1
|
Wolska-Gębarzewska M, Międzobrodzki J, Kosecka-Strojek M. Current types of staphylococcal cassette chromosome mec (SCC mec) in clinically relevant coagulase-negative staphylococcal (CoNS) species. Crit Rev Microbiol 2024; 50:1020-1036. [PMID: 37882662 DOI: 10.1080/1040841x.2023.2274841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023]
Abstract
Coagulase-negative staphylococci (CoNS) colonize human skin and mucosal membranes, which is why they are considered harmless commensal bacteria. Two species, Staphylococcus epidermidis and Staphylococcus haemolyticus belong to the group of CoNS species and are most frequently isolated from nosocomial infections, including device-associated healthcare-associated infections (DA-HAIs) and local or systemic body-related infections (FBRIs). Methicillin resistance, initially described in Staphylococcus aureus, has also been reported in CoNS species. It is mediated by the mecA gene within the staphylococcal cassette chromosome (SCCmec). SCCmec typing, primarily using PCR-based methods, has been employed as a molecular epidemiological tool. However, the introduction of whole genome sequencing (WGS) and next-generation sequencing (NGS) has enabled the identification and verification of new SCCmec types. This review describes the current distribution of SCCmec types, subtypes, and variants among CoNS species, including S. epidermidis, S. haemolyticus, and S. capitis. The literature review focuses on recent research articles from the past decade that discuss new combinations of SCCmec in coagulase-negative Staphylococcus. The high genetic diversity and gaps in CoNS SCCmec annotation rules underscore the need for an efficient typing system. Typing SCCmec cassettes in CoNS strains is crucial to continuously updating databases and developing a unified classification system.
Collapse
Affiliation(s)
- Mariola Wolska-Gębarzewska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Jacek Międzobrodzki
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Maja Kosecka-Strojek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
2
|
Souza TGVD, Santana JA, Claudino MMS, Pereira ST, Xavier RGC, do Amarante VS, de Castro YG, Dorneles EMS, Aburjaile FF, de Carvalho VA, Brenig B, Silva ROS. Occurrence, genetic diversity, and antimicrobial resistance of methicillin-resistant Staphylococcus spp. in hospitalized and non-hospitalized cats in Brazil. PLoS One 2024; 19:e0309711. [PMID: 39361625 PMCID: PMC11449366 DOI: 10.1371/journal.pone.0309711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/16/2024] [Indexed: 10/05/2024] Open
Abstract
Methicillin-resistant Staphylococci (MRS) cause infections at various sites and exhibit multidrug resistance. Despite their importance in veterinary medicine, only little is known about Staphylococcus spp. colonizing and infecting cats. Therefore, in this study, we aimed to isolate and identify Staphylococcus spp. colonizing hospitalized and non-hospitalized domestic cats and analyze their antimicrobial resistance profiles, genetic diversity, and risk factors associated with MRS colonization. A total of 218 oral and axillary swabs were obtained from 109 cats, including 77 non-hospitalized and 32 hospitalized cats. After plating on selective media, the isolates were identified via matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and rpoB and 16S rRNA gene sequencing. Subsequently, antimicrobial sensitivity of the strains was assessed, and they were screened for mecA gene. Methicillin-resistant S. haemolyticus (MRSH) isolates were subjected to multilocus sequence typing, whereas methicillin-resistant S. pseudintermedius (MRSP) and S. felis isolates were subjected to whole genome sequencing. S. felis was most commonly isolated from non-hospitalized cats (28.1%), whereas S. pseudintermedius and MRS were commonly isolated from hospitalized cats (25%). MRSH isolates from hospitalized animals were classified as ST3. The identified MRSP strains belonged to two well-known sequence types, ST551 and ST71. Moreover, antimicrobial use (p = 0.0001), hospitalization (p = 0.0141), and comorbidities (p = 0.002) were associated with increased MRS prevalence in cats.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Bertram Brenig
- Institute of Veterinary Medicine, University of Göttingen, Göttingen, Germany
| | | |
Collapse
|
3
|
Menezes B, Alves I, Staudt K, Beltrame B, Michelin L, de Araújo BV, Tasso L. PK/PD modeling of daptomycin against MRSA and MRSE and Monte Carlo simulation for bacteremia treatment. Braz J Microbiol 2021; 52:1967-1979. [PMID: 34337679 DOI: 10.1007/s42770-021-00582-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 07/11/2021] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVES The aim of this study was to investigate the effect of daptomycin against methicillin-resistant staphylococci (MRSA and MRSE) bacteremia using computer modeling. METHODS A pharmacokinetic/pharmacodynamic (PK/PD) modeling strategy to explain the data from an in vitro dynamic model employing time-kill curves for MRSA and MRSE was proposed. Bacterial killing was followed over time by determining viable counts and the resulting time-kill data was analyzed. Monte Carlo simulations were performed using pharmacokinetic parameters and pharmacodynamic data to determine the probabilities of target attainment and cumulative fractions of response in terms of area under the concentration curve/minimum inhibition concentration (MIC) targets of daptomycin. Simulations were conducted to assess the reduction in the number of colony-forming units (CFU)/mL for 18 days of treatment with daptomycin at doses of 6, 8, and 10 mg/kg/24 h or 48 h with variations in creatinine clearance (CLCR): 15-29 mL/min/1.73 m2, 30-49 mL/min/1.73 m2, 50-100 mL/min/1.73 m2, as well as for defining the probability of reaching the target fAUC/MIC = 80 in the same dose and clearance range. A PK/PD model with saturation in the number of bacteria in vitro, growth delay, and bacterial death, as well as Hill's factor, was used to describe the data for both MRSA and MRSE. RESULTS Monte Carlo simulations showed that for MRSA there was a reduction > 2 log CFU/mL with doses ≥ 6 mg/kg/day in 75th percentile of the simulated population after 18 days of treatment with daptomycin, whereas for MRSE this reduction was observed in 95th percentile of the population. CONCLUSIONS The presented in vitro PK/PD model and associated modeling approach were able to characterize the time-kill kinetics of MRSA and MRSE. Our study based on PTAs suggests that doses ≥ 6 mg/kg/day of daptomycin should be used to treat bacteremia caused by MRSA and MRSE in patients with CLCR of 15-29 mL/min/1.73 m2. For patients with CLCR ≥ 50 mL/min/1.73 m2, it would be necessary to employ a dose of 10 mg/kg/day to treat complicated bacteremias.
Collapse
Affiliation(s)
- Bruna Menezes
- Programa de Pós-Graduação Em Biotecnologia, Universidade de Caxias Do Sul, Caxias do Sul, Brazil
| | - Izabel Alves
- Programa de Pós-Graduação Em Ciências Farmacêuticas, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Keli Staudt
- Programa de Pós-Graduação Em Ciências Farmacêuticas, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Betina Beltrame
- Curso de Farmácia, Universidade de Caxias Do Sul, Caxias do Sul, Brazil
| | - Lessandra Michelin
- Programa de Pós-Graduação Em Ciências da Saúde, Universidade de Caxias Do Sul, Rua Francisco Getúlio Vargas, Caxias do Sul, 1130, 95070-560, Brazil
| | - Bibiana Verlindo de Araújo
- Programa de Pós-Graduação Em Ciências Farmacêuticas, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Leandro Tasso
- Programa de Pós-Graduação Em Biotecnologia, Universidade de Caxias Do Sul, Caxias do Sul, Brazil. .,Programa de Pós-Graduação Em Ciências da Saúde, Universidade de Caxias Do Sul, Rua Francisco Getúlio Vargas, Caxias do Sul, 1130, 95070-560, Brazil.
| |
Collapse
|
4
|
da Silva Abreu AC, Matos LG, da Silva Cândido TJ, Barboza GR, de Souza VVMA, Munive Nuñez KV, Cirone Silva NC. Antimicrobial resistance of Staphylococcus spp. isolated from organic and conventional Minas Frescal cheese producers in São Paulo, Brazil. J Dairy Sci 2021; 104:4012-4022. [PMID: 33516545 DOI: 10.3168/jds.2020-19338] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/02/2020] [Indexed: 12/22/2022]
Abstract
The genus Staphylococcus is recognized worldwide as a cause of bacterial infections in humans and animals. Antibiotics used in dairy cattle combined with ineffective control can increase antimicrobial resistance. The objective of this study was to characterize 95 Staphylococcus strains isolated from organic and conventional Minas Frescal cheese production regarding antibiotic resistance (phenotype and genotype), presence of sanitizer-resistant genes and biofilm-formation genes, and SCCmec typing. Most strains (25.3%) showed higher resistance to penicillin, followed by oxacillin (21.1%) and clindamycin (11.6%). Among antibiotic resistance genes, the most prevalent were blaZ (25.3%), mecA (13.7%), lsaB (6.3%), msrA (4.2%), ant4 (3.2%), and tetM (2.1%); among sanitizer-resistance genes they were qacA/B (5.3%) and qacC (6.3%); and among biofilm, bap (4.2%), icaA (29.5%), icaD (41.1%). However, there was no statistically significant difference between organic and conventional dairy products, possibly due to the lack of synthetic antibiotic use on conventional farms during the sample collection period. Methicillin-resistant Staphylococcus aureus (MRSA) had their SCCmec identified as types I and IVc, and the methicillin-resistant coagulase-negative staphylococci had nontypeable SCCmec. These results suggest that there are antibiotic-resistant strains in both organic and conventional Minas Frescal cheese production in the state of São Paulo, Brazil. This supports the idea that improved quality control is needed from the milking stage up to the final product.
Collapse
Affiliation(s)
| | - Luiz Gustavo Matos
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, São Paulo, 13083-862, Brazil
| | - Talita Junia da Silva Cândido
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, São Paulo, 13083-862, Brazil
| | - Giovana Rueda Barboza
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, São Paulo, 13083-862, Brazil
| | | | - Karen Vanessa Munive Nuñez
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, São Paulo, 13083-862, Brazil
| | | |
Collapse
|
5
|
Chenouf NS, Mama OM, Messaï CR, Ruiz-Ripa L, Fernández-Fernández R, Carvalho I, Zitouni A, Hakem A, Torres C. Detection of methicillin-resistant coagulase-negative staphylococci and PVL/mecA genes in cefoxitin-susceptible Staphylococcus aureus (t044/ST80) from unpasteurized milk sold in stores in Djelfa, Algeria. J Dairy Sci 2021; 104:2684-2692. [PMID: 33455787 DOI: 10.3168/jds.2020-19270] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/10/2020] [Indexed: 02/04/2023]
Abstract
This study was designed to determine antimicrobial resistance phenotypes and genotypes and virulence factors in Staphylococcus aureus and coagulase-negative staphylococci (CNS) in unpasteurized milk sold in Djelfa, Algeria. Eighty-two unpasteurized cow milk samples were randomly obtained from 82 retail stores in Djelfa and tested to detect staphylococci. Species were identified by biochemical tests and MALDI-TOF. Antimicrobial resistance phenotypes and genotypes were determined by disk diffusion test, PCR, and sequencing. The Staph. aureus isolates were subjected to spa typing, multilocus sequence typing, and detection of virulence genes and the scn gene by PCR and sequencing. Forty-five (54.9%) milk samples were contaminated by staphylococci and 45 isolates were recovered: 10 Staph. aureus (12.2% of total samples) and 35 CNS (42.7%). Resistance to penicillin (blaZ), tetracycline (tetL/tetK), and erythromycin (ermB/msrA/ermC) were the most common phenotypes (genotypes). Three CNS were methicillin-resistant and all were mecA-positive. The Staph. aureus isolates were ascribed to the following lineages [spa type/sequence type/associated clonal complex (number of isolates)]: t267/ST479/CC479 (n = 6), t1510/ST5651/CC45 (n = 1), t359/ST97/CC97/ (n = 1), t346/ST15/CC15 (n = 1), and t044/ST80 (n = 1). The mecA gene was detected in the cefoxitin-susceptible t044/ST80 isolate and co-harbored the lukF/lukS-PV and scn genes. The detection of mecA-PVL-positive Staph. aureus, methicillin-resistant CNS, and multidrug-resistant staphylococcal species indicates a potentially serious health issue and reveals that unpasteurized milk sold in Djelfa city could be a potential vehicle for pathogenic and antimicrobial-resistant staphylococci.
Collapse
Affiliation(s)
- Nadia Safia Chenouf
- Laboratoire d'Exploration et de Valorisation des Ecosystèmes Steppiques, BP3117, University of Djelfa, 17000 Algeria; Faculté des Sciences de la Nature et de la Vie, BP3117, University of Djelfa, 17000 Algeria; Laboratoire de Biologie des Systèmes Microbiens (LBSM), BP92, 16050, Ecole Normale Supérieure de Kouba, Algiers, Algeria; Area Bioquímica y Biología Molecular, Universidad de La Rioja, Madre de Dios 51, 26006 Logroño, Spain
| | - Olouwafemi Mistourah Mama
- Area Bioquímica y Biología Molecular, Universidad de La Rioja, Madre de Dios 51, 26006 Logroño, Spain
| | - Chafik Redha Messaï
- Laboratoire de Santé et Productions Animales, Rue Issad Abbes, Oued Smar 16000, Ecole Supérieure Nationale Vétérinaire, Algiers, Algeria
| | - Laura Ruiz-Ripa
- Area Bioquímica y Biología Molecular, Universidad de La Rioja, Madre de Dios 51, 26006 Logroño, Spain
| | - Rosa Fernández-Fernández
- Area Bioquímica y Biología Molecular, Universidad de La Rioja, Madre de Dios 51, 26006 Logroño, Spain
| | - Isabel Carvalho
- Area Bioquímica y Biología Molecular, Universidad de La Rioja, Madre de Dios 51, 26006 Logroño, Spain; University of Trás-os-Montes e Alto Douro (UTAD), 5000 Vila Real, Portugal
| | - Abdelghani Zitouni
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), BP92, 16050, Ecole Normale Supérieure de Kouba, Algiers, Algeria
| | - Ahcène Hakem
- Laboratoire d'Exploration et de Valorisation des Ecosystèmes Steppiques, BP3117, University of Djelfa, 17000 Algeria; Center of Research in Agropastoralism, Djelfa, 17000, Algeria
| | - Carmen Torres
- Area Bioquímica y Biología Molecular, Universidad de La Rioja, Madre de Dios 51, 26006 Logroño, Spain.
| |
Collapse
|