosine triphosphate (ATP) in the development of ventilation-induced lung injury. This injury is induced by mechanical deformation of alveolar epithelial cells, which in turn release ATP to the extracellular space. Measuring extracellular ATP in exhaled breath condensate (EBC) may be a non-invasive biomarker for alveolar deformation. Here, we study the feasibility of bedside ATP measurement in EBC. We measured ATP levels in EBC in ten subjects before and after an exercise test, which increases respiratory parameters and alveolar deformation. EBC lactate concentrations were measured as a dilution marker. We found a significant increase in ATP levels in EBC (before 73 RLU [IQR 50–209] versus after 112 RLU [IQR 86–203]; p value 0.047), and the EBC ATP-to-EBC lactate ratio increased as well (p value 0.037). We present evidence that bedside measurement of ATP in EBC is feasible and that ATP levels in EBC increase after exercise. Future research should measure ATP levels in EBC during mechanical ventilation as a potential biomarker for alveolar deformation.
Collapse
|
18
|
Chen LC, Tseng HM, Kuo ML, Chiu CY, Liao SL, Su KW, Tsai MH, Hua MC, Lai SH, Yao TC, Yeh KW, Wu AH, Huang JL, Huang SK. A composite of exhaled LTB 4 , LXA 4 , FeNO, and FEV 1 as an "asthma classification ratio" characterizes childhood asthma. Allergy 2018; 73:627-634. [PMID: 28944471 DOI: 10.1111/all.13318] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND Aberrant generation of eicosanoids is associated with asthma, but the evidence remains incomplete and its potential utility as biomarkers is unclear. Major eicosanoids in exhaled breath condensates (EBCs) were assessed as candidate markers for childhood asthma. METHODS Ten exhaled eicosanoid species was evaluated using ELISA in the discovery phase, followed by prediction model-building and validation phases. RESULTS Exhaled LTB4 , LTE4 , PGE2, and LXA4 showed significant difference between asthmatics (N = 60) and controls (N = 20). For validation, an expanded study population consisting of 626 subjects with asthma and 161 healthy controls was partitioned into a training subset to establish a prediction model and a test sample subset for validation. Receiver operating characteristic (ROC) analyses of the training subset revealed the level of exhaled LTB4 to be the most discriminative among all parameters, including FeNO, and a composite of exhaled LTB4 , LXA4 , together with FeNO and FEV1 , distinguishing asthma with high sensitivity and specificity. Further, the Youden index (J) indicated the cut point value of 0.598 for this composite of markers as having the strongest discriminatory ability (sensitivity = 85.2% and specificity = 83.6%). The predictive algorithm as "asthma classification ratio" was further validated in an independent test sample with sensitivity and specificity being 84.4% and 84.8%, respectively. CONCLUSIONS In a pediatric study population in Taiwan, the levels of exhaled LTB4 , LTE4 , LXA4, and PGE2 in asthmatic children were significantly different from those of healthy controls, and the combination of exhaled LTB4 and LXA4 , together with FeNO and FEV1 , best characterized childhood asthma.
Collapse
Affiliation(s)
- L.-C. Chen
- Division of Allergy, Asthma and Rheumatology; Department of Pediatrics; Chang Gung Memorial Hospital; Taoyuan Taiwan
- Community Medicine Research Center; Chang Gung Memorial Hospital at Keelung; Keelung Taiwan
- Department of Pediatrics; Xiamen Chang Gung Hospital; Fujian Sheng China
| | - H.-M. Tseng
- Department of Healthcare Management; Chang Gung University & Medical Education Research Centre, Chang Gung Memorial Hospital; Taoyuan Taiwan
| | - M.-L. Kuo
- Division of Allergy, Asthma and Rheumatology; Department of Pediatrics; Chang Gung Memorial Hospital; Taoyuan Taiwan
- Department of Microbiology and Immunology; Graduate Institute of Basic Medical Research; Chang Gung University; Taoyuan Taiwan
| | - C.-Y. Chiu
- Community Medicine Research Center; Chang Gung Memorial Hospital at Keelung; Keelung Taiwan
- Department of Pediatrics; Chang Gung Memorial Hospital at Keelung; Keelung Taiwan
| | - S.-L. Liao
- Community Medicine Research Center; Chang Gung Memorial Hospital at Keelung; Keelung Taiwan
- Department of Pediatrics; Chang Gung Memorial Hospital at Keelung; Keelung Taiwan
| | - K.-W. Su
- Community Medicine Research Center; Chang Gung Memorial Hospital at Keelung; Keelung Taiwan
- Department of Pediatrics; Chang Gung Memorial Hospital at Keelung; Keelung Taiwan
| | - M.-H. Tsai
- Community Medicine Research Center; Chang Gung Memorial Hospital at Keelung; Keelung Taiwan
- Department of Pediatrics; Chang Gung Memorial Hospital at Keelung; Keelung Taiwan
| | - M.-C. Hua
- Community Medicine Research Center; Chang Gung Memorial Hospital at Keelung; Keelung Taiwan
- Department of Pediatrics; Chang Gung Memorial Hospital at Keelung; Keelung Taiwan
| | - S.-H. Lai
- Community Medicine Research Center; Chang Gung Memorial Hospital at Keelung; Keelung Taiwan
- Division of Pediatric Pulmonology; Department of Pediatrics; Chang Gung Memorial Hospital; Taoyuan Taiwan
| | - T.-C. Yao
- Division of Allergy, Asthma and Rheumatology; Department of Pediatrics; Chang Gung Memorial Hospital; Taoyuan Taiwan
- Community Medicine Research Center; Chang Gung Memorial Hospital at Keelung; Keelung Taiwan
| | - K.-W. Yeh
- Division of Allergy, Asthma and Rheumatology; Department of Pediatrics; Chang Gung Memorial Hospital; Taoyuan Taiwan
- Community Medicine Research Center; Chang Gung Memorial Hospital at Keelung; Keelung Taiwan
| | - A.-H. Wu
- Division of Allergy, Asthma and Rheumatology; Department of Pediatrics; Chang Gung Memorial Hospital; Taoyuan Taiwan
| | - J.-L. Huang
- Division of Allergy, Asthma and Rheumatology; Department of Pediatrics; Chang Gung Memorial Hospital; Taoyuan Taiwan
- Community Medicine Research Center; Chang Gung Memorial Hospital at Keelung; Keelung Taiwan
| | - S.-K. Huang
- National Institute of Environmental Health Sciences; National Health Research Institutes; Zhunan Taiwan
- Research Center for Environmental Medicine; Kaohsiung Medical University; Kaohsiung Taiwan
- Shen-Zhen University Lo-Hu Hospital; Shen-Zhen China
- Johns Hopkins Asthma and Allergy Center; Johns Hopkins University School of Medicine; Baltimore MD USA
| |
Collapse
|
19
|
Eisenhut M. Commentary: Cytokine-Regulation of Na +-K +-Cl - Cotransporter 1 and Cystic Fibrosis Transmembrane Conductance Regulator-Potential Role in Pulmonary Inflammation and Edema Formation. Front Immunol 2017; 8:1490. [PMID: 29163549 PMCID: PMC5681840 DOI: 10.3389/fimmu.2017.01490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 10/23/2017] [Indexed: 11/22/2022] Open
Affiliation(s)
- Michael Eisenhut
- Paediatric Department, Luton and Dunstable University Hospital NHS Foundation Trust, Luton, United Kingdom
| |
Collapse
|
20
|
Cruickshank-Quinn C, Armstrong M, Powell R, Gomez J, Elie M, Reisdorph N. Determining the presence of asthma-related molecules and salivary contamination in exhaled breath condensate. Respir Res 2017; 18:57. [PMID: 28403875 PMCID: PMC5389118 DOI: 10.1186/s12931-017-0538-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/18/2017] [Indexed: 12/20/2022] Open
Abstract
Background Researchers investigating lung diseases, such as asthma, have questioned whether certain compounds previously reported in exhaled breath condensate (EBC) originate from saliva contamination. Moreover, despite its increasing use in ‘omics profiling studies, the constituents of EBC remain largely uncharacterized. The present study aims to define the usefulness of EBC in investigating lung disease by comparing EBC, saliva, and saliva-contaminated EBC using targeted and untargeted mass spectrometry and the potential of metabolite loss from adsorption to EBC sample collection tubes. Methods Liquid chromatography mass spectrometry (LC-MS) was used to analyze samples from 133 individuals from three different cohorts. Levels of amino acids and eicosanoids, two classes of molecules previously reported in EBC and saliva, were measured using targeted LC-MS. Cohort 1 was used to examine contamination of EBC by saliva. Samples from Cohort 1 consisted of clean EBC, saliva-contaminated EBC, and clean saliva from 13 healthy volunteers; samples were analyzed using untargeted LC-MS. Cohort 2 was used to compare eicosanoid levels from matched EBC and saliva collected from 107 asthmatic subjects. Samples were analyzed using both targeted and untargeted LC-MS. Cohort 3 samples consisted of clean-EBC collected from 13 subjects, including smokers and non-smokers, and were used to independently confirm findings; samples were analyzed using targeted LC-MS, untargeted LC-MS, and proteomics. In addition to human samples, an in-house developed nebulizing system was used to determine the potential for EBC samples to be contaminated by saliva. Results Out of the 400 metabolites detected in both EBC and saliva, 77 were specific to EBC; however, EBC samples were concentrated 20-fold to achieve this level of sensitivity. Amino acid concentrations ranged from 196 pg/mL – 4 μg/mL (clean EBC), 1.98 ng/mL – 6 μg/mL (saliva-contaminated EBC), and 13.84 ng/mL – 1256 mg/mL (saliva). Eicosanoid concentration ranges were an order of magnitude lower; 10 pg/mL – 76.5 ng/mL (clean EBC), 10 pg/mL – 898 ng/mL (saliva-contaminated EBC), and 2.54 ng/mL – 272.9 mg/mL (saliva). Although the sample size of the replication cohort (Cohort 3) did not allow for statistical comparisons, two proteins and 19 eicosanoids were detected in smoker vs. non-smoker clean-EBC. Conclusions We conclude that metabolites are present and detectable in EBC using LC-MS; however, a large starting volume of sample is required. Electronic supplementary material The online version of this article (doi:10.1186/s12931-017-0538-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Charmion Cruickshank-Quinn
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, Aurora, CO, 80045-2605, USA
| | - Michael Armstrong
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, Aurora, CO, 80045-2605, USA
| | - Roger Powell
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, Aurora, CO, 80045-2605, USA
| | - Joe Gomez
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, Aurora, CO, 80045-2605, USA
| | - Marc Elie
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, Aurora, CO, 80045-2605, USA
| | - Nichole Reisdorph
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, Aurora, CO, 80045-2605, USA.
| |
Collapse
|
21
|
Youssef O, Sarhadi VK, Armengol G, Piirilä P, Knuuttila A, Knuutila S. Exhaled breath condensate as a source of biomarkers for lung carcinomas. A focus on genetic and epigenetic markers-A mini-review. Genes Chromosomes Cancer 2016; 55:905-914. [DOI: 10.1002/gcc.22399] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 12/12/2022] Open
Affiliation(s)
- Omar Youssef
- Faculty of Medicine; Department of Pathology, University of Helsinki; Helsinki Finland
| | - Virinder Kaur Sarhadi
- Faculty of Medicine; Department of Pathology, University of Helsinki; Helsinki Finland
| | - Gemma Armengol
- Unit of Biological Anthropology, Department of Animal Biology, Plant Biology and Ecology, Universitat Autònoma De Barcelona; Barcelona Catalonia Spain
| | - Päivi Piirilä
- Unit of Clinical Physiology, HUS-Medical Imaging Center, Helsinki University Hospital and Helsinki University; Helsinki Finland
| | - Aija Knuuttila
- Department of Pulmonary Medicine; University of Helsinki and Helsinki University Hospital, Heart and Lung Center; Helsinki Finland
| | - Sakari Knuutila
- Faculty of Medicine; Department of Pathology, University of Helsinki; Helsinki Finland
| |
Collapse
|
22
|
Hayes SA, Haefliger S, Harris B, Pavlakis N, Clarke SJ, Molloy MP, Howell VM. Exhaled breath condensate for lung cancer protein analysis: a review of methods and biomarkers. J Breath Res 2016; 10:034001. [PMID: 27380020 DOI: 10.1088/1752-7155/10/3/034001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lung cancer is a leading cause of cancer-related deaths worldwide, and is considered one of the most aggressive human cancers, with a 5 year overall survival of 10-15%. Early diagnosis of lung cancer is ideal; however, it is still uncertain as to what technique will prove successful in the systematic screening of high-risk populations, with the strongest evidence currently supporting low dose computed tomography (LDCT). Analysis of exhaled breath condensate (EBC) has recently been proposed as an alternative low risk and non-invasive screening method to investigate early-stage neoplastic processes in the airways. However, there still remains a relative paucity of lung cancer research involving EBC, particularly in the measurement of lung proteins that are centrally linked to pathogenesis. Considering the ease and safety associated with EBC collection, and advances in the area of mass spectrometry based profiling, this technology has potential for use in screening for the early diagnosis of lung cancer. This review will examine proteomics as a method of detecting markers of neoplasia in patient EBC with a particular emphasis on LC, as well as discussing methodological challenges involving in proteomic analysis of EBC specimens.
Collapse
Affiliation(s)
- Sarah A Hayes
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, Northern Sydney Local Health District, St. Leonards, New South Wales, Australia. Sydney Medical School Northern, University of Sydney, New South Wales, Australia
| | | | | | | | | | | | | |
Collapse
|
23
|
LIN XUEFENG, ZHANG LEI, SHI SHUYUAN, FAN YICHU, WU ZHENLIN, ZHANG XUN, SUN DAQIANG. Expression of surfactant protein-A in exhaled breath condensate of patients with chronic obstructive pulmonary disease. Mol Med Rep 2015; 13:1667-72. [DOI: 10.3892/mmr.2015.4702] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 11/02/2015] [Indexed: 11/06/2022] Open
|
24
|
Exhaled Breath Condensate: Technical and Diagnostic Aspects. ScientificWorldJournal 2015; 2015:435160. [PMID: 26106641 PMCID: PMC4461795 DOI: 10.1155/2015/435160] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/21/2015] [Indexed: 01/18/2023] Open
Abstract
Purpose. The aim of this study was to evaluate the 30-year progress of research on exhaled breath condensate in a disease-based approach. Methods. We searched PubMed/Medline, ScienceDirect, and Google Scholar using the following keywords: exhaled breath condensate (EBC), biomarkers, pH, asthma, gastroesophageal reflux (GERD), smoking, COPD, lung cancer, NSCLC, mechanical ventilation, cystic fibrosis, pulmonary arterial hypertension (PAH), idiopathic pulmonary fibrosis, interstitial lung diseases, obstructive sleep apnea (OSA), and drugs. Results. We found 12600 related articles in total in Google Scholar, 1807 in ScienceDirect, and 1081 in PubMed/Medline, published from 1980 to October 2014. 228 original investigation and review articles were eligible. Conclusions. There is rapidly increasing number of innovative articles, covering all the areas of modern respiratory medicine and expanding EBC potential clinical applications to other fields of internal medicine. However, the majority of published papers represent the results of small-scale studies and thus current knowledge must be further evaluated in large cohorts. In regard to the potential clinical use of EBC-analysis, several limitations must be pointed out, including poor reproducibility of biomarkers and absence of large surveys towards determination of reference-normal values. In conclusion, contemporary EBC-analysis is an intriguing achievement, but still in early stage when it comes to its application in clinical practice.
Collapse
|
25
|
Berchtold C, Bosilkovska M, Daali Y, Walder B, Zenobi R. Real-time monitoring of exhaled drugs by mass spectrometry. MASS SPECTROMETRY REVIEWS 2014; 33:394-413. [PMID: 24272872 DOI: 10.1002/mas.21393] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 06/12/2013] [Accepted: 06/13/2013] [Indexed: 06/02/2023]
Abstract
Future individualized patient treatment will need tools to monitor the dose and effects of administrated drugs. Mass spectrometry may become the method of choice to monitor drugs in real time by analyzing exhaled breath. This review describes the monitoring of exhaled drugs in real time by mass spectrometry. The biological background as well as the relevant physical properties of exhaled drugs are delineated. The feasibility of detecting and monitoring exhaled drugs is discussed in several examples. The mass spectrometric tools that are currently available to analyze breath in real time are reviewed. The technical needs and state of the art for on-site measurements by mass spectrometry are also discussed in detail. Off-line methods, which give support and are an important source of information for real-time measurements, are also discussed. Finally, some examples of drugs that have already been successfully detected in exhaled breath, including propofol, fentanyl, methadone, nicotine, and valproic acid are presented. Real-time monitoring of exhaled drugs by mass spectrometry is a relatively new field, which is still in the early stages of development. New technologies promise substantial benefit for future patient monitoring and treatment.
Collapse
Affiliation(s)
- Christian Berchtold
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
26
|
Mechanisms of acute respiratory distress syndrome in children and adults: a review and suggestions for future research. Pediatr Crit Care Med 2013; 14:631-43. [PMID: 23823199 DOI: 10.1097/pcc.0b013e318291753f] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES To provide a current overview of the epidemiology and pathophysiology of acute respiratory distress syndrome in adults and children, and to identify research questions that will address the differences between adults and children with acute respiratory distress syndrome. DATA SOURCES Narrative literature review and author-generated data. DATA SELECTION The epidemiology of acute respiratory distress syndrome in adults and children, lung morphogenesis, and postnatal lung growth and development are reviewed. The pathophysiology of acute respiratory distress syndrome is divided into eight categories: alveolar fluid transport, surfactant, innate immunity, apoptosis, coagulation, direct alveolar epithelial injury by bacterial products, ventilator-associated lung injury, and repair. DATA EXTRACTION AND SYNTHESIS Epidemiologic data suggest significant differences in the prevalence and mortality of acute respiratory distress syndrome between children and adults. Postnatal lung development continues through attainment of adult height, and there is overlap between the regulation of postnatal lung development and inflammatory, apoptotic, alveolar fluid clearance, and repair mechanisms. Therefore, there is a different biological baseline network of gene and protein expression in children as compared with adults. CONCLUSIONS There are significant obstacles to performing research on children with acute respiratory distress syndrome. However, epidemiologic, clinical, and animal studies suggest age-dependent differences in the pathophysiology of acute respiratory distress syndrome. In order to reduce the prevalence and improve the outcome of patients with acute respiratory distress syndrome, translational studies of inflammatory, apoptotic, alveolar fluid clearance, and repair mechanisms are needed. Understanding the differences in pathophysiologic mechanisms in acute respiratory distress syndrome between children and adults should facilitate identification of novel therapeutic interventions to prevent or modulate lung injury and improve lung repair.
Collapse
|
27
|
Meier L, Berchtold C, Schmid S, Zenobi R. High mass resolution breath analysis using secondary electrospray ionization mass spectrometry assisted by an ion funnel. JOURNAL OF MASS SPECTROMETRY : JMS 2012; 47:1571-1575. [PMID: 23280745 DOI: 10.1002/jms.3118] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 09/23/2012] [Accepted: 10/03/2012] [Indexed: 06/01/2023]
Abstract
In this study, we used secondary electrospray ionization mass spectrometry assisted by an ion funnel (IF) operating at ambient pressure to find compounds in the mass range of 100-500 m/z in online breath fingerprinting experiments. In low-resolution experiments conducted on an ion trap instrument, we found that pyridine is present in breath of individuals long after drinking coffee. In high-resolution experiments conducted on a Fourier transform ion cyclotron resonance, we found more than 30 compounds in the mass range of 100-500 m/z in analogous online breath experiments. More than a third of these compounds have molecular weights above 200 Daltons and have not been mentioned in previous studies. In low-resolution experiments as well as experiments without the IF, these compounds could not be detected.
Collapse
Affiliation(s)
- Lukas Meier
- Department of Chemistry and Applied Biosciences, ETH Zurich, Switzerland
| | | | | | | |
Collapse
|
28
|
|
29
|
Abstract
Exhaled breath condensate (EBC) is a promising source of biomarkers of lung disease. EBC may be thought of either as a body fluid or as a condensate of exhaled gas. There are 3 principal contributors to EBC: variable-sized particles or droplets that are aerosolized from the airway lining fluid, distilled water that condenses from gas phase out of the nearly water-saturated exhalate, and water-soluble volatiles that are exhaled and absorbed into the condensing breath. The nonvolatile constituents and the water-soluble volatile constituents are of particular interest. Several key issues are discussed in this article.
Collapse
|