1
|
Elbehairy AF, Marshall H, Naish JH, Wild JM, Parraga G, Horsley A, Vestbo J. Advances in COPD imaging using CT and MRI: linkage with lung physiology and clinical outcomes. Eur Respir J 2024; 63:2301010. [PMID: 38548292 DOI: 10.1183/13993003.01010-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 03/16/2024] [Indexed: 05/04/2024]
Abstract
Recent years have witnessed major advances in lung imaging in patients with COPD. These include significant refinements in images obtained by computed tomography (CT) scans together with the introduction of new techniques and software that aim for obtaining the best image whilst using the lowest possible radiation dose. Magnetic resonance imaging (MRI) has also emerged as a useful radiation-free tool in assessing structural and more importantly functional derangements in patients with well-established COPD and smokers without COPD, even before the existence of overt changes in resting physiological lung function tests. Together, CT and MRI now allow objective quantification and assessment of structural changes within the airways, lung parenchyma and pulmonary vessels. Furthermore, CT and MRI can now provide objective assessments of regional lung ventilation and perfusion, and multinuclear MRI provides further insight into gas exchange; this can help in structured decisions regarding treatment plans. These advances in chest imaging techniques have brought new insights into our understanding of disease pathophysiology and characterising different disease phenotypes. The present review discusses, in detail, the advances in lung imaging in patients with COPD and how structural and functional imaging are linked with common resting physiological tests and important clinical outcomes.
Collapse
Affiliation(s)
- Amany F Elbehairy
- Department of Chest Diseases, Faculty of Medicine, Alexandria University, Alexandria, Egypt
- Division of Infection, Immunity and Respiratory Medicine, The University of Manchester and Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Helen Marshall
- POLARIS, Imaging, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Josephine H Naish
- MCMR, Manchester University NHS Foundation Trust, Manchester, UK
- Bioxydyn Limited, Manchester, UK
| | - Jim M Wild
- POLARIS, Imaging, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Insigneo Institute for in silico Medicine, Sheffield, UK
| | - Grace Parraga
- Robarts Research Institute, Western University, London, ON, Canada
- Department of Medical Biophysics, Western University, London, ON, Canada
- Division of Respirology, Western University, London, ON, Canada
| | - Alexander Horsley
- Division of Infection, Immunity and Respiratory Medicine, The University of Manchester and Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Jørgen Vestbo
- Division of Infection, Immunity and Respiratory Medicine, The University of Manchester and Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| |
Collapse
|
2
|
Jeong J, Nam YH, Sim DW, Kim BK, Lee Y, Shim JS, Lee SY, Yang MS, Kim MH, Kim SR, Choi S, Kim SH, Koh YI, Park HW. Relationship of computed tomography-based measurements with symptom perception and quality of life in patients with severe asthma. Respir Med 2024; 225:107598. [PMID: 38499273 DOI: 10.1016/j.rmed.2024.107598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Symptom perception and quality of life (QOL) are important domains for properly managing severe asthma. This study aimed to assess the relationship between airway structural and parenchymal variables measured using chest computed tomography (CT) and subjective symptom perception and QOL in patients with severe asthma enrolled in the Korean Severe Asthma Registry. METHODS This study used CT-based objective measurements, including airway wall thickness (WT), hydraulic diameter, functional small airway disease (fSAD), and emphysematous lung (Emph), to assess their association with subjective symptom (cough, dyspnea, wheezing, and sputum) perception measured using the visual analog scale, and QOL measured by the Severe Asthma Questionnaire (SAQ). RESULTS A total of 94 patients with severe asthma were enrolled in this study. The WT and fSAD% were significantly positively associated with cough and dyspnea, respectively. For QOL, WT and Emph% showed significant negative associations with the SAQ. However, there was no significant association between lung function and symptom perception or between lung function and QOL. CONCLUSION Overall, WT, fSAD%, and Emph% measured using chest CT were associated with subjective symptom perception and QOL in patients with severe asthma. This study provides a basis for clarifying the clinical correlates of imaging-derived metrics and for understanding the mechanisms of respiratory symptom perception.
Collapse
Affiliation(s)
- Jinyoung Jeong
- School of Mechanical Engineering, Kyungpook National University, Daegu, Republic of Korea
| | - Young-Hee Nam
- Department of Internal Medicine, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Da Woon Sim
- Department of Allergy, Asthma and Clinical Immunology, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Byung-Keun Kim
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Youngsoo Lee
- Department of Allergy and Clinical Immunology, Ajou University Hospital, Suwon, Republic of Korea
| | - Ji-Su Shim
- Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Suh-Young Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Min-Suk Yang
- Department of Internal Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Min-Hye Kim
- Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - So Ri Kim
- Division of Respiratory Medicine and Allergy, Department of Internal Medicine, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Sanghun Choi
- School of Mechanical Engineering, Kyungpook National University, Daegu, Republic of Korea
| | - Sang-Heon Kim
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Young-Il Koh
- Department of Allergy, Asthma and Clinical Immunology, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Heung-Woo Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Ji Y, Chen L, Yang J, Yang X, Yang F. Quantitative assessment of airway wall thickness in COPD patients with interstitial lung abnormalities. Front Med (Lausanne) 2023; 10:1280651. [PMID: 38146423 PMCID: PMC10749311 DOI: 10.3389/fmed.2023.1280651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/24/2023] [Indexed: 12/27/2023] Open
Abstract
Background Whether the airway is involved in the pathogenesis of interstitial lung abnormalities (ILA) is not well understood. Also the impact of ILA on lung function in COPD patients remains controversial. We aimed to assess the quantitative CT measurements of airway wall thickness (AWT) and lung function according to ILA status in COPD patients. Methods 157 COPD patients discharged from our hospital from August 1, 2019 through August 31, 2022 who underwent chest CT imagings and pulmonary function tests were retrospectively enrolled. Linear regression analysis and multiple models were used to analyze associations between quantitative assessment of airway wall changes and the presence of ILA. Results In 157 COPD patients, 23 patients (14.6%) had equivocal ILA, 42 patients (26.8%) had definite ILA. The definite ILA group had the highest measurements of Pi10 (square root of theoretical airway wall area with a lumen perimeter of 10 mm), segmental AWT and segmental WA% (percentage of wall area), whereas the no ILA group had the lowest measurements of Pi10, segmental AWT and segmental WA%. In the adjusted analyses (adjusted by age, sex, body mass index, smoking intensity, COPD GOLD stage, lung function, slice thickness and scanner type), compared to COPD patients without ILA, the measurements of Pi10, segmental AWT and segmental WA% were higher in definite ILA group with differences of 0.225 mm (p = 0.012), 0.152 mm (p < 0.001), 4.8% (p < 0.001) respectively. COPD patients with definite ILA tended to have higher FEV1% predicted, FVC% predicted and lower MMEF75/25% predicted, but there were no statistically differences among the three groups. Conclusion Our study demonstrates the higher AWT measures in COPD patients with ILA compared to the patients without ILA. These findings suggest that the airway may be involved in the pathogenesis of ILA.
Collapse
Affiliation(s)
- Yingying Ji
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Leqing Chen
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Jinrong Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Xiangying Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Fan Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
4
|
Analysis of predicted factors for bronchoalveolar lavage recovery failure: An observational study. PLoS One 2022; 17:e0275377. [PMID: 36178919 PMCID: PMC9524652 DOI: 10.1371/journal.pone.0275377] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/15/2022] [Indexed: 11/19/2022] Open
Abstract
Background
The bronchoalveolar lavage (BAL) recovery rate should generally be more than 30% for effective diagnosis. However, there have been no reports investigating a target bronchus for BAL, and the cause of BAL recovery failure is uncertain. Therefore, this study detected predictive factors for BAL recovery failure through investigations on a target bronchus for BAL by using a 3D image analysis system. Therefore, this study detected predictive factors for BAL recovery failure.
Materials and methods
We retrospectively collected data from 338 adult patients who underwent BAL procedures at Fukujuji Hospital from June 2018-March 2022. Factors correlated with the BAL recovery rate were detected. Furthermore, the patients were divided into the failure group (recovery rate <30%; 36 patients) and the success group (recovery rate ≥30%; 302 patients), and data were compared between the two groups by analysing the target bronchus by using a 3D image analysis system.
Results
The patients in the failure group were older (median 74.5 years old [IQR 68.0–79.0] vs. median 70.0 years old [IQR 59.0–76.0], p = 0.016), more likely to be male (n = 27 [75.0%] vs. n = 172 [57.0%], p = 0.048), more likely to have COPD (n = 7 [19.4%] vs. n = 14 [4.6%], p = 0.003), and more likely to perform a target site of BAL other than the middle/lingual lobe (n = 11 [30.5%] vs. n = 35 [11.6%], p = 0.004) than those in the success group. The area of the bronchial wall was positively related to the recovery rate (r = 0.141, p = 0.009), and the area of the bronchial wall in the failure group was lower than that in the success group (median 10.5 mm2 [interquartile range (IQR) 8.1–14.6] vs. median 14.5 mm2 [11.4–19.0], p<0.001).
Conclusion
The study shows that a thin bronchial wall, COPD, and a target site of BAL other than the middle/lingual lobe were identified as the predicted factors for BAL recovery failure. The weakness of the bronchial wall might cause bronchial collapse during the BAL procedure.
Collapse
|
5
|
Dudurych I, Muiser S, McVeigh N, Kerstjens HAM, van den Berge M, de Bruijne M, Vliegenthart R. Bronchial wall parameters on CT in healthy never-smoking, smoking, COPD, and asthma populations: a systematic review and meta-analysis. Eur Radiol 2022; 32:5308-5318. [PMID: 35192013 PMCID: PMC9279249 DOI: 10.1007/s00330-022-08600-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/14/2021] [Accepted: 01/29/2022] [Indexed: 11/25/2022]
Abstract
Objective Research on computed tomography (CT) bronchial parameter measurements shows that there are conflicting results on the values for bronchial parameters in the never-smoking, smoking, asthma, and chronic obstructive pulmonary disease (COPD) populations. This review assesses the current CT methods for obtaining bronchial wall parameters and their comparison between populations. Methods A systematic review of MEDLINE and Embase was conducted following PRISMA guidelines (last search date 25th October 2021). Methodology data was collected and summarised. Values of percentage wall area (WA%), wall thickness (WT), summary airway measure (Pi10), and luminal area (Ai) were pooled and compared between populations. Results A total of 169 articles were included for methodologic review; 66 of these were included for meta-analysis. Most measurements were obtained from multiplanar reconstructions of segmented airways (93 of 169 articles), using various tools and algorithms; third generation airways in the upper and lower lobes were most frequently studied. COPD (12,746) and smoking (15,092) populations were largest across studies and mostly consisted of men (median 64.4%, IQR 61.5 – 66.1%). There were significant differences between populations; the largest WA% was found in COPD (mean SD 62.93 ± 7.41%, n = 6,045), and the asthma population had the largest Pi10 (4.03 ± 0.27 mm, n = 442). Ai normalised to body surface area (Ai/BSA) (12.46 ± 4 mm2, n = 134) was largest in the never-smoking population. Conclusions Studies on CT-derived bronchial parameter measurements are heterogenous in methodology and population, resulting in challenges to compare outcomes between studies. Significant differences between populations exist for several parameters, most notably in the wall area percentage; however, there is a large overlap in their ranges. Key Points • Diverse methodology in measuring airways contributes to overlap in ranges of bronchial parameters among the never-smoking, smoking, COPD, and asthma populations. • The combined number of never-smoking participants in studies is low, limiting insight into this population and the impact of participant characteristics on bronchial parameters. • Wall area percent of the right upper lobe apical segment is the most studied (87 articles) and differentiates all except smoking vs asthma populations. Supplementary Information The online version contains supplementary material available at 10.1007/s00330-022-08600-1.
Collapse
Affiliation(s)
- Ivan Dudurych
- Department of Radiology, EB49, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9700RB, Groningen, The Netherlands
| | - Susan Muiser
- Department of Pulmonology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Niall McVeigh
- Department of Cardiothoracic Surgery, St. Vincent's University Hospital, Dublin, Ireland
| | - Huib A M Kerstjens
- Department of Pulmonology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Maarten van den Berge
- Department of Pulmonology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Marleen de Bruijne
- Department of Radiology and Nuclear Medicine, Biomedical Imaging Group Rotterdam, Erasmus MC, Rotterdam, The Netherlands
- Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | - Rozemarijn Vliegenthart
- Department of Radiology, EB49, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9700RB, Groningen, The Netherlands.
| |
Collapse
|
6
|
Kooner HK, McIntosh MJ, Desaigoudar V, Rayment JH, Eddy RL, Driehuys B, Parraga G. Pulmonary functional MRI: Detecting the structure-function pathologies that drive asthma symptoms and quality of life. Respirology 2022; 27:114-133. [PMID: 35008127 PMCID: PMC10025897 DOI: 10.1111/resp.14197] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/09/2021] [Accepted: 12/12/2021] [Indexed: 12/21/2022]
Abstract
Pulmonary functional MRI (PfMRI) using inhaled hyperpolarized, radiation-free gases (such as 3 He and 129 Xe) provides a way to directly visualize inhaled gas distribution and ventilation defects (or ventilation heterogeneity) in real time with high spatial (~mm3 ) resolution. Both gases enable quantitative measurement of terminal airway morphology, while 129 Xe uniquely enables imaging the transfer of inhaled gas across the alveolar-capillary tissue barrier to the red blood cells. In patients with asthma, PfMRI abnormalities have been shown to reflect airway smooth muscle dysfunction, airway inflammation and remodelling, luminal occlusions and airway pruning. The method is rapid (8-15 s), cost-effective (~$300/scan) and very well tolerated in patients, even in those who are very young or very ill, because unlike computed tomography (CT), positron emission tomography and single-photon emission CT, there is no ionizing radiation and the examination takes only a few seconds. However, PfMRI is not without limitations, which include the requirement of complex image analysis, specialized equipment and additional training and quality control. We provide an overview of the three main applications of hyperpolarized noble gas MRI in asthma research including: (1) inhaled gas distribution or ventilation imaging, (2) alveolar microstructure and finally (3) gas transfer into the alveolar-capillary tissue space and from the tissue barrier into red blood cells in the pulmonary microvasculature. We highlight the evidence that supports a deeper understanding of the mechanisms of asthma worsening over time and the pathologies responsible for symptoms and disease control. We conclude with a summary of approaches that have the potential for integration into clinical workflows and that may be used to guide personalized treatment planning.
Collapse
Affiliation(s)
- Harkiran K Kooner
- Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Marrissa J McIntosh
- Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Vedanth Desaigoudar
- Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Jonathan H Rayment
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rachel L Eddy
- Centre of Heart Lung Innovation, Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bastiaan Driehuys
- Center for In Vivo Microscopy, Duke University Medical Centre, Durham, North Carolina, USA
| | - Grace Parraga
- Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
- Division of Respirology, Department of Medicine, Western University, London, Ontario, Canada
- School of Biomedical Engineering, Western University, London, Ontario, Canada
| |
Collapse
|
7
|
Shah DM, Kshatriya RM, Paliwal R. Comparison of demographic, clinical, spirometry, and radiological parameters between smoking and non-smoking COPD patients in rural Gujarat, India. J Family Med Prim Care 2021; 10:3343-3347. [PMID: 34760755 PMCID: PMC8565106 DOI: 10.4103/jfmpc.jfmpc_87_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/30/2021] [Accepted: 07/09/2021] [Indexed: 11/19/2022] Open
Abstract
Context: A total of 20% of Chronic Obstructive Pulmonary Disease(COPD) patients are non-smokers due to preventable causes, such as biomass fuel exposure, post tuberculous sequelae, occupational exposure, air pollution, persistent chronic asthma, and genetic predisposition. Aims: To compare smokers and non-smokers with COPD. Settings and Design: An observational study was conducted at a tertiary care hospital on 60 patients diagnosed with COPD, (GOLD criteria), who were divided into smoker and non-smoker groups. Subjects and Methods: Demographic data, clinical profile, smoking history, and radiological data were collected and compared. Exclusion criteria were individuals having active pulmonary tuberculosis and reversible air flow limitations. Statistical Analysis Used: Using STATA 14.2, quantitative and qualitative data were presented using descriptive statistics. Results: A total of 100% of smokers were male, whereas 70% of non-smokers were female. Compared to non-smokers (16.67%), smokers (26.6%) presented with higher grade of dyspnea. A statistically significant difference was seen with more smokers diagnosed as severe (40%) and very severe (30%) COPD compared to non-smokers with mild (16.67%) and moderate (46.67%) COPD (P < 0.012), Post bronchodilator FEV1 among smokers (42.63) compared to non-smokers (56.63) (P < 0.01) and decrease in FEV1 as the grade of dyspnea increased (P < 0.002). Compared to 36.67% in non-smokers, 70% smokers showed emphysematous x-rays. Conclusions: In our study we found majority of non-smokers to be female, and smokers had a higher grade of dyspnea, more severe COPD, lower post bronchodilator FEV1, and more emphysematous changes on x-rays.
Collapse
Affiliation(s)
- Dhruv M Shah
- Department of Respiratory Medicine, New Cross Hospital, Royal Wolverhampton Trust, Wolverhampton, United Kingdom
| | - Ravish M Kshatriya
- Department of Respiratory Medicine, Parul Institute of Medical Sciences and Research, Parul University, Vadodara, Gujarat, India
| | - Rajiv Paliwal
- Department of Respiratory Medicine, Pramukhswami Medical College, Karamsad, Anand, Gujarat, India
| |
Collapse
|
8
|
Waatevik M, Frisk B, Real FG, Hardie JA, Bakke P, Eagan TM, Johannessen A. CT-defined emphysema in COPD patients and risk for change in desaturation status in 6-min walk test. Respir Med 2021; 187:106542. [PMID: 34340175 DOI: 10.1016/j.rmed.2021.106542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/17/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Emphysema and exercise induced desaturation (EID) are both related to poorer COPD prognosis. More knowledge of associations between emphysema and desaturation is needed for more efficient disease management. RESEARCH QUESTION Is emphysema a risk factor for both new and repeated desaturation, and is emphysema of more or less importance than other known risk factors? METHODS 283 COPD patients completed a 6-min walk test (6MWT) at baseline and one year later in the Bergen COPD cohort study 2006-2011. Degree of emphysema was assessed as percent of low attenuation areas (%LAA) under -950 Hounsfield units using high-resolution computed tomography at baseline. We performed multinomial logistic regression analysis, receiver operating curves (ROC) and area under the curve (AUC) estimations. Dominance analysis was used to rank emphysema and risk factors in terms of importance. RESULTS A one percent increase in %LAA increases the relative risk (RR) of new desaturation by 10 % (RR 1.1 (95%CI 1.1, 1.2)) and for repeated desaturation by 20 % (RR 1.2 (95%CI 1.1, 1.3)). Compared with other important desaturation risk factors, %LAA ranked as number one in the dominance analysis, accounting for 50 % and 37 % of the predicted variance for new and repeated desaturators, respectively. FEV1% predicted accounted for 9 % and 24 %, and resting SpO2 accounted for 22 % and 21 % for new and repeated desaturation. CONCLUSION Emphysema increases the risk of developing and repeatedly experiencing EID. Emphysema seems to be a more important risk factor for desaturation than FEV1% predicted and resting saturation.
Collapse
Affiliation(s)
- Marie Waatevik
- Centre for Clinical Research, Haukeland University Hospital, Bergen, Norway.
| | - Bente Frisk
- Dept of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway; Dept of Physiotherapy, Haukeland University Hospital, Bergen, Norway
| | - Francisco Gómez Real
- Dept of Clinical Science, University of Bergen, Bergen, Norway; Dept of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | | | - Per Bakke
- Dept of Clinical Science, University of Bergen, Bergen, Norway
| | - Tomas Mikal Eagan
- Dept of Clinical Science, University of Bergen, Bergen, Norway; Dept of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | - Ane Johannessen
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| |
Collapse
|
9
|
Chae KJ, Jin GY, Choi J, Lee CH, Choi S, Choi H, Park J, Lin CL, Hoffman EA. Generation-based study of airway remodeling in smokers with normal-looking CT with normalization to control inter-subject variability. Eur J Radiol 2021; 138:109657. [PMID: 33773402 DOI: 10.1016/j.ejrad.2021.109657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/01/2021] [Accepted: 03/09/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE With the help of quantitative computed tomography (QCT), it is possible to identify smoking-associated airway remodeling. However, there is currently little information on whether QCT-based airway metrics are sensitive to early airway wall remodeling in subclinical phases of smoking-associated airway disease. This study aimed to evaluate a predictive model that normalized airway parameters and investigate structural airway alterations in smokers with normal-looking CT using the normalization scheme. METHODS In this retrospective analysis, 222 non-smokers (male 97, female 125) and 69 smokers (male 66, female 3) from January 2014 to December 2016 were included, and airway parameters were quantitatively analyzed. To control inter-subject variability, multiple linear regressions of tracheal wall thickness (WT), diameter (D), and luminal area (LA) were performed, adjusted for age, sex, and height. Using this normalization scheme, airway parameters with matched generation were compared between smokers and non-smokers. RESULTS Using the normalization scheme, it was possible to assess generation-based structural alterations of the airways in subclinical smokers. Smokers showed diffuse luminal narrowing of airways for most generations (P < 0.05, except 3rd generation), no change in wall thickness of the proximal bronchi (1st-3rd generation), and a thinning of distal airways (P <0.05, ≥4th generation). CONCLUSION QCT assessment for subclinical smokers can help identify minimal structural changes in airways induced by smoking.
Collapse
Affiliation(s)
- Kum Ju Chae
- Department of Radiology, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
| | - Gong Yong Jin
- Department of Radiology, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea.
| | - Jiwoong Choi
- Department of Internal Medicine, School of Medicine, University of Kansas, Kansas City, KS, USA; Department of Bioengineering, University of Kansas, Lawrence, KS, USA
| | - Chang Hyun Lee
- Department of Radiology, Seoul National University Hospital, Seoul, South Korea; Department of Radiology, Seoul National University College of Medicine, Institute of Radiation Medicine, Seoul, South Korea
| | - Sanghun Choi
- School of Mechanical Engineering, Kyungpook National University, Daegu, South Korea
| | - Hyemi Choi
- Department of Statistics and Institute of Applied Statistics, Jeonbuk National University, Jeonju, Jeonbuk, South Korea
| | - Jeongjae Park
- Department of Statistics, Regional Cardiocerebrovascular Center, Wonkwang University School of Medicine, Iksan, Jeonbuk, South Korea
| | - Ching-Long Lin
- Department of Radiology & Department of Biomedical Engineering, The University of Iowa, Iowa City, IA, USA
| | - Eric A Hoffman
- Department of Radiology & Department of Biomedical Engineering, The University of Iowa, Iowa City, IA, USA
| |
Collapse
|
10
|
Bodduluri S, Nakhmani A, Reinhardt JM, Wilson CG, McDonald ML, Rudraraju R, Jaeger BC, Bhakta NR, Castaldi PJ, Sciurba FC, Zhang C, Bangalore PV, Bhatt SP. Deep neural network analyses of spirometry for structural phenotyping of chronic obstructive pulmonary disease. JCI Insight 2020; 5:132781. [PMID: 32554922 PMCID: PMC7406302 DOI: 10.1172/jci.insight.132781] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 06/03/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUNDCurrently recommended traditional spirometry outputs do not reflect the relative contributions of emphysema and airway disease to airflow obstruction. We hypothesized that machine-learning algorithms can be trained on spirometry data to identify these structural phenotypes.METHODSParticipants enrolled in a large multicenter study (COPDGene) were included. The data points from expiratory flow-volume curves were trained using a deep-learning model to predict structural phenotypes of chronic obstructive pulmonary disease (COPD) on CT, and results were compared with traditional spirometry metrics and an optimized random forest classifier. Area under the receiver operating characteristic curve (AUC) and weighted F-score were used to measure the discriminative accuracy of a fully convolutional neural network, random forest, and traditional spirometry metrics to phenotype CT as normal, emphysema-predominant (>5% emphysema), airway-predominant (Pi10 > median), and mixed phenotypes. Similar comparisons were made for the detection of functional small airway disease phenotype (>20% on parametric response mapping).RESULTSAmong 8980 individuals, the neural network was more accurate in discriminating predominant emphysema/airway phenotypes (AUC 0.80, 95%CI 0.79-0.81) compared with traditional measures of spirometry, FEV1/FVC (AUC 0.71, 95%CI 0.69-0.71), FEV1% predicted (AUC 0.70, 95%CI 0.68-0.71), and random forest classifier (AUC 0.78, 95%CI 0.77-0.79). The neural network was also more accurate in discriminating predominant emphysema/small airway phenotypes (AUC 0.91, 95%CI 0.90-0.92) compared with FEV1/FVC (AUC 0.80, 95%CI 0.78-0.82), FEV1% predicted (AUC 0.83, 95%CI 0.80-0.84), and with comparable accuracy with random forest classifier (AUC 0.90, 95%CI 0.88-0.91).CONCLUSIONSStructural phenotypes of COPD can be identified from spirometry using deep-learning and machine-learning approaches, demonstrating their potential to identify individuals for targeted therapies.TRIAL REGISTRATIONClinicalTrials.gov NCT00608764.FUNDINGThis study was supported by NIH grants K23 HL133438 and R21EB027891 and an American Thoracic Foundation 2018 Unrestricted Research Grant. The COPDGene study is supported by NIH grants NHLBI U01 HL089897 and U01 HL089856. The COPDGene study (NCT00608764) is also supported by the COPD Foundation through contributions made to an Industry Advisory Committee comprising AstraZeneca, Boehringer-Ingelheim, GlaxoSmithKline, Novartis, and Sunovion.
Collapse
Affiliation(s)
- Sandeep Bodduluri
- UAB Lung Imaging Core
- UAB Lung Health Center
- Division of Pulmonary, Allergy and Critical Care Medicine, and
| | - Arie Nakhmani
- Department of Electrical and Computer Engineering, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Joseph M. Reinhardt
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, USA
| | - Carla G. Wilson
- Department of Biostatistics and Bioinformatics, National Jewish Health, Denver, Colorado, USA
| | - Merry-Lynn McDonald
- UAB Lung Health Center
- Division of Pulmonary, Allergy and Critical Care Medicine, and
| | | | - Byron C. Jaeger
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nirav R. Bhakta
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University California, San Francisco, San Francisco, California, USA
| | - Peter J. Castaldi
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Frank C. Sciurba
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Chengcui Zhang
- Department of Computer Science, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Surya P. Bhatt
- UAB Lung Imaging Core
- UAB Lung Health Center
- Division of Pulmonary, Allergy and Critical Care Medicine, and
| |
Collapse
|
11
|
Increased Airway Wall Thickness in Interstitial Lung Abnormalities and Idiopathic Pulmonary Fibrosis. Ann Am Thorac Soc 2020; 16:447-454. [PMID: 30543456 DOI: 10.1513/annalsats.201806-424oc] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
RATIONALE There is increasing evidence that aberrant processes occurring in the airways may precede the development of idiopathic pulmonary fibrosis (IPF); however, there has been no prior confirmatory data derived from imaging studies. OBJECTIVES To assess quantitative measures of airway wall thickness (AWT) in populations characterized for interstitial lung abnormalities (ILA) and for IPF. METHODS Computed tomographic imaging of the chest and measures of AWT were available for 6,073, 615, 1,167, and 38 participants from COPDGene (Genetic Epidemiology of COPD study), ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints study), and the Framingham Heart Study (FHS) and in patients with IPF from the Brigham and Women's Hospital Herlihy Registry, respectively. To evaluate these associations, we used multivariable linear regression to compare a standardized measure of AWT (the square root of AWT for airways with an internal perimeter of 10 mm [Pi10]) and characterizations of ILA and IPF by computed tomographic imaging of the chest. RESULTS In COPDGene, ECLIPSE, and FHS, research participants with ILA had increased measures of Pi10 compared with those without ILA. Patients with IPF had mean measures of Pi10 that were even greater than those noted in research participants with ILA. After adjustment for important covariates (e.g., age, sex, race, body mass index, smoking behavior, and chronic obstructive pulmonary disease severity when appropriate), research participants with ILA had increased measures of Pi10 compared with those without ILA (0.03 mm in COPDGene, 95% confidence interval [CI], 0.02-0.03; P < 0.001; 0.02 mm in ECLIPSE, 95% CI, 0.005-0.04; P = 0.01; 0.07 mm in FHS, 95% CI, 0.01-0.1; P = 0.01). Compared with COPDGene participants without ILA older than 60 years of age, patients with IPF were also noted to have increased measures of Pi10 (2.0 mm, 95% CI, 2.0-2.1; P < 0.001). Among research participants with ILA, increases in Pi10 were correlated with reductions in lung volumes in some but not all populations. CONCLUSIONS These results demonstrate that measurable increases in AWT are consistently noted in research participants with ILA and in patients with IPF. These findings suggest that abnormalities of the airways may play a role in, or be correlated with, early pathogenesis of pulmonary fibrosis.
Collapse
|
12
|
Shimizu K, Tanabe N, Tho NV, Suzuki M, Makita H, Sato S, Muro S, Mishima M, Hirai T, Ogawa E, Nakano Y, Konno S, Nishimura M. Per cent low attenuation volume and fractal dimension of low attenuation clusters on CT predict different long-term outcomes in COPD. Thorax 2020; 75:116-122. [PMID: 31896733 DOI: 10.1136/thoraxjnl-2019-213525] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 10/31/2019] [Accepted: 11/17/2019] [Indexed: 11/03/2022]
Abstract
BACKGROUND Fractal dimension (D) characterises the size distribution of low attenuation clusters on CT and assesses the spatial heterogeneity of emphysema that per cent low attenuation volume (%LAV) cannot detect. This study tested the hypothesis that %LAV and D have different roles in predicting decline in FEV1, exacerbation and mortality in patients with COPD. METHODS Chest inspiratory CT scans in the baseline and longitudinal follow-up records for FEV1, exacerbation and mortality prospectively collected over 10 years in the Hokkaido COPD Cohort Study were examined (n=96). The associations between CT measures and long-term outcomes were replicated in the Kyoto University cohort (n=130). RESULTS In the Hokkaido COPD cohort, higher %LAV, but not D, was associated with a greater decline in FEV1 and 10-year mortality, whereas lower D, but not %LAV, was associated with shorter time to first exacerbation. Multivariable analysis for the Kyoto University cohort confirmed that lower D at baseline was independently associated with shorter time to first exacerbation and that higher LAV% was independently associated with increased mortality after adjusting for age, height, weight, FEV1 and smoking status. CONCLUSION These well-established cohorts clarify the different prognostic roles of %LAV and D, whereby lower D is associated with a higher risk of exacerbation and higher %LAV is associated with a rapid decline in lung function and long-term mortality. Combination of %LAV and fractal D may identify COPD subgroups at high risk of a poor clinical outcome more sensitively.
Collapse
Affiliation(s)
- Kaoruko Shimizu
- First Department of Medicine, Hokkaido University, School of Medicine, Sapporo, Japan
| | - Naoya Tanabe
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nguyen Van Tho
- Division of Respiratory Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Masaru Suzuki
- First Department of Medicine, Hokkaido University, School of Medicine, Sapporo, Japan
| | - Hironi Makita
- First Department of Medicine, Hokkaido University, School of Medicine, Sapporo, Japan.,Hokkaido Institute of Respiratory Diseases, Sapporo, Japan
| | - Susumu Sato
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shigeo Muro
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Respiratory Medicine, Nara Medical University, Nara, Japan
| | - Michiaki Mishima
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Noe Hospital, Osaka, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Emiko Ogawa
- Division of Respiratory Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Yasutaka Nakano
- Division of Respiratory Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Satoshi Konno
- First Department of Medicine, Hokkaido University, School of Medicine, Sapporo, Japan
| | - Masaharu Nishimura
- First Department of Medicine, Hokkaido University, School of Medicine, Sapporo, Japan.,Hokkaido Institute of Respiratory Diseases, Sapporo, Japan
| |
Collapse
|
13
|
Recent Advances in Computed Tomography Imaging in Chronic Obstructive Pulmonary Disease. Ann Am Thorac Soc 2019; 15:281-289. [PMID: 28812906 DOI: 10.1513/annalsats.201705-377fr] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lung imaging is increasingly being used to diagnose, quantify, and phenotype chronic obstructive pulmonary disease (COPD). Although spirometry is the gold standard for the diagnosis of COPD and for severity staging, the role of computed tomography (CT) imaging has expanded in both clinical practice and research. COPD is a heterogeneous disease with considerable variability in clinical features, radiographic disease, progression, and outcomes. Recent studies have examined the utility of CT imaging in enhancing diagnostic certainty, improving phenotyping, predicting disease progression and prognostication, selecting patients for intervention, and also in furthering our understanding of the complex pathophysiology of this disease. Multiple CT metrics show promise for use as imaging biomarkers in COPD.
Collapse
|
14
|
Longitudinal airway remodeling in active and past smokers in a lung cancer screening population. Eur Radiol 2018; 29:2968-2980. [PMID: 30552475 DOI: 10.1007/s00330-018-5890-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/07/2018] [Accepted: 11/13/2018] [Indexed: 10/27/2022]
Abstract
OBJECTIVES To longitudinally investigate smoking cessation-related changes of quantitative computed tomography (QCT)-based airway metrics in a group of heavy smokers. METHODS CT scans were acquired in a lung cancer screening population over 4 years at 12-month intervals in 284 long-term ex-smokers (ES), 405 continuously active smokers (CS), and 31 subjects who quitted smoking within 2 years after baseline CT (recent quitters, RQ). Total diameter (TD), lumen area (LA), and wall percentage (WP) of 1st-8th generation airways were computed using airway analysis software. Inter-group comparison was performed using Mann-Whitney U test or Student's t test (two groups), and ANOVA or ANOVA on ranks with Dunn's multiple comparison test (more than two groups), while Fisher's exact test or chi-squared test was used for categorical data. Multiple linear regression was used for multivariable analysis. RESULTS At any time, TD and LA were significantly higher in ES than CS, for example, in 5th-8th generation airways at baseline with 6.24 mm vs. 5.93 mm (p < 0.001) and 15.23 mm2 vs. 13.51 mm2 (p < 0.001), respectively. RQ showed higher TD (6.15 mm vs. 5.93 mm, n.s.) and significantly higher LA (14.77 mm2 vs. 13.51 mm2, p < 0.001) than CS after 3 years, and after 4 years. In multivariate analyses, smoking status independently predicted TD, LA, and WP at baseline, at 3 years and 4 years (p < 0.01-0.001), with stronger impact than pack years. CONCLUSIONS Bronchial dimensions depend on the smoking status. Smoking-induced airway remodeling can be partially reversible after smoking cessation even in long-term heavy smokers. Therefore, QCT-based airway metrics in clinical trials should consider the current smoking status besides pack years. KEY POINTS • Airway lumen and diameter are decreased in active smokers compared to ex-smokers, and there is a trend towards increased airway wall thickness in active smokers. • Smoking-related airway changes improve within 2 years after smoking cessation. • Smoking status is an independent predictor of airway dimensions.
Collapse
|
15
|
Hackx M, Gyssels E, Severo Garcia T, De Meulder I, Bruyneel M, Van Muylem A, Ninane V, Gevenois PA. Variability of CT Airways Measurements in COPD Patients Between Morning and Afternoon: Comparisons to Variability of Spirometric Measurements. Acad Radiol 2018; 25:1533-1539. [PMID: 29572050 DOI: 10.1016/j.acra.2018.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/13/2018] [Accepted: 02/28/2018] [Indexed: 11/19/2022]
Abstract
RATIONALE AND OBJECTIVES Computed tomography (CT) airways measurements can be used as surrogates to spirometric measurements for assessing bronchodilation in a particular patient with chronic obstructive pulmonary disease. Although spirometric measurements show variations within the opening hours of a hospital department, we aimed to compare the variability of CT airways measurements between morning and afternoon in patients with chronic obstructive pulmonary disease to that of spirometric measurements. MATERIALS AND METHODS Twenty patients had pulmonary function tests and CT around 8 am and 4 pm. Luminal area (LA) and wall thickness (WT) of third and fourth generation airways were measured twice by three readers. The percentage of airway area occupied by the wall (WA%) and the square root of wall area at an internal perimeter of 10 mm (√WAPi10) were calculated. The effects of examination time, reader, and measurement session on CT airways measurements were assessed, and the variability of these measurements was compared to that of spirometric measurements. RESULTS Variability of LA3rd and LA4th was greater than that of spirometric measurements (P values ranging from <.001 to .033). There was no examination time effect on √WAPi10, WT3rd, LA4th, or WA%4th (P values ranging from .102 to .712). There was a reader effect on all CT airways measurements (P values ranging from <.001 to .028), except in WT3rd (P> .999). There was no effect of measurement session on any CT airway measurement (P values ranging from .535 to >.999). CONCLUSION As the variability of LA3rd and LA4th is greater than that of spirometric measurements, clinical studies should include cohorts with larger numbers of patients when considering LA than when considering spirometric measurements as end points.
Collapse
Affiliation(s)
- Maxime Hackx
- Department of Radiology, Hôpital Erasme, Université libre de Bruxelles, 808 Route de Lennik, 1070
| | - Elodie Gyssels
- Department of Radiology, Hôpital Erasme, Université libre de Bruxelles, 808 Route de Lennik, 1070
| | - Tiago Severo Garcia
- Department of Radiology, Hôpital Erasme, Université libre de Bruxelles, 808 Route de Lennik, 1070
| | - Isabelle De Meulder
- Department of Pneumology, Centre Hospitalier Universitaire Saint-Pierre, Université libre de Bruxelles, Brussels, Belgium
| | - Marie Bruyneel
- Department of Pneumology, Centre Hospitalier Universitaire Saint-Pierre, Université libre de Bruxelles, Brussels, Belgium
| | - Alain Van Muylem
- Department of Pneumology, Hôpital Erasme, Université libre de Bruxelles, Brussels, Belgium
| | - Vincent Ninane
- Department of Pneumology, Centre Hospitalier Universitaire Saint-Pierre, Université libre de Bruxelles, Brussels, Belgium
| | - Pierre Alain Gevenois
- Department of Radiology, Hôpital Erasme, Université libre de Bruxelles, 808 Route de Lennik, 1070.
| |
Collapse
|
16
|
Oh YM, Lee KS, Hong Y, Hwang SC, Kim JY, Kim DK, Yoo KH, Lee JH, Kim TH, Lim SY, Rhee CK, Yoon HK, Lee SY, Park YB, Jung JH, Kim WJ, Lee SD, Park JH. Blood eosinophil count as a prognostic biomarker in COPD. Int J Chron Obstruct Pulmon Dis 2018; 13:3589-3596. [PMID: 30464441 PMCID: PMC6219410 DOI: 10.2147/copd.s179734] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background High blood eosinophil count is a predictive biomarker for response to inhaled corticosteroids in prevention of acute exacerbation of COPD, and low blood eosinophil count is associated with pneumonia risk in COPD patients taking inhaled corticosteroids. However, the prognostic role of blood eosinophil count remains underexplored. Therefore, we investigated the associated factors and mortality based on blood eosinophil count in COPD. Methods Patients with COPD were recruited from 16 hospitals of the Korean Obstructive Lung Disease cohort (n=395) and COPD in Dusty Area cohort (n=234) of Kangwon University Hospital. The two merged cohorts were divided based on blood eosinophil count into three groups: high (≥5%), middle (2%-5%), and low (<2%). Results The high group had longer six-minute walk distance (high =445.8±81.4, middle =428.5±88.0, and low =414.7±86.3 m), higher body mass index (23.3±3.1, 23.1±3.1, and 22.5±3.2 kg/m2), lower emphysema index (18.5±14.1, 22.2±15.3, and 23.7±16.3), and higher inspiratory capacity/total lung capacity ratio (32.6±7.4, 32.4±9.2, and 29.9% ± 8.9%) (P<0.05). The survival period increased with increasing blood eosinophil count (high =9.52±0.23, middle =8.47±1.94, and low =7.42±0.27 years, P<0.05). Multivariate linear regression analysis revealed that the emphysema index was independently and negatively correlated with blood eosinophil count (P<0.05). Conclusion In COPD, the severity of emphysema was independently linked with low blood eosinophil count and the longer survival period was associated with increased blood eosinophil count, though it was not proven in the multivariate analysis.
Collapse
Affiliation(s)
- Yeon-Mok Oh
- Department of Pulmonary and Critical Care Medicine and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Keu Sung Lee
- Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine, Suwon, Korea,
| | - Yoonki Hong
- Department of Internal Medicine and Environmental Health Center, Kangwon National University, Kangwon National University Hospital, Chuncheon, Korea
| | - Sung Chul Hwang
- Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine, Suwon, Korea,
| | - Jae Yeol Kim
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Deog Keom Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Kwang Ha Yoo
- Department of Internal Medicine, Konkuk University School of Medicine, Seoul, Korea
| | - Ji-Hyun Lee
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Tae-Hyung Kim
- Division of Pulmonology, Department of Internal Medicine, Hanyang University College of Medicine, Guri, Korea
| | - Seong Yong Lim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chin Kook Rhee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Seoul St Mary's Hospital, Catholic University of Korea, Seoul, Korea
| | - Hyoung Kyu Yoon
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Korea University Anam Hospital, Seoul, Korea
| | - Sang Yeub Lee
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Korea University Anam Hospital, Seoul, Korea
| | - Yong Bum Park
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Hallym University Kangdong Sacred Heart Hospital, Seoul, Korea
| | - Jin Hee Jung
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Korea
| | - Woo Jin Kim
- Department of Internal Medicine and Environmental Health Center, Kangwon National University, Kangwon National University Hospital, Chuncheon, Korea
| | - Sang-Do Lee
- Department of Pulmonary and Critical Care Medicine and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Joo Hun Park
- Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine, Suwon, Korea,
| |
Collapse
|
17
|
Bodduluri S, Puliyakote ASK, Gerard SE, Reinhardt JM, Hoffman EA, Newell JD, Nath HP, Han MK, Washko GR, San José Estépar R, Dransfield MT, Bhatt SP. Airway fractal dimension predicts respiratory morbidity and mortality in COPD. J Clin Invest 2018; 128:5374-5382. [PMID: 30256767 DOI: 10.1172/jci120693] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 09/11/2018] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is characterized by airway remodeling. Characterization of airway changes on computed tomography has been challenging due to the complexity of the recurring branching patterns, and this can be better measured using fractal dimensions. METHODS We analyzed segmented airway trees of 8,135 participants enrolled in the COPDGene cohort. The fractal complexity of the segmented airway tree was measured by the Airway Fractal Dimension (AFD) using the Minkowski-Bougliand box-counting dimension. We examined associations between AFD and lung function and respiratory morbidity using multivariable regression analyses. We further estimated the extent of peribronchial emphysema (%) within 5 mm of the airway tree, as this is likely to affect AFD. We classified participants into 4 groups based on median AFD, percentage of peribronchial emphysema, and estimated survival. RESULTS AFD was significantly associated with forced expiratory volume in one second (FEV1; P < 0.001) and FEV1/forced vital capacity (FEV1/FVC; P < 0.001) after adjusting for age, race, sex, smoking status, pack-years of smoking, BMI, CT emphysema, air trapping, airway thickness, and CT scanner type. On multivariable analysis, AFD was also associated with respiratory quality of life and 6-minute walk distance, as well as exacerbations, lung function decline, and mortality on longitudinal follow-up. We identified a subset of participants with AFD below the median and peribronchial emphysema above the median who had worse survival compared with participants with high AFD and low peribronchial emphysema (adjusted hazards ratio [HR]: 2.72; 95% CI: 2.20-3.35; P < 0.001), a substantial number of whom were not identified by traditional spirometry severity grades. CONCLUSION Airway fractal dimension as a measure of airway branching complexity and remodeling in smokers is associated with respiratory morbidity and lung function change, offers prognostic information additional to traditional CT measures of airway wall thickness, and can be used to estimate mortality risk. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT00608764. FUNDING This study was supported by NIH K23 HL133438 (SPB) and the COPDGene study (NIH Grant Numbers R01 HL089897 and R01 HL089856). The COPDGene project is also supported by the COPD Foundation through contributions made to an Industry Advisory Board comprised of AstraZeneca, Boehringer Ingelheim, Novartis, Pfizer, Siemens, Sunovion and GlaxoSmithKline.
Collapse
Affiliation(s)
- Sandeep Bodduluri
- Division of Pulmonary, Allergy and Critical Care Medicine.,UAB Lung Imaging Core, and.,UAB Lung Health Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Sarah E Gerard
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, USA
| | - Joseph M Reinhardt
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, USA
| | - Eric A Hoffman
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, USA.,Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - John D Newell
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, USA.,Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Hrudaya P Nath
- UAB Lung Imaging Core, and.,Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - MeiLan K Han
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - George R Washko
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Raúl San José Estépar
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mark T Dransfield
- Division of Pulmonary, Allergy and Critical Care Medicine.,UAB Lung Imaging Core, and.,UAB Lung Health Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Surya P Bhatt
- Division of Pulmonary, Allergy and Critical Care Medicine.,UAB Lung Imaging Core, and.,UAB Lung Health Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | -
- The COPDGene Investigators are detailed in the Supplemental Acknowledgments
| |
Collapse
|
18
|
Adams CJ, Capaldi DPI, Di Cesare R, McCormack DG, Parraga G. On the Potential Role of MRI Biomarkers of COPD to Guide Bronchoscopic Lung Volume Reduction. Acad Radiol 2018; 25:159-168. [PMID: 29051040 DOI: 10.1016/j.acra.2017.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/23/2017] [Accepted: 08/26/2017] [Indexed: 01/08/2023]
Abstract
RATIONALE AND OBJECTIVES In patients with severe emphysema and poor quality of life, bronchoscopic lung volume reduction (BLVR) may be considered and guided based on lobar emphysema severity. In particular, x-ray computed tomography (CT) emphysema measurements are used to identify the most diseased and the second-most diseased lobes as BLVR targets. Inhaled gas magnetic resonance imaging (MRI) also provides chronic obstructive pulmonary disease (COPD) biomarkers of lobar emphysema and ventilation abnormalities. Our objective was to retrospectively evaluate CT and MRI biomarkers of lobar emphysema and ventilation in patients with COPD eligible for BLVR. We hypothesized that MRI would provide complementary biomarkers of emphysema and ventilation that help determine the most appropriate lung lobar targets for BLVR in patients with COPD. MATERIALS AND METHODS We retrospectively evaluated 22 BLVR-eligible patients from the Thoracic Imaging Network of Canada cohort (diffusing capacity of the lung for carbon monoxide = 37 ± 12%predicted, forced expiratory volume in 1 second = 34 ± 7%predicted, total lung capacity = 131 ± 17%predicted, and residual volume = 216 ± 36%predicted). Lobar CT emphysema, measured using a relative area of <-950 Hounsfield units (RA950) and MRI ventilation defect percent, was independently used to rank lung lobe disease severity. RESULTS In 7 of 22 patients, there were different CT and MRI predictions of the most diseased lobe. In some patients, there were large ventilation defects in lobes not targeted by CT, indicative of a poorly ventilated lung. CT and MRI classification of the most diseased and the second-most diseased lobes showed a fair-to-moderate intermethod reliability (Cohen κ = 0.40-0.59). CONCLUSIONS In this proof-of-concept retrospective analysis, quantitative MRI ventilation and CT emphysema measurements provided different BLVR targets in over 30% of the patients. The presence of large MRI ventilation defects in lobes next to CT-targeted lobes might also change the decision to proceed or to guide BLVR to a different lobar target.
Collapse
Affiliation(s)
- Colin J Adams
- Robarts Research Institute, Western University, 1151 Richmond Street N, London, ON N6A 5B7, Canada; Department of Medicine, Western University, London, Ontario, Canada
| | - Dante P I Capaldi
- Robarts Research Institute, Western University, 1151 Richmond Street N, London, ON N6A 5B7, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Robert Di Cesare
- Robarts Research Institute, Western University, 1151 Richmond Street N, London, ON N6A 5B7, Canada
| | | | - Grace Parraga
- Robarts Research Institute, Western University, 1151 Richmond Street N, London, ON N6A 5B7, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada.
| |
Collapse
|
19
|
Crossley D, Renton M, Khan M, Low EV, Turner AM. CT densitometry in emphysema: a systematic review of its clinical utility. Int J Chron Obstruct Pulmon Dis 2018; 13:547-563. [PMID: 29445272 PMCID: PMC5808715 DOI: 10.2147/copd.s143066] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The aim of the study was to assess the relationship between computed tomography (CT) densitometry and routine clinical markers in patients with chronic obstructive pulmonary disease (COPD) and alpha-1 anti-trypsin deficiency (AATD). METHODS Multiple databases were searched using a combination of pertinent terms and those articles relating quantitatively measured CT densitometry to clinical outcomes. Studies that used visual scoring only were excluded, as were those measured in expiration only. A thorough review of abstracts and full manuscripts was conducted by 2 reviewers; data extraction and assessment of bias was conducted by 1 reviewer and the 4 reviewers independently assessed for quality. Pooled correlation coefficients were calculated, and heterogeneity was explored. RESULTS A total of 112 studies were identified, 82 being suitable for meta-analysis. The most commonly used density threshold was -950 HU, and a significant association between CT density and all included clinical parameters was demonstrated. There was marked heterogeneity between studies secondary to large variety of disease severity within commonly included cohorts and differences in CT acquisition parameters. CONCLUSION CT density shows a good relationship to clinically relevant parameters; however, study heterogeneity and lack of longitudinal data mean that it is difficult to compare studies or derive a minimal clinically important difference. We recommend that international consensus is reached to standardize CT conduct and analysis in future COPD and AATD studies.
Collapse
Affiliation(s)
- Diana Crossley
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- Correspondence: Diana Crossley, Institute of Inflammation and Ageing, Queen Elizabeth Hospital, Mindelsohn Way, Edgbaston, Birmingham, B15 2TH, UK, Tel +44 121 371 3885, Fax +44 121 371 3203, Email
| | - Mary Renton
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Muhammad Khan
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Emma V Low
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Alice M Turner
- Institute of Applied Health Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
20
|
Elbehairy AF, Parraga G, Webb KA, Neder JA, O’Donnell DE. Mild chronic obstructive pulmonary disease: why spirometry is not sufficient! Expert Rev Respir Med 2017; 11:549-563. [DOI: 10.1080/17476348.2017.1334553] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Amany F. Elbehairy
- Department of Medicine, Queen’s University and Kingston General Hospital, Kingston, ON, Canada
- Department of Chest Diseases, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Grace Parraga
- Department of Medical Biophysics, Robarts Research Institute, Western University, London, Canada
| | - Katherine A. Webb
- Department of Medicine, Queen’s University and Kingston General Hospital, Kingston, ON, Canada
| | - J Alberto Neder
- Department of Medicine, Queen’s University and Kingston General Hospital, Kingston, ON, Canada
| | - Denis E. O’Donnell
- Department of Medicine, Queen’s University and Kingston General Hospital, Kingston, ON, Canada
| |
Collapse
|
21
|
Bodduluri S, Bhatt SP, Hoffman EA, Newell JD, Martinez CH, Dransfield MT, Han MK, Reinhardt JM. Biomechanical CT metrics are associated with patient outcomes in COPD. Thorax 2017; 72:409-414. [PMID: 28044005 DOI: 10.1136/thoraxjnl-2016-209544] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/21/2016] [Accepted: 11/25/2016] [Indexed: 01/04/2023]
Abstract
BACKGROUND Traditional metrics of lung disease such as those derived from spirometry and static single-volume CT images are used to explain respiratory morbidity in patients with COPD, but are insufficient. We hypothesised that the mean Jacobian determinant, a measure of local lung expansion and contraction with respiration, would contribute independently to clinically relevant functional outcomes. METHODS We applied image registration techniques to paired inspiratory-expiratory CT scans and derived the Jacobian determinant of the deformation field between the two lung volumes to map local volume change with respiration. We analysed 490 participants with COPD with multivariable regression models to assess strengths of association between traditional CT metrics of disease and the Jacobian determinant with respiratory morbidity including dyspnoea (modified Medical Research Council), St Georges Respiratory Questionnaire (SGRQ) score, 6-min walk distance (6MWD) and the Body Mass Index, Airflow Obstruction, Dyspnoea and Exercise Capacity (BODE) index, as well as all-cause mortality. RESULTS The Jacobian determinant was significantly associated with SGRQ (adjusted regression coefficient β=-11.75,95% CI -21.6 to -1.7; p=0.020), and with 6MWD (β=321.15, 95% CI 134.1 to 508.1; p<0.001), independent of age, sex, race, body mass index, FEV1, smoking pack-years, CT emphysema, CT gas trapping, airway wall thickness and CT scanner type. The mean Jacobian determinant was also independently associated with the BODE index (β=-0.41, 95% CI -0.80 to -0.02; p=0.039) and mortality on follow-up (adjusted HR=4.26, 95% CI 0.93 to 19.23; p=0.064). CONCLUSIONS Biomechanical metrics representing local lung expansion and contraction improve prediction of respiratory morbidity and mortality and offer additional prognostic information beyond traditional measures of lung function and static single-volume CT metrics. TRIAL REGISTRATION NUMBER NCT00608764; Post-results.
Collapse
Affiliation(s)
- Sandeep Bodduluri
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, USA
| | - Surya P Bhatt
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA.,UAB Lung Health Center, University of Alabama at Birmingham, Birmingham, Alabama, USA.,UAB Lung Imaging Core, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Eric A Hoffman
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, USA.,Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - John D Newell
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, USA.,Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Carlos H Martinez
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Mark T Dransfield
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA.,UAB Lung Health Center, University of Alabama at Birmingham, Birmingham, Alabama, USA.,UAB Lung Imaging Core, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Meilan K Han
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Joseph M Reinhardt
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, USA
| | | |
Collapse
|
22
|
Emphysema Distribution and Diffusion Capacity Predict Emphysema Progression in Human Immunodeficiency Virus Infection. PLoS One 2016; 11:e0167247. [PMID: 27902753 PMCID: PMC5130231 DOI: 10.1371/journal.pone.0167247] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/10/2016] [Indexed: 11/25/2022] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) and emphysema are common amongst patients with human immunodeficiency virus (HIV). We sought to determine the clinical factors that are associated with emphysema progression in HIV. Methods 345 HIV-infected patients enrolled in an outpatient HIV metabolic clinic with ≥2 chest computed tomography scans made up the study cohort. Images were qualitatively scored for emphysema based on percentage involvement of the lung. Emphysema progression was defined as any increase in emphysema score over the study period. Univariate analyses of clinical, respiratory, and laboratory data, as well as multivariable logistic regression models, were performed to determine clinical features significantly associated with emphysema progression. Results 17.4% of the cohort were emphysema progressors. Emphysema progression was most strongly associated with having a low baseline diffusion capacity of carbon monoxide (DLCO) and having combination centrilobular and paraseptal emphysema distribution. In adjusted models, the odds ratio (OR) for emphysema progression for every 10% increase in DLCO percent predicted was 0.58 (95% confidence interval [CI] 0.41–0.81). The equivalent OR (95% CI) for centrilobular and paraseptal emphysema distribution was 10.60 (2.93–48.98). Together, these variables had an area under the curve (AUC) statistic of 0.85 for predicting emphysema progression. This was an improvement over the performance of spirometry (forced expiratory volume in 1 second to forced vital capacity ratio), which predicted emphysema progression with an AUC of only 0.65. Conclusion Combined paraseptal and centrilobular emphysema distribution and low DLCO could identify HIV patients who may experience emphysema progression.
Collapse
|
23
|
Tan WC, Hague CJ, Leipsic J, Bourbeau J, Zheng L, Li PZ, Sin DD, Coxson HO, Kirby M, Hogg JC, Raju R, Road J, O’Donnell DE, Maltais F, Hernandez P, Cowie R, Chapman KR, Marciniuk DD, FitzGerald JM, Aaron SD. Findings on Thoracic Computed Tomography Scans and Respiratory Outcomes in Persons with and without Chronic Obstructive Pulmonary Disease: A Population-Based Cohort Study. PLoS One 2016; 11:e0166745. [PMID: 27861566 PMCID: PMC5115801 DOI: 10.1371/journal.pone.0166745] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/02/2016] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Thoracic computed tomography (CT) scans are widely performed in clinical practice, often leading to detection of airway or parenchymal abnormalities in asymptomatic or minimally symptomatic individuals. However, clinical relevance of CT abnormalities is uncertain in the general population. METHODS We evaluated data from 1361 participants aged ≥40 years from a Canadian prospective cohort comprising 408 healthy never-smokers, 502 healthy ever-smokers, and 451 individuals with spirometric evidence of chronic obstructive pulmonary disease (COPD) who had thoracic CT scans. CT images of subjects were visually scored for respiratory bronchiolitis(RB), emphysema(E), bronchial-wall thickening(BWT), expiratory air-trapping(AT), and bronchiectasis(B). Multivariable logistic regression models were used to assess associations of CT features with respiratory symptoms, dyspnea, health status as determined by COPD assessment test, and risk of clinically significant exacerbations during 12 months follow-up. RESULTS About 11% of life-time never-smokers demonstrated emphysema on CT scans. Prevalence increased to 30% among smokers with normal lung function and 36%, 50%, and 57% among individuals with mild, moderate or severe/very severe COPD, respectively. Presence of emphysema on CT was associated with chronic cough (OR,2.11; 95%CI,1.4-3.18); chronic phlegm production (OR,1.87; 95% CI,1.27-2.76); wheeze (OR,1.61; 95% CI,1.05-2.48); dyspnoea (OR,2.90; 95% CI,1.41-5.98); CAT score≥10(OR,2.17; 95%CI,1.42-3.30) and risk of ≥2 exacerbations over 12 months (OR,2.17; 95% CI, 1.42-3.0). CONCLUSIONS Burden of thoracic CT abnormalities is high among Canadians ≥40 years of age, including never-smokers and smokers with normal lung function. Detection of emphysema on CT scans is associated with pulmonary symptoms and increased risk of exacerbations, independent of smoking or lung function.
Collapse
Affiliation(s)
- Wan C. Tan
- Center for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Cameron J. Hague
- Department of Radiology, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Jonathon Leipsic
- Department of Radiology, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Jean Bourbeau
- Respiratory Epidemiology and Clinical Research Unit, Montreal Chest Institute, McGill University, Montréal, QC, Canada
| | - Liyun Zheng
- Center for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Pei Z. Li
- Respiratory Epidemiology and Clinical Research Unit, Montreal Chest Institute, McGill University, Montréal, QC, Canada
| | - Don D. Sin
- Center for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Harvey O. Coxson
- Center for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Miranda Kirby
- Center for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - James C. Hogg
- Center for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Rekha Raju
- Department of Radiology, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Jeremy Road
- University of British Columbia, Vancouver General Hospital, Institute for Heart and Lung Health, Vancouver, BC, Canada
| | - Denis E. O’Donnell
- Division of Respiratory & Critical Care Medicine, Queen’s University, Kingston, ON, Canada
| | - Francois Maltais
- Hospital Laval, Centre de Pneumologie, Institute Universitaire de Cardiologie et de Pneumologie de Quebec, Universite Laval, Quebec, QC, Canada
| | - Paul Hernandez
- Division of Respirology, QEII Health Sciences Centre, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Robert Cowie
- Departments of Medicine and Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| | | | - Darcy D. Marciniuk
- Division of Respirology, Critical Care and Sleep Medicine, and Airway research Group, University of Saskatchewan, Saskatoon, SK, Canada
| | - J. Mark FitzGerald
- University of British Columbia, Vancouver General Hospital, Institute for Heart and Lung Health, Vancouver, BC, Canada
| | - Shawn D. Aaron
- Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | | |
Collapse
|
24
|
Saure EW, Bakke PS, Lind Eagan TM, Aanerud M, Jensen RL, Grydeland TB, Johannessen A, Nilsen RM, Thorsen E, Hardie JA. Diffusion capacity and CT measures of emphysema and airway wall thickness - relation to arterial oxygen tension in COPD patients. Eur Clin Respir J 2016; 3:29141. [PMID: 27178139 PMCID: PMC4867045 DOI: 10.3402/ecrj.v3.29141] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 03/15/2016] [Accepted: 03/21/2016] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Decreased diffusing capacity of the lung for carbon monoxide (DLCO) is associated with emphysema. DLCO is also related to decreased arterial oxygen tension (PaO2), but there are limited data on associations between PaO2 and computed tomography (CT) derived measures of emphysema and airway wall thickness. OBJECTIVE To examine whether CT measures of emphysema and airway wall thickness are associated with level of arterial oxygen tension beyond that provided by measurements of diffusion capacity and spirometry. METHODS The study sample consisted of 271 smoking or ex-smoking COPD patients from the Bergen COPD Cohort Study examined in 2007-2008. Emphysema was assessed as percent of low-attenuation areas<-950 Hounsfield units (%LAA), and airway wall thickness as standardised measure at an internal perimeter of 10 mm (AWT-Pi10). Multiple linear regression models were fitted with PaO2 as the outcome variable, and %LAA, AWT-Pi10, DLCO and carbon monoxide transfer coefficient (KCO) as main explanatory variables. The models were adjusted for sex, age, smoking status, and haemoglobin concentration, as well as forced expiratory volume in one second (FEV1). RESULTS Sixty two per cent of the subjects were men, mean (SD) age was 64 (7) years, mean (SD) FEV1 in percent predicted was 50 (15)%, and mean PaO2 (SD) was 9.3 (1.1) kPa. The adjusted regression coefficient (CI) for PaO2 was -0.32 (-0.04-(-0.019)) per 10% increase in %LAA (p<0.01). When diffusion capacity and FEV1 were added to the model, respectively, the association lost its statistical significance. No relationship between airway wall thickness and PaO2 was found. CONCLUSION CT assessment of airway wall thickness is not associated with arterial oxygen tension in COPD patients. Emphysema score measured by chest CT, is related to decreased PaO2, but cannot replace measurements of diffusion capacity in the clinical evaluation of hypoxaemia.
Collapse
Affiliation(s)
- Eirunn Waatevik Saure
- Department of Clinical Science, Pulmonary Division, University of Bergen, Bergen, Norway;
| | - Per Sigvald Bakke
- Department of Clinical Science, Pulmonary Division, University of Bergen, Bergen, Norway
| | - Tomas Mikal Lind Eagan
- Department of Clinical Science, Pulmonary Division, University of Bergen, Bergen, Norway.,Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | - Marianne Aanerud
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Robert Leroy Jensen
- Internal Medicine, Pulmonary Division, University of Utah, Salt Lake City, Utah, USA
| | | | - Ane Johannessen
- Department of Clinical Science, Pulmonary Division, University of Bergen, Bergen, Norway
| | - Roy Miodini Nilsen
- Centre for Clinical Research, Haukeland University Hospital, Bergen, Norway
| | - Einar Thorsen
- Department of Clinical Science, Pulmonary Division, University of Bergen, Bergen, Norway
| | - Jon Andrew Hardie
- Department of Clinical Science, Pulmonary Division, University of Bergen, Bergen, Norway
| |
Collapse
|
25
|
Kirby M, Lane P, Coxson HO. Measurement of pulmonary structure and function. IMAGING 2016. [DOI: 10.1183/2312508x.10003415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
26
|
Besutti G, Raggi P, Zona S, Scaglioni R, Santoro A, Orlando G, Ligabue G, Leipsic J, Sin DD, Man SFP, Guaraldi G. Independent association of subclinical coronary artery disease and emphysema in HIV-infected patients. HIV Med 2015; 17:178-87. [PMID: 26268373 DOI: 10.1111/hiv.12289] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2015] [Indexed: 01/24/2023]
Abstract
OBJECTIVES Chronic obstructive pulmonary disease (COPD) and coronary artery disease are inflammatory states with a significant clinical impact. The relationship between them has not been investigated in patients with HIV infection. We assessed the presence of subclinical emphysema and coronary artery disease using chest computed tomography (CT) imaging in a cohort of HIV-infected patients receiving antiretroviral therapy. METHODS Gated chest CT scans were performed in 1446 consecutive patients to assess the presence and severity of coronary artery calcium (CAC) (classified as a score of 0, 1-100 or > 100) and emphysema (classified using a visual semiquantitative scale: 0, absent; 1-4, mild to moderate; > 4, severe). Univariable and multivariable logistic regression analyses were performed to identify factors independently associated with CAC and emphysema. RESULTS The emphysema score was significantly higher in patients with CAC scores of 1-100 and > 100 compared with those with a CAC score of 0. After adjustments for age, sex, smoking status, pack-years of smoking, visceral adiposity and duration of HIV infection, the presence of any emphysema was significantly associated with a CAC score > 0 [odds ratio (OR) 1.43; 95% confidence interval (CI) 1.08-1.88; P = 0.012]. The association persisted after adjustment for the Framingham risk score (OR 1.52; 95% CI 1.16-1.99; P = 0.002). There was a dose-dependent effect in the association between emphysema score and CAC score. CONCLUSIONS In this cross-sectional study of HIV-infected patients, there was an independent association between emphysema and CAC, after adjustment for traditional cardiovascular risk factors, suggesting a common pathogenesis of these chronic inflammatory conditions in a chronic inflammatory disease such as HIV infection.
Collapse
Affiliation(s)
- G Besutti
- Department of Radiology, University of Modena and Reggio Emilia, Modena, Italy
| | - P Raggi
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - S Zona
- Department of Medical and Surgical Sciences for Children & Adults (Infectious Disease Clinic), University of Modena and Reggio Emilia, Modena, Italy
| | - R Scaglioni
- Department of Radiology, University of Modena and Reggio Emilia, Modena, Italy
| | - A Santoro
- Department of Medical and Surgical Sciences for Children & Adults (Infectious Disease Clinic), University of Modena and Reggio Emilia, Modena, Italy
| | - G Orlando
- Department of Medical and Surgical Sciences for Children & Adults (Infectious Disease Clinic), University of Modena and Reggio Emilia, Modena, Italy
| | - G Ligabue
- Department of Radiology, University of Modena and Reggio Emilia, Modena, Italy
| | - J Leipsic
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - D D Sin
- Department of Medicine (Respiratory Division), University of British Columbia, Vancouver, BC, Canada.,UBC James Hogg Research Center, St Paul's Hospital, Vancouver, BC, Canada
| | - S F P Man
- Department of Medicine (Respiratory Division), University of British Columbia, Vancouver, BC, Canada.,UBC James Hogg Research Center, St Paul's Hospital, Vancouver, BC, Canada
| | - G Guaraldi
- Department of Medical and Surgical Sciences for Children & Adults (Infectious Disease Clinic), University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
27
|
Kirby M, Pike D, Sin DD, Coxson HO, McCormack DG, Parraga G. COPD: Do Imaging Measurements of Emphysema and Airway Disease Explain Symptoms and Exercise Capacity? Radiology 2015; 277:872-80. [PMID: 26151081 DOI: 10.1148/radiol.2015150037] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To determine the role of imaging measurements of emphysema and airway disease in determining chronic obstructive pulmonary disease (COPD) symptoms and exercise limitation in patients with COPD, particularly in patients with mild-to-moderate disease. MATERIALS AND METHODS Participants (n = 116) with Global Initiative for Chronic Obstructive Lung Disease (GOLD) grade U (unclassified) or grade I-IV COPD provided informed consent to an ethics board-approved HIPAA-compliant protocol and underwent spirometry and plethysmography, completed the St George's Respiratory Questionnaire (SGRQ), completed a 6-minute walk test for the 6-minute walk distance (6MWD), and underwent hyperpolarized helium 3 ((3)He) magnetic resonance (MR) imaging and computed tomography (CT). Emphysema was estimated by using the MR imaging apparent diffusion coefficient (ADC) and the relative area of the CT attenuation histogram with attenuation of -950 HU or less (RA950). Airway disease was measured by using the CT airway wall thickness of airways with an internal perimeter of 10 mm and total airway count. Ventilation defect percentage at (3)He MR imaging was used to measure ventilation. Multivariable regression models for the 6MWD and SGRQ symptom subscore were used to evaluate the relationships between physiologic and imaging measurements. RESULTS Multivariate modeling for the 6MWD in 80 patients with GOLD grade U-II COPD showed that ADC (β = 0.34, P = .04), diffusing capacity of the lung for carbon monoxide (β = 0.60, P = .0008), and residual volume/total lung capacity (β = -0.26, P = .02) were significant variables, while forced expiratory volume in 1 second (FEV1) and airway disease measurements were not. In 36 patients with GOLD grade III or IV disease, FEV1 (β = 0.48, P = .01) was the only significant contributor in a multivariate model for 6MWD. MR imaging emphysema measurements also made the greatest relative contribution to symptoms in patients with milder (GOLD grade U-II) COPD (ADC: β = 0.60, P = .005; RA950: β = -0.52, P = .02; FEV1: β = -0.45, P = .0002) and in grade III or IV disease (ADC: β = 0.95, P = .01; RA950: β = -0.62, P = .07; airway count: β = -0.49, P = .01). CONCLUSION In patients with mild-to-moderate COPD, MR imaging emphysema measurements played a dominant role in the expression of exercise limitation, while both CT and MR imaging measurements of emphysema explained symptoms.
Collapse
Affiliation(s)
- Miranda Kirby
- From the James Hogg Research Centre, the University of British Columbia and the Institute of Heart and Lung Health, St Paul's Hospital, Vancouver, BC, Canada (M.K., D.D.S., H.O.C.); Imaging Research Laboratories, Robarts Research Institute (D.P., G.P.), and Department of Medical Biophysics (D.P., G.P.) and Division of Respirology, Department of Medicine (D.G.M.), the University of Western Ontario, 1151 Richmond St N, London, ON, Canada N6A 5B7
| | - Damien Pike
- From the James Hogg Research Centre, the University of British Columbia and the Institute of Heart and Lung Health, St Paul's Hospital, Vancouver, BC, Canada (M.K., D.D.S., H.O.C.); Imaging Research Laboratories, Robarts Research Institute (D.P., G.P.), and Department of Medical Biophysics (D.P., G.P.) and Division of Respirology, Department of Medicine (D.G.M.), the University of Western Ontario, 1151 Richmond St N, London, ON, Canada N6A 5B7
| | - Don D Sin
- From the James Hogg Research Centre, the University of British Columbia and the Institute of Heart and Lung Health, St Paul's Hospital, Vancouver, BC, Canada (M.K., D.D.S., H.O.C.); Imaging Research Laboratories, Robarts Research Institute (D.P., G.P.), and Department of Medical Biophysics (D.P., G.P.) and Division of Respirology, Department of Medicine (D.G.M.), the University of Western Ontario, 1151 Richmond St N, London, ON, Canada N6A 5B7
| | - Harvey O Coxson
- From the James Hogg Research Centre, the University of British Columbia and the Institute of Heart and Lung Health, St Paul's Hospital, Vancouver, BC, Canada (M.K., D.D.S., H.O.C.); Imaging Research Laboratories, Robarts Research Institute (D.P., G.P.), and Department of Medical Biophysics (D.P., G.P.) and Division of Respirology, Department of Medicine (D.G.M.), the University of Western Ontario, 1151 Richmond St N, London, ON, Canada N6A 5B7
| | - David G McCormack
- From the James Hogg Research Centre, the University of British Columbia and the Institute of Heart and Lung Health, St Paul's Hospital, Vancouver, BC, Canada (M.K., D.D.S., H.O.C.); Imaging Research Laboratories, Robarts Research Institute (D.P., G.P.), and Department of Medical Biophysics (D.P., G.P.) and Division of Respirology, Department of Medicine (D.G.M.), the University of Western Ontario, 1151 Richmond St N, London, ON, Canada N6A 5B7
| | - Grace Parraga
- From the James Hogg Research Centre, the University of British Columbia and the Institute of Heart and Lung Health, St Paul's Hospital, Vancouver, BC, Canada (M.K., D.D.S., H.O.C.); Imaging Research Laboratories, Robarts Research Institute (D.P., G.P.), and Department of Medical Biophysics (D.P., G.P.) and Division of Respirology, Department of Medicine (D.G.M.), the University of Western Ontario, 1151 Richmond St N, London, ON, Canada N6A 5B7
| |
Collapse
|
28
|
Lee JH, McDonald MLN, Cho MH, Wan ES, Castaldi PJ, Hunninghake GM, Marchetti N, Lynch DA, Crapo JD, Lomas DA, Coxson HO, Bakke PS, Silverman EK, Hersh CP. DNAH5 is associated with total lung capacity in chronic obstructive pulmonary disease. Respir Res 2014; 15:97. [PMID: 25134640 PMCID: PMC4169636 DOI: 10.1186/s12931-014-0097-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 08/07/2014] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is characterized by expiratory flow limitation, causing air trapping and lung hyperinflation. Hyperinflation leads to reduced exercise tolerance and poor quality of life in COPD patients. Total lung capacity (TLC) is an indicator of hyperinflation particularly in subjects with moderate-to-severe airflow obstruction. The aim of our study was to identify genetic variants associated with TLC in COPD. METHODS We performed genome-wide association studies (GWASs) in white subjects from three cohorts: the COPDGene Study; the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE); and GenKOLS (Bergen, Norway). All subjects were current or ex-smokers with at least moderate airflow obstruction, defined by a ratio of forced expiratory volume in 1 second to forced vital capacity (FEV1/FVC) <0.7 and FEV1 < 80% predicted on post-bronchodilator spirometry. TLC was calculated by using volumetric computed tomography scans at full inspiration (TLCCT). Genotyping in each cohort was completed, with statistical imputation of additional markers. To find genetic variants associated with TLCCT, linear regression models were used, with adjustment for age, sex, pack-years of smoking, height, and principal components for genetic ancestry. Results were summarized using fixed-effect meta-analysis. RESULTS Analysis of a total of 4,543 COPD subjects identified one genome-wide significant locus on chromosome 5p15.2 (rs114929486, β = 0.42L, P = 4.66 × 10-8). CONCLUSIONS In COPD, TLCCT was associated with a SNP in dynein, axonemal, heavy chain 5 (DNAH5), a gene in which genetic variants can cause primary ciliary dyskinesia. DNAH5 could have an effect on hyperinflation in COPD.
Collapse
Affiliation(s)
- Jin Hwa Lee
- />Channing Division of Network Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA
- />Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, School of Medicine, Ewha Womans University, Seoul, South Korea
| | - Merry-Lynn N McDonald
- />Channing Division of Network Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA
| | - Michael H Cho
- />Channing Division of Network Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA
- />Division of Pulmonary and Critical Care, Brigham and Women’s Hospital, Boston, MA USA
| | - Emily S Wan
- />Channing Division of Network Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA
- />Division of Pulmonary and Critical Care, Brigham and Women’s Hospital, Boston, MA USA
| | - Peter J Castaldi
- />Channing Division of Network Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA
| | - Gary M Hunninghake
- />Division of Pulmonary and Critical Care, Brigham and Women’s Hospital, Boston, MA USA
| | - Nathaniel Marchetti
- />Division of Pulmonary and Critical Care Medicine, Department of Medicine, Temple University School of Medicine, Philadelphia, PA USA
| | | | | | - David A Lomas
- />Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Harvey O Coxson
- />Department of Radiology, University of British Columbia, Vancouver, Canada
| | - Per S Bakke
- />Department of Clinical Science, University of Bergen, Bergen, Norway
- />Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | - Edwin K Silverman
- />Channing Division of Network Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA
- />Division of Pulmonary and Critical Care, Brigham and Women’s Hospital, Boston, MA USA
| | - Craig P Hersh
- />Channing Division of Network Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA
- />Division of Pulmonary and Critical Care, Brigham and Women’s Hospital, Boston, MA USA
| | - the COPDGene and ECLIPSE Investigators
- />Channing Division of Network Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA
- />Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, School of Medicine, Ewha Womans University, Seoul, South Korea
- />Division of Pulmonary and Critical Care, Brigham and Women’s Hospital, Boston, MA USA
- />Division of Pulmonary and Critical Care Medicine, Department of Medicine, Temple University School of Medicine, Philadelphia, PA USA
- />National Jewish Health, Denver, CO USA
- />Wolfson Institute for Biomedical Research, University College London, London, UK
- />Department of Radiology, University of British Columbia, Vancouver, Canada
- />Department of Clinical Science, University of Bergen, Bergen, Norway
- />Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
29
|
Zhang J, Lin XF, Bai CX. Comparison of clinical features between non-smokers with COPD and smokers with COPD: a retrospective observational study. Int J Chron Obstruct Pulmon Dis 2014; 9:57-63. [PMID: 24426780 PMCID: PMC3890400 DOI: 10.2147/copd.s52416] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background Smoking is a major risk factor for chronic obstructive pulmonary disease (COPD); however, the similarities and differences in clinical presentation between smokers and nonsmokers are not fully described in patients with COPD. This study was designed to address this issue in a general teaching hospital in the People’s Republic of China. Methods The medical records of patients hospitalized with a lung mass for further evaluation at Zhongshan Hospital, Fudan University, from January 2006 to December 2010 were reviewed and the data of interest were collected. The definition of COPD was according to Global Initiative for Chronic Obstructive Lung Disease (GOLD) spirometric criteria. Participants who had a previous exacerbation within 4 weeks of admission, airflow limitation due to abnormalities in the large airways, or with other pulmonary diseases were excluded. Included subjects were divided into nonsmokers with COPD and smokers with COPD by a cutoff of a 5 pack-year smoking history. Results A total of 605 subjects were included in the final analysis. The average age was 64.8±8.5 years and 62.0% (375/605) were smokers. Eighty percent of the patients had mild to moderate disease (GOLD grade 1–2). Age and years with COPD were comparable between the two groups. Compared with smokers with COPD, nonsmokers with COPD were more likely to be female, reported less chronic cough and sputum, have less emphysema on radiologic examination, and higher measures of forced expiratory volume in the first second percent predicted (FEV1), forced expiratory volume in one second/forced vital capacity (FEV1/FVC%) percent predicted, maximal voluntary ventilation percent predicted, diffusing capacity of lung (DLCO) percent predicted, and DLCO/alveolar volume percent predicted, with lower levels of residual volume percent predicted and residual volume/total lung capacity percent predicted. There were no significant differences between the two groups with regard to distribution of disease severity, vital capacity percent predicted, total lung capacity percent predicted, PaO2, PaCO2, modified Medical Research Council dyspnea score, wheezing, airway reversibility, and comorbidities. Smoking amount (pack-years) was correlated negatively with FEV1 percent predicted, FEV1/FVC% percent predicted, inspiratory capacity percent predicted, inspiratory capacity/total lung capacity percent predicted, and DLCO percent predicted, and correlated positively with GOLD grade and symptoms. Conclusion Non-smokers with COPD had less impairment in airflow limitation and gas exchange, and a lower prevalence of emphysema, chronic cough, and sputum compared with their smoking counterparts. Tobacco cessation is warranted in smokers with COPD.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pulmonary Medicine, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Xin-feng Lin
- Department of Pulmonary Medicine, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Chun-xue Bai
- Department of Pulmonary Medicine, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|