1
|
Singh NK, Mathuriya AS, Mehrotra S, Pandit S, Singh A, Jadhav D. Advances in bioelectrochemical systems for bio-products recovery. ENVIRONMENTAL TECHNOLOGY 2024; 45:3853-3876. [PMID: 37491760 DOI: 10.1080/09593330.2023.2234676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/28/2023] [Indexed: 07/27/2023]
Abstract
Bioelectrochemical systems (BES) have emerged as a sustainable and highly promising technology that has garnered significant attention from researchers worldwide. These systems provide an efficient platform for the removal and recovery of valuable products from wastewater, with minimal or no net energy loss. Among the various types of BES, microbial fuel cells (MFCs) are a notable example, utilizing microbial biocatalytic activities to generate electrical energy through the degradation of organic matter. Other BES variants include microbial desalination cells (MDCs), microbial electrolysis cells (MECs), microbial electrosynthesis cells (MXCs), microbial solar cells (MSCs), and more. BESs have demonstrated remarkable potential in the recovery of diverse products such as hydrogen, methane, volatile fatty acids, precious nutrients, and metals. Recent advancements in scaling up BESs have facilitated a more realistic assessment of their net energy recovery and resource yield in real-world applications. This comprehensive review focuses on the practical applications of BESs, from laboratory-scale developments to their potential for industrial commercialization. Specifically, it highlights successful examples of value-added product recovery achieved through various BES configurations. Additionally, this review critically evaluates the limitations of BESs and provides suggestions to enhance their performance at a larger scale, enabling effective implementation in real-world scenarios. By providing a thorough analysis of the current state of BES technology, this review aims to emphasize the tremendous potential of these systems for sustainable wastewater treatment and resource recovery. It underscores the significance of bridging the gap between laboratory-scale achievements and industrial implementation, paving the way for a more sustainable and resource-efficient future.
Collapse
Affiliation(s)
- Neeraj Kumar Singh
- Bio-POSITIVE, Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Abhilasha Singh Mathuriya
- Bio-POSITIVE, Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, India
- Ministry of Environment, Forest and Climate Change, New Delhi, India
| | - Smriti Mehrotra
- Bio-POSITIVE, Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Soumya Pandit
- Bio-POSITIVE, Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Anoop Singh
- Department of Scientific and Industrial Research (DSIR), Government of India, New Delhi, India
| | - Deepak Jadhav
- Department of Agricultural Engineering, Maharashtra Institute of Technology Aurangabad, Maharashtra, India
| |
Collapse
|
2
|
Nguyen HTT, Le GTH, Park SG, Jadhav DA, Le TTQ, Kim H, Vinayak V, Lee G, Yoo K, Song YC, Chae KJ. Optimizing electrochemically active microorganisms as a key player in the bioelectrochemical system: Identification methods and pathways to large-scale implementation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169766. [PMID: 38181955 DOI: 10.1016/j.scitotenv.2023.169766] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/15/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
The rapid global economic growth driven by industrialization and population expansion has resulted in significant issues, including reliance on fossil fuels, energy scarcity, water crises, and environmental emissions. To address these issues, bioelectrochemical systems (BES) have emerged as a dual-purpose solution, harnessing electrochemical processes and the capabilities of electrochemically active microorganisms (EAM) to simultaneously recover energy and treat wastewater. This review examines critical performance factors in BES, including inoculum selection, pretreatment methods, electrodes, and operational conditions. Further, authors explore innovative approaches to suppress methanogens and simultaneously enhance the EAM in mixed cultures. Additionally, advanced techniques for detecting EAM are discussed. The rapid detection of EAM facilitates the selection of suitable inoculum sources and optimization of enrichment strategies in BESs. This optimization is essential for facilitating the successful scaling up of BES applications, contributing substantially to the realization of clean energy and sustainable wastewater treatment. This analysis introduces a novel viewpoint by amalgamating contemporary research on the selective enrichment of EAM in mixed cultures. It encompasses identification and detection techniques, along with methodologies tailored for the selective enrichment of EAM, geared explicitly toward upscaling applications in BES.
Collapse
Affiliation(s)
- Ha T T Nguyen
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Department of Convergence Study on the Ocean Science and Technology, Ocean Science and Technology School (OST), Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Giang T H Le
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Sung-Gwan Park
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Dipak A Jadhav
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Trang T Q Le
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Hyunsu Kim
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Hari Singh Gour Central University, Sagar, MP 470003, India
| | - Gihan Lee
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Keunje Yoo
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Young-Chae Song
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea.
| | - Kyu-Jung Chae
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea.
| |
Collapse
|
3
|
Jadhav DA, Yu Z, Hussien M, Kim JH, Liu W, Eisa T, Sharma M, Vinayak V, Jang JK, Wilberforce Awotwe T, Wang A, Chae KJ. Paradigm shift in Nutrient-Energy-Water centered sustainable wastewater treatment system through synergy of bioelectrochemical system and anaerobic digestion. BIORESOURCE TECHNOLOGY 2024; 396:130404. [PMID: 38336215 DOI: 10.1016/j.biortech.2024.130404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/22/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024]
Abstract
With advancements in research and the necessity of improving the performance of bioelectrochemical system (BES), coupling anaerobic digestion (AD) with BES is crucial for energy gain from wastewater and bioremediation. Hybridization of BES-AD concept opens new avenues for pollutant degradation, carbon capture and nutrient-resource recovery from wastewater. The strength of merging BES-AD lies in synergy, and this approach was employed to differentiate fads from strategies with the potential for full-scale implementation and making it an energy-positive system. The integration of BES and AD system increases the overall performance and complexity of combined system and the cost of operation. From a technical standpoint, the primary determinants of BES-AD feasibility for field applications are the scalability and economic viability. High potential market for such integrated system attract industrial partners for more industrial trials and investment before commercialization. However, BES-AD with high energy efficacy and negative economics demands performance boost.
Collapse
Affiliation(s)
- Dipak A Jadhav
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Zhe Yu
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, PR China
| | - Mohammed Hussien
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Ju-Hyeong Kim
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Wenzong Liu
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, PR China
| | - Tasnim Eisa
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Mukesh Sharma
- Department of Chemical Engineering, Chungbuk National University, Cheongju-si, Republic of Korea
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Hari Singh Gour Central University, Sagar, MP 470003, India
| | - Jae-Kyoung Jang
- National Institute of Agricultural Sciences, Department of Agricultural Engineering Energy and Environmental Engineering Division, 310 Nongsaengmyeong-ro, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Tabbi Wilberforce Awotwe
- Department of Engineering, Faculty of Natural, Mathematical & Engineering Sciences, King's College London, United Kingdom
| | - Aijie Wang
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, PR China
| | - Kyu-Jung Chae
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea.
| |
Collapse
|
4
|
Sonawane AV, Rikame S, Sonawane SH, Gaikwad M, Bhanvase B, Sonawane SS, Mungray AK, Gaikwad R. A review of microbial fuel cell and its diversification in the development of green energy technology. CHEMOSPHERE 2024; 350:141127. [PMID: 38184082 DOI: 10.1016/j.chemosphere.2024.141127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
The advancement of microbial fuel cell technology is rapidly growing, with extensive research and well-established methodologies for enhancing structural performance. This terminology attracts researchers to compare the MFC devices on a technological basis. The architectural and scientific successes of MFCs are only possible with the knowledge of engineering and technical fields. This involves the structure of MFCs, using substrates and architectural backbones regarding electrode advancement, separators and system parameter measures. Knowing about the MFCs facilitates the systematic knowledge of engineering and scientific principles. The current situation of rapid urbanization and industrial growth is demanding the augmented engineering goods and production which results in unsolicited burden on traditional wastewater treatment plants. Consequently, posing health hazards and disturbing aquatic veracity due to partial and untreated wastewater. Therefore, it's sensible to evaluate the performance of MFCs as an unconventional treatment method over conventional one to treat the wastewater. However, MFCs some benefits like power generation, stumpy carbon emission and wastewater treatment are the main reasons behind the implementation. Nonetheless, few challenges like low power generation, scaling up are still the major areas needs to be focused so as to make MFCs sustainable one. We have focused on few archetypes which majorities have been laboratory scale in operations. To ensure the efficiency MFCs are needed to integrate and compatible with conventional wastewater treatment schemes. This review intended to explore the diversification in architecture of MFCs, exploration of MFCs ingredients and to provide the foreseen platform for the researchers in one source, so as to establish the channel for scaling up the technology. Further, the present review show that the MFC with different polymer membranes and cathode and anode modification presents significant role for potential commercial applications after change the system form prototype to pilot scale.
Collapse
Affiliation(s)
- Amol V Sonawane
- Department of Chemical Engineering, National Institute of Technology, Warangal, 506004, Telangana, India.
| | - Satish Rikame
- Department of Chemical Engineering, K.K.Wagh Polytechnic Nashik, Maharashtra, India.
| | - Shirish H Sonawane
- Department of Chemical Engineering, National Institute of Technology, Warangal, 506004, Telangana, India.
| | - Mahendra Gaikwad
- Department of Chemical Engineering, National Institute of Technology, Raipur, 492010, Chhattisgarh, India.
| | - Bharat Bhanvase
- Department of Chemical Engineering, Laxminarayan Innovation Technological University, Nagpur, 440033, Maharashtra, India.
| | - Shriram S Sonawane
- Department of Chemical Engineering, Visvesvaraya National Institute of Technology, Nagpur, 440010, Maharashtra, India.
| | - Arvind Kumar Mungray
- Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, 395007, Gujarat, India.
| | - Ravindra Gaikwad
- Department of Chemical Engineering, Ravindra W. Gaikwad, Jawaharlal Nehru Engineering College, Chatrapati Sambhaji Nagar, 431003, Maharashtra, India.
| |
Collapse
|
5
|
Preethi, Shanmugavel SP, Kumar G, N YK, M G, J RB. Recent progress in mineralization of emerging contaminants by advanced oxidation process: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122842. [PMID: 37940020 DOI: 10.1016/j.envpol.2023.122842] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/25/2023] [Accepted: 10/29/2023] [Indexed: 11/10/2023]
Abstract
Emerging contaminants are chemicals generated due to the usage of pesticide, endocrine disrupting compounds, pharmaceuticals, and personal care products and are liberated into the environment in trace quantities. The emerging contaminants eventually become a greater menace to living beings owing to their wide range and inhibitory action. To diminish these emerging contaminants from the environment, an Advanced Oxidation Process was considered as an efficient option. The Advanced Oxidation Process is an efficient method for mineralizing fractional or generous contaminants due to the generation of reactive species. The primary aim of this review paper is to provide a thorough knowledge on different Advanced Oxidation Process methods and to assess their mineralization efficacy of emerging contaminants. This study indicates the need for an integrated process for enhancing the treatment efficiency and overcoming the drawbacks of the individual Advanced Oxidation Process. Further, its application concerning technical and economic aspects is reviewed. Until now, most of the studies have been based on lab or pilot scale and do not represent the actual scenario of the emerging contaminant mineralization. Thus, the scaling up of the process was discussed, and the major challenges in large scale implementation were pointed out.
Collapse
Affiliation(s)
- Preethi
- Department of Physics, Anna University, Chennai, Tamil Nadu, 600025, India
| | - Surya Prakash Shanmugavel
- Department of Solid Waste Management and Health, Greater Chennai Corporation, Tamil Nadu, 600 003, India
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway; School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yogalakshmi K N
- Department of Environmental Science and Technology, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Gunasekaran M
- Department of Physics, Anna University, Chennai, Tamil Nadu, 600025, India
| | - Rajesh Banu J
- Department of Biotechnology, Central University of Tamil Nadu, Neelakudi, Thiruvarur, 610005, India.
| |
Collapse
|
6
|
Kumari S, Rajput VD, Sushkova S, Minkina T. Microbial electrochemical system: an emerging technology for remediation of polycyclic aromatic hydrocarbons from soil and sediments. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9451-9467. [PMID: 35962926 DOI: 10.1007/s10653-022-01356-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Worldwide industrialization and other human activities have led to a frightening stage of release of hazardous, highly persistent, toxic, insoluble, strongly adsorbed to the soil and high molecular weight ubiquitous polycyclic aromatic hydrocarbons (PAHs) in soils and sediments. The various conventional remediation methods are being used to remediate PAHs with certain drawbacks. Time taking process, high expenditure, excessive quantities of sludge generation, and various chemical requirements do not only make these methods outdated but produce yet much resistant and toxic intermediate metabolites. These disadvantages may be overcome by using a microbial electrochemical system (MES), a booming technology in the field of bioremediation. MES is a green remediation approach that is regulated by electrochemically active microorganisms at the electrode in the system. The key advantage of the system over the conventional methods is it does not involve any additional chemicals, takes less time, and generates minimal sludge or waste during the remediation of PAHs in soils. However, a comprehensive review of the MES towards bioremediation of PAHs adsorbed in soil and sediment is still lacking. Therefore, the present review intended to summarize the recent information on PAHs bioremediation, application, risks, benefits, and challenges based on sediment microbial fuel cell and microbial fuel cell to remediate mount-up industrial sludge, soil, and sediment rich in PAHs. Additionally, bio-electrochemically active microbes, mechanisms, and future perspectives of MES have been discussed.
Collapse
Affiliation(s)
- Smita Kumari
- CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India.
| | | | | | | |
Collapse
|
7
|
Emaminejad SA, Sparks J, Cusick RD. Integrating Bio-Electrochemical Sensors and Machine Learning to Predict the Efficacy of Biological Nutrient Removal Processes at Water Resource Recovery Facilities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18372-18381. [PMID: 37386725 DOI: 10.1021/acs.est.3c00352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Monitoring biological nutrient removal (BNR) processes at water resource recovery facilities (WRRFs) with data-driven models is currently limited by the data limitations associated with the variability of bioavailable carbon (C) in wastewater. This study focuses on leveraging the amperometric response of a bio-electrochemical sensor (BES) to wastewater C variability, to predict influent shock loading events and NO3- removal in the first-stage anoxic zone (ANX1) of a five-stage Bardenpho BNR process using machine learning (ML) methods. Shock loading prediction with BES signal processing successfully detected 86.9% of the influent industrial slug and rain events of the plant during the study period. Extreme gradient boosting (XGBoost) and artificial neural network (ANN) models developed using the BES signal and other recorded variables provided a good prediction performance for NO3- removal in the ANX1, particularly within the normal operating range of WRRFs. A sensitivity analysis of the XGBoost model using SHapley Additive exPlanations indicated that the BES signal had the strongest impact on the model output and current approaches to methanol dosing that neglect C availability can negatively impact nitrogen (N) removal due to cascading impacts of overdosing on nitrification efficacy.
Collapse
Affiliation(s)
- Seyed Aryan Emaminejad
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jeff Sparks
- Hampton Roads Sanitation District Nansemond Treatment Plant, Virginia Beach, Virginia 23455, United States
| | - Roland D Cusick
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
8
|
Zhao Q, Liu Y, Liao C, Yan X, Tian L, Li T, Li N, Wang X. Reduction of S 0 deposited on electroactive biofilm under an oxidative potential. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163698. [PMID: 37094684 DOI: 10.1016/j.scitotenv.2023.163698] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
The inevitable deposition of S0 on the electroactive biofilm (EAB) via anodic sulfide oxidation affects the stability of bioelectrochemical systems (BESs) when an accidental discharge of sulfide occurred, leading to the inhibition of electroacitivity, because the potential of anode (e.g., 0 V versus Ag/AgCl) is ~500 mV more positive than the redox potential of S2-/S0. Here we found that S0 deposited on the EAB can be spontaneously reduced under this oxidative potential independent of microbial community variation, leading to a self-recovery of electroactivity (> 100 % in current density) with biofilm thickening (~210 μm). Transcriptomics of pure culture indicated that Geobacter highly expressed genes involving in S0 metabolism, which had an additional benefit to improve the viability (25 % - 36 %) of bacterial cells in biofilm distant from the anode and the cellular metabolic activity via electron shuttle pair of S0/S2-(Sx2-). Our findings highlighted the importance of spatially heterogeneous metabolism to its stability when EABs encountered with the problem of S0 deposition, and that in turn improved the electroactivity of EABs.
Collapse
Affiliation(s)
- Qian Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Ying Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Chengmei Liao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xuejun Yan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Lili Tian
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Tian Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Nan Li
- School of Environmental Science and Engineering, Tianjin University, No. 135 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| |
Collapse
|
9
|
Cheng Z, Xu D, Zhang Q, Tao Z, Hong R, Chen Y, Tang X, Zeng S, Wang S. Enhanced nickel removal and synchronous bioelectricity generation based on substrate types in microbial fuel cell coupled with constructed wetland: performance and microbial response. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:19725-19736. [PMID: 36239892 DOI: 10.1007/s11356-022-23458-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
In this study, an attempt was made to clarify the impact of substrates on the microbial fuel cell coupled with constructed wetland (CW-MFC) towards the treatment of nickel-containing wastewater. Herein, zeolite (ZEO), coal cinder (COA), ceramsite (CER), and granular activated carbon (GAC) were respectively introduced into lab-scaled CW-MFCs to systematically investigate the operational performances and microbial community response. GAC was deemed as the most effective substrate, and the corresponding device yielded favorable nickel removal efficiencies over 99% at different initial concentrations of nickel. GAC-CW-MFC likewise produced a maximum output voltage of 573 mV, power density of 8.95 mW/m2, and internal resistance of 177.9 Ω, respectively. The strong adsorptive capacity of nickel by GAC, accounting for 54.5% of total contaminant content, was mainly responsible for the favorable nickel removal performances of device GAC-CW-MFC. The high-valence Ni2+ was partially reduced to elemental Ni0 on the cathode, which provided evidence for the removal of heavy metals via the cathodic reduction of CW-MFC. The microbial community structure varied considerably as a result of substrates addition. For an introduction of GAC into the CW-MFC, a remarkably enriched population of genera Thermincola, norank_f__Geobacteraceae, Anaerovorax, Bacillus, etc. was noted. This study was dedicated to providing a theoretical guidance for an effective regulation of CW-MFC treatment on nickel-containing wastewater and accompanied by bioelectricity generation via the introduction of optimal substrate.
Collapse
Affiliation(s)
- Zhan Cheng
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Dayong Xu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China.
| | - Qingyun Zhang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Zhengkai Tao
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Ran Hong
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Yu Chen
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Xiaolu Tang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Shuai Zeng
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Siyu Wang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| |
Collapse
|
10
|
Rout PR, Goel M, Pandey DS, Briggs C, Sundramurthy VP, Halder N, Mohanty A, Mukherjee S, Varjani S. Technological advancements in valorisation of industrial effluents employing hydrothermal liquefaction of biomass: Strategic innovations, barriers and perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120667. [PMID: 36395914 DOI: 10.1016/j.envpol.2022.120667] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/26/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Hydrothermal liquefaction (HTL) is identified as a promising thermochemical technique to recover biofuels and bioenergy from waste biomass containing low energy and high moisture content. The wastewater generated during the HTL process (HTWW) are rich in nutrients and organics. The release of the nutrients and organics enriched HTWW would not only contaminate the water bodies but also lead to the loss of valued bioenergy sources, especially in the present time of the energy crisis. Thus, biotechnological as well as physicochemical treatment of HTWW for simultaneous extraction of valuable resources along with reduction in polluting substances has gained significant attention in recent times. Therefore, the treatment of wastewater generated during the HTL of biomass for reduced environmental emission and possible bioenergy recovery is highlighted in this paper. Various technologies for treatment and valorisation of HTWW are reviewed, including anaerobic digestion, microbial fuel cells (MFC), microbial electrolysis cell (MEC), and supercritical water gasification (SCWG). This review paper illustrates that the characteristics of biomass play a pivotal role in the selection process of appropriate technology for the treatment of HTWW. Several HTWW treatment technologies are weighed in terms of their benefits and drawbacks and are thoroughly examined. The integration of these technologies is also discussed. Overall, this study suggests that integrating different methods, techno-economic analysis, and nutrient recovery approaches would be advantageous to researchers in finding way for maximising HTWW valorisation along with reduced environmental pollution.
Collapse
Affiliation(s)
- Prangya Ranjan Rout
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | - Mukesh Goel
- Department of Engineering and Mathematics, Sheffield Hallam University, Sheffield, UK
| | - Daya Shankar Pandey
- Center for Rural Development and Innovative Sustainable Technology, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Caitlin Briggs
- Department of Engineering and Mathematics, Sheffield Hallam University, Sheffield, UK
| | | | - Nirmalya Halder
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | - Anee Mohanty
- Department of Biotechnology, Dr. B. R. Ambedkar National Institute of Technology Jalandhar, Punjab, India
| | | | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, 382 010, Gujarat, India.
| |
Collapse
|
11
|
Annie Modestra J, Matsakas L, Rova U, Christakopoulos P. Prospects and trends in bioelectrochemical systems: Transitioning from CO 2 towards a low-carbon circular bioeconomy. BIORESOURCE TECHNOLOGY 2022; 364:128040. [PMID: 36182019 DOI: 10.1016/j.biortech.2022.128040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Resource scarcity and climate change are the most quested topics in view of environmental sustainability. CO2 sequestration through bioelectrochemical systems is an attractive option for fostering bioeconomy development upon several value-added products generation. This review details the state-of-the-art of bioelectrochemical systems for resource recovery from CO2 along with various biocatalysts capable of utilizing CO2. Two bioprocesses (photo-electrosynthesis and chemolithoelectrosynthesis) were discussed projecting their potential for biobased economy development from CO2. Significance of adopting circular strategies for efficient resource recycling, intensifying product value, integrations/interlinking of multiple process chains for the development of circular bioeconomy were discussed. Existing constrains as well as outlook for near establishment of circular bioeconomy from CO2 is presented by weighing fore-sighted plans with current actions. Need for developing CO2-based circular bioeconomy via innovative business models by analyzing social, technical, environmental and product related aspects are also discussed providing a roadmap of gaps to pursue for attaining practicality.
Collapse
Affiliation(s)
- J Annie Modestra
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 971‑87, Luleå, Sweden
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 971‑87, Luleå, Sweden.
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 971‑87, Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 971‑87, Luleå, Sweden
| |
Collapse
|
12
|
Establishing a water-to-energy platform via dual-functional photocatalytic and photoelectrocatalytic systems: A comparative and perspective review. Adv Colloid Interface Sci 2022; 309:102793. [DOI: 10.1016/j.cis.2022.102793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/25/2022] [Accepted: 09/29/2022] [Indexed: 11/20/2022]
|
13
|
Pulse-opencircuit voltammetry: A novel method characterizes bioanode performance from microbe-electrode interfacial processes. Biosens Bioelectron 2022; 217:114708. [PMID: 36152396 DOI: 10.1016/j.bios.2022.114708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/21/2022]
Abstract
Bioanode is a key component of bioelectrochemical systems, but the methods characterizing its resistance distribution are lacked. We propose a novel pulse-opencircuit voltammetry (POV) based on the analytical principle clarified from the electron flow pathways of microbe-electrode interfacial processes (MEIPs). A dual-cathode cell is designed to provide an experimental platform for ensuring precise data acquisition of bioanodes. This POV method enables to measure steady state polarization curves and ohmic potential loss curves by integrating potentiostatic discharge and current interruption techniques. They determines reaction resistance (RB,act) and ohmic resistance (RB,ohm) of biofilm with the assistance of impedance spectroscopy measuring material resistance. The results of various bioanodes demonstrate that RB,act is the principal limiting factor and its value relies on catabolism state. Whilst RB,ohm is relevant to extracellular electron transfer behaviors. They are two useful indicators of the dynamic evaluation of biofilm. We anticipate that this method together with the cell platform is accessible to users and has wide applications in bioanode construction and electroactive bacteria investigation.
Collapse
|
14
|
Dattatraya Saratale G, Rajesh Banu J, Nastro RA, Kadier A, Ashokkumar V, Lay CH, Jung JH, Seung Shin H, Ganesh Saratale R, Chandrasekhar K. Bioelectrochemical systems in aid of sustainable biorefineries for the production of value-added products and resource recovery from wastewater: A critical review and future perspectives. BIORESOURCE TECHNOLOGY 2022; 359:127435. [PMID: 35680092 DOI: 10.1016/j.biortech.2022.127435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Bioelectrochemical systems (BES) have the potential to be used in a variety of applications such as waste biorefinery, pollutants removal, CO2 capture, and the electrosynthesis of clean and renewable biofuels or byproducts, among others. In contrast, many technical challenges need to be addressed before BES can be scaled up and put into real-world applications. Utilizing BES, this review article presents a state-of-the-art overall view of crucial concepts and the most recent innovative results and achievements acquired from the BES system. Special attention is placed on a hybrid approach for product recovery and wastewater treatment. There is also a comprehensive overview of waste biorefinery designs that are included. In conclusion, the significant obstacles and technical concerns found throughout the BES studies are discussed, and suggestions and future requirements for the virtual usage of the BES concept in actual waste treatment are outlined.
Collapse
Affiliation(s)
- Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| | - J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur 610 005, India
| | - Rosa Anna Nastro
- Department of Science and Technology, University Parthenope of Naples- Centro Direzionale Isola C4, 80143, Naples, Italy
| | - Abudukeremu Kadier
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Veeramuthu Ashokkumar
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| | - Chyi-How Lay
- Master's Program of Green Energy Science and Technology, Feng Chia University, Taichung 40724, Taiwan
| | - Ju-Hyeong Jung
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Han Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| | - Rijuta Ganesh Saratale
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, South Korea
| | - K Chandrasekhar
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research, Vadlamudi-522213, Guntur, Andhra Pradesh, India.
| |
Collapse
|
15
|
Zhao L, Zhao D. Hydrolyzed polyacrylamide biotransformation during the formation of anode biofilm in microbial fuel cell biosystem: Bioelectricity, metabolites and functional microorganisms. BIORESOURCE TECHNOLOGY 2022; 360:127581. [PMID: 35798169 DOI: 10.1016/j.biortech.2022.127581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/26/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
The anode biofilm serves as the core dominating the performance of microbial fuel cell (MFC) biosystem. This research provides new insights into hydrolyzed polyacrylamide (HPAM) biotransformation during the formation of anode biofilm. The current density, coulombic efficiency, voltage, power density, volatile fatty acid (VFA) production and total nitrogen (TN) removal enhanced with the thickening of biofilm (1-6 cm), and the maximums achieved 146 mA·m-2, 47.3%, 8.76 V, 1.28 W·m-2, 184 mg·L-1 and 84.6%, respectively. HPAM concentration descended from 508 mg·L-1 to 83.3 mg·L-1 after 60 days. HPAM was metabolized into VFAs, N2, NO2--N and NO3--N, thereby releasing electrons. Laccase and tyrosine/tryptophan protein induced HPAM metabolism and bioelectricity production. The microbial functions involving HPAM biotransformation and bioelectricity generation were clarified. The alternative resource recovery, techno-economic comparison and development direction of MFC biosystem were discussed to achieve the synchronization of HPAM-containing wastewater treatment and bioelectricity generation based on MFC biosystem.
Collapse
Affiliation(s)
- Lanmei Zhao
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Dong Zhao
- Sinopec Shengli Petroleum Administration, Dongying 257000, China
| |
Collapse
|
16
|
Effectiveness of biophotovoltaics system modified with fuller-clay composite separators for chromium removal. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Wang S, Adekunle A, Raghavan V. Bioelectrochemical systems-based metal removal and recovery from wastewater and polluted soil: Key factors, development, and perspective. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115333. [PMID: 35617867 DOI: 10.1016/j.jenvman.2022.115333] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/28/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Bioelectrochemical systems (BES) are considered efficient and sustainable technologies for bioenergy generation and simultaneously removal/recovery metal (loid)s from soil and wastewater. However, several current challenges of BES-based metal removal and recovery, especially concentrating target metals from complex contaminated wastewater or soil and their economic feasibility of engineering applications. This review summarized the applications of BES-based metal removal and recovery systems from wastewater and contaminated soil and evaluated their performances on electricity generation and metal removal/recovery efficiency. In addition, an in depth review of several key parameters (BES configurations, electrodes, catalysts, metal concentration, pH value, substrate categories, etc.) of BES-based metal removal and recovery was carried out to facilitate a deep understanding of their development and to suggest strategies for scaling up their specific application fields. Finally, the future intervention on multifunctional BES to improve their performances of mental removal and recovery were revealed.
Collapse
Affiliation(s)
- Shuyao Wang
- Bioresource Engineering, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| | - Ademola Adekunle
- National Research Council of Canada, 6100 Avenue Royalmount, Montréal, QC, H4P 2R2, Canada.
| | - Vijaya Raghavan
- Bioresource Engineering, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| |
Collapse
|
18
|
Pandit C, Thapa BS, Srivastava B, Mathuriya AS, Toor UA, Pant M, Pandit S, Jadhav DA. Integrating Human Waste with Microbial Fuel Cells to Elevate the Production of Bioelectricity. BIOTECH 2022; 11:biotech11030036. [PMID: 35997344 PMCID: PMC9397044 DOI: 10.3390/biotech11030036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Abstract
Due to the continuous depletion of natural resources currently used for electricity generation, it is imperative to develop alternative energy sources. Human waste is nowadays being explored as an efficient source to produce bio-energy. Human waste is renewable and can be used as a source for an uninterrupted energy supply in bioelectricity or biofuel. Annually, human waste such as urine is produced in trillions of liters globally. Hence, utilizing the waste to produce bioenergy is bio-economically suitable and ecologically balanced. Microbial fuel cells (MFCs) play a crucial role in providing an effective mode of bioelectricity production by implementing the role of transducers. MFCs convert organic matter into energy using bio-electro-oxidation of material to produce electricity. Over the years, MFCs have been explored prominently in various fields to find a backup for providing bioenergy and biofuel. MFCs involve the role of exoelectrogens which work as transducers to convert the material into electricity by catalyzing redox reactions. This review paper demonstrates how human waste is useful for producing electricity and how this innovation would be beneficial in the long term, considering the current scenario of increasing demand for the supply of products and shortages of natural resources used to produce biofuel and bioelectricity.
Collapse
Affiliation(s)
- Chetan Pandit
- School of Basic Science and Research, Sharda University, Greater Noida 201306, India
| | - Bhim Sen Thapa
- Department of Biological Sciences, WEHR Life Sciences, Marquette University, Milwaukee, WI 53233, USA
- Correspondence: (B.S.T.); (S.P.); Tel.: +1-414-317-6474 (B.S.T.); +91-7044582668 (S.P.)
| | | | | | - Umair-Ali Toor
- Institute of Animal Life Science, Kangwon National University, Chuncheon 24341, Korea
| | - Manu Pant
- Department of Life Sciences, Graphic Era Deemed to Be University, Dehradun 248002, India
| | - Soumya Pandit
- School of Basic Science and Research, Sharda University, Greater Noida 201306, India
- Correspondence: (B.S.T.); (S.P.); Tel.: +1-414-317-6474 (B.S.T.); +91-7044582668 (S.P.)
| | - Deepak-A. Jadhav
- Department of Environmental Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Korea
| |
Collapse
|
19
|
Hemdan B, Garlapati VK, Sharma S, Bhadra S, Maddirala S, K M V, Motru V, Goswami P, Sevda S, Aminabhavi TM. Bioelectrochemical systems-based metal recovery: Resource, conservation and recycling of metallic industrial effluents. ENVIRONMENTAL RESEARCH 2022; 204:112346. [PMID: 34742708 DOI: 10.1016/j.envres.2021.112346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/25/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Metals represent a large proportion of industrial effluents, which due to their high hazardous nature and toxicity are responsible to create environmental pollution that can pose significant threat to the global flora and fauna. Strict ecological rules compromise sustainable recovery of metals from industrial effluents by replacing unsustainable and energy-consuming physical and chemical techniques. Innovative technologies based on the bioelectrochemical systems (BES) are a rapidly developing research field with proven encouraging outcomes for many industrial commodities, considering the worthy options for recovering metals from industrial effluents. BES technology platform has redox capabilities with small energy-intensive processes. The positive stigma of BES in metals recovery is addressed in this review by demonstrating the significance of BES over the current physical and chemical techniques. The mechanisms of action of BES towards metal recovery have been postulated with the schematic representation. Operational limitations in BES-based metal recovery such as biocathode and metal toxicity are deeply discussed based on the available literature results. Eventually, a progressive inspection towards a BES-based metal recovery platform with possibilities of integration with other modern technologies is foreseen to meet the real-time challenges of viable industrial commercialization.
Collapse
Affiliation(s)
- Bahaa Hemdan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India; Water Pollution Research Department, Environmental Research Division, National Research Centre, 33 El-Bohouth St., Dokki, Giza, 12622, Egypt
| | - Vijay Kumar Garlapati
- Department of Biotechnology & Bioinformatics, Jaypee University of Information Technology (JUIT), Waknaghat, Himachal Pradesh, 173234, India
| | - Swati Sharma
- Department of Biotechnology & Bioinformatics, Jaypee University of Information Technology (JUIT), Waknaghat, Himachal Pradesh, 173234, India
| | - Sudipa Bhadra
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, 506004, India
| | - Shivani Maddirala
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, 506004, India
| | - Varsha K M
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, 506004, India
| | - Vineela Motru
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, 506004, India
| | - Pranab Goswami
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Surajbhan Sevda
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, 506004, India.
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka, 580 031, India.
| |
Collapse
|
20
|
Soltani F, Navidjouy N, Rahimnejad M. A review on bio-electro-Fenton systems as environmentally friendly methods for degradation of environmental organic pollutants in wastewater. RSC Adv 2022; 12:5184-5213. [PMID: 35425537 PMCID: PMC8982105 DOI: 10.1039/d1ra08825d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/31/2022] [Indexed: 11/21/2022] Open
Abstract
Bio-electro-Fenton (BEF) systems have been potentially studied as a promising technology to achieve environmental organic pollutants degradation and bioelectricity generation. The BEF systems are interesting and constantly expanding fields of science and technology. These emerging technologies, coupled with anodic microbial metabolisms and electrochemical Fenton's reactions, are considered suitable alternatives. Recently, great attention has been paid to BEFs due to special features such as hydrogen peroxide generation, energy saving, high efficiency and energy production, that these features make BEFs outstanding compared with the existing technologies. Despite the advantages of this technology, there are still problems to consider including low production of current density, chemical requirement for pH adjustment, iron sludge formation due to the addition of iron catalysts and costly materials used. This review has described the general features of BEF system, and introduced some operational parameters affecting the performance of BEF system. In addition, the results of published researches about the degradation of persistent organic pollutants and real wastewaters treatment in BEF system are presented. Some challenges and possible future prospects such as suitable methods for improving current generation, selection of electrode materials, and methods for reducing iron residues and application over a wide pH range are also given. Thus, the present review mainly revealed that BEF system is an environmental friendly technology for integrated wastewater treatment and clean energy production.
Collapse
Affiliation(s)
- Fatemeh Soltani
- Student Research Committee, Urmia University of Medical Sciences Urmia Iran
| | - Nahid Navidjouy
- Department of Environmental Health Engineering, Urmia University of Medical Sciences Urmia Iran +98 9143489617
| | - Mostafa Rahimnejad
- Biofuel and Renewable Energy Research Center, Department of Chemical Engineering, Babol Noshirvani University of Technology Babol Iran
| |
Collapse
|
21
|
Chandrasekhar K, Raj T, Ramanaiah SV, Kumar G, Jeon BH, Jang M, Kim SH. Regulation and augmentation of anaerobic digestion processes via the use of bioelectrochemical systems. BIORESOURCE TECHNOLOGY 2022; 346:126628. [PMID: 34968642 DOI: 10.1016/j.biortech.2021.126628] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Anaerobic digestion (AD) is a biological process that can be used to treat a wide range of carbon-rich wastes and producerenewable, green energy. To maximize energy recovery from various resources while controlling inhibitory chemicals, notwithstanding AD's efficiency, many limitations must be addressed. As a result, bioelectrochemical systems (BESs) have emerged as a hybrid technology, extensively studied to remediate AD inhibitory chemicals, increase AD operating efficacy, and make the process economically viable via integration approaches. Biogas and residual intermediatory metabolites such as volatile fatty acids are upgraded to value-added chemicals and fuels with the help of the BES as a pre-treatment step, within AD or after the AD process. It may also be used directly to generate power. To overcome the constraints of AD in lab-scale applications, this article summarizes BES technology and operations and endorses ways to scale up BES-AD systems in the future.
Collapse
Affiliation(s)
- K Chandrasekhar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Tirath Raj
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - S V Ramanaiah
- Food and Biotechnology Research Lab, South Ural State University (National Research University), Chelyabinsk 454080, Russian Federation
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
22
|
Jadhav DA, Park SG, Pandit S, Yang E, Ali Abdelkareem M, Jang JK, Chae KJ. Scalability of microbial electrochemical technologies: Applications and challenges. BIORESOURCE TECHNOLOGY 2022; 345:126498. [PMID: 34890815 DOI: 10.1016/j.biortech.2021.126498] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 06/13/2023]
Abstract
During wastewater treatment, microbial electrochemical technologies (METs) are a promising means for in situ energy harvesting and resource recovery. The primary constraint for such systems is scaling them up from the laboratory to practical applications. Currently, most research (∼90%) has been limited to benchtop models because of bioelectrochemical, economic, and engineering design limitations. Field trials, i.e., 1.5 m3 bioelectric toilet, 1000 L microbial electrolysis cell and industrial applications of METs have been conducted, and their results serve as positive indicators of their readiness for practical applications. Multiple startup companies have invested in the pilot-scale demonstrations of METs for industrial effluent treatment. Recently, advances in membrane/electrode modification, understanding of microbe-electrode interaction, and feasibility of electrochemical redox reactions have provided new directions for realizing the practical application. This study reviews the scaling-up challenges, success stories for onsite use, and readiness level of METs for commercialization that is inexpensive and sustainable.
Collapse
Affiliation(s)
- Dipak A Jadhav
- Division of Civil, Environmental Engineering and Logistics System (Environmental Major), College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Department of Agricultural Engineering, Maharashtra Institute of Technology, Aurangabad, Maharashtra 431010, India
| | - Sung-Gwan Park
- Division of Civil, Environmental Engineering and Logistics System (Environmental Major), College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida 201306, India
| | - Euntae Yang
- Department of Marine Environmental Engineering, Gyeongsang National University, Gyeongsangnam-do 53064, Republic of Korea
| | - Mohammad Ali Abdelkareem
- Department of Sustainable and Renewable Energy Engineering, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Center for Advanced Materials Research, University of Sharjah, 27272 Sharjah, United Arab Emirates; Chemical Engineering Department, Faculty of Engineering, Minia University, AlMinya, Egypt
| | - Jae-Kyung Jang
- National Institute of Agricultural Sciences, Department of Agricultural Engineering Energy and Environmental Engineering Division, 310 Nongsaengmyeong-ro, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Kyu-Jung Chae
- Division of Civil, Environmental Engineering and Logistics System (Environmental Major), College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea.
| |
Collapse
|
23
|
Masindi V, Foteinis S, Chatzisymeon E. Co-treatment of acid mine drainage and municipal wastewater effluents: Emphasis on the fate and partitioning of chemical contaminants. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126677. [PMID: 34332476 DOI: 10.1016/j.jhazmat.2021.126677] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/29/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
The co-management of different wastewater matrices can lead to synergistic effects in terms of pollutants removal. Here, the co-treatment of real municipal wastewater (MWW) and acid mine drainage (AMD) is comprehensively examined. Under the identified optimum co-treatment condition, i.e., 15 min contact time, 1:7 AMD to MWW liquid-to-liquid ratio, and ambient temperature and pH, the metal content of AMD (e.g., Al, Fe, Mn, Zn) was grossly (~95%) reduced along with sulphate (~92%), while MWW's phosphate content was practically removed (≥99%). The PHREEQC geochemical model predicted the formation of (oxy)-hydroxides, (oxy)-hydro-sulphates, metals hydroxides, and other mineral phases in the produced sludge, which were confirmed using state-of-the-art analytical techniques such as FE-SEM-EDS and XRD. The key mechanisms governing pollutants removal include dilution, precipitation, co-precipitation, adsorption, and crystallization. Beneficiation and valorisation of the produced sludge and co-treated effluent could promote resource recovery paradigms in wastewater management. Overall, the co-treatment of AMD and MWW appear to be feasible, yet not practical due to the excessive volume of MWW that is required to attain the desired treatment quality. Future research could focus on chemical addition for the control of the pH and the use of (photo)-Fenton for enhancing treatment efficiency.
Collapse
Affiliation(s)
- V Masindi
- Magalies Water, Scientific Services, Research & Development Division, Erf 3475, Stoffberg street, Brits 0250, South Africa; Department of Environmental Sciences, College of Agriculture and Environmental Sciences, University of South Africa (UNISA), P. O. Box 392, Florida, 1710, South Africa.
| | - S Foteinis
- School of Engineering, Institute for Infrastructure and Environment, University of Edinburgh, Edinburgh EH9 3JL, United Kingdom.
| | - E Chatzisymeon
- School of Engineering, Institute for Infrastructure and Environment, University of Edinburgh, Edinburgh EH9 3JL, United Kingdom.
| |
Collapse
|
24
|
Prathiba S, Kumar PS, Vo DVN. Recent advancements in microbial fuel cells: A review on its electron transfer mechanisms, microbial community, types of substrates and design for bio-electrochemical treatment. CHEMOSPHERE 2022; 286:131856. [PMID: 34399268 DOI: 10.1016/j.chemosphere.2021.131856] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/28/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
The development in urbanization, growth in industrialization and deficiency in crude oil wealth has made to focus more for the renewable and also sustainable spotless energy resources. In the past two decades, the concepts of microbial fuel cell have caught more considerations among the scientific societies for the probability of converting, organic waste materials into bio-energy using microorganisms catalyzed anode, and enzymatic/microbial/abiotic/biotic cathode electro-chemical reactions. The added benefit with MFCs technology for waste water treatment is numerous bio-centered processes are available such as sulfate removal, denitrification, nitrification, removal of chemical oxygen demand and biological oxygen demand and heavy metals removal can be performed in the same MFC designed systems. The various factors intricate in MFC concepts in the direction of bioenergy production consists of maximum coulombic efficiency, power density and also the rate of removal of chemical oxygen demand which calculates the efficacy of the MFC unit. Even though the efficacy of MFCs in bioenergy production was initially quietly low, therefore to overcome these issues few modifications are incorporated in design and components of the MFC units, thereby functioning of the MFC unit have improvised the rate of bioenergy production to a substantial level by this means empowering application of MFC technology in numerous sectors including carbon capture, bio-hydrogen production, bioremediation, biosensors, desalination, and wastewater treatment. The present article reviews about the microbial community, types of substrates and information about the several designs of MFCs in an endeavor to get the better of practical difficulties of the MFC technology.
Collapse
Affiliation(s)
- S Prathiba
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India.
| | - Dai-Viet N Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
25
|
Chakraborty I, Ghosh D, Sathe S, Dubey B, Pradhan D, Ghangrekar M. Investigating the efficacy of CeO2 multi-layered triangular nanosheets for augmenting cathodic hydrogen peroxide production in microbial fuel cell. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
26
|
Cabrera J, Irfan M, Dai Y, Zhang P, Zong Y, Liu X. Bioelectrochemical system as an innovative technology for treatment of produced water from oil and gas industry: A review. CHEMOSPHERE 2021; 285:131428. [PMID: 34237499 DOI: 10.1016/j.chemosphere.2021.131428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/26/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Disposal of the high volume of produced water (PW) is a big challenge to the oil and gas industry. High cost of conventional treatment facilities, increasing energy prices and environmental concern had focused governments and the industry itself on more efficient treatment methods. Bioelectrochemical system (BES) has attracted the attention of researchers because it represents a sustainable way to treat wastewater. This is the first review that summarizes the progress done in PW-fed BESs with a critical analysis of the parameters that influence their performances. Inoculum, temperature, hydraulic retention time, external resistance, and the use of real or synthetic produced water were found to be deeply related to the performance of BES. Microbial fuel cells are the most analyzed BES in this field followed by different types of microbial desalination cells. High concentration of sulfates in PW suggests that most of hydrocarbons are removed mainly by using sulfates as terminal electron acceptor (TEA), but other TEAs such as nitrate or metals can also be employed. The use of real PW as feed in experiments is highly recommended because biofilms when using synthetic PW are not the same. This review is believed to be helpful in guiding the research directions on the use of BES for PW treatment, and to speed up the practical application of BES technology in oil and gas industry.
Collapse
Affiliation(s)
- Jonnathan Cabrera
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, PR China
| | - Muhammad Irfan
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, PR China
| | - Yexin Dai
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, PR China
| | - Pingping Zhang
- College of Food Science and Engineering, Tianjin Agricultural University, Tianjin, 300384, PR China
| | - Yanping Zong
- Tianjin Marine Environmental Center Station, Ministry of Natural Resources, Tianjin, PR China
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, PR China.
| |
Collapse
|
27
|
Patel A, Arkatkar A, Singh S, Rabbani A, Solorza Medina JD, Ong ES, Habashy MM, Jadhav DA, Rene ER, Mungray AA, Mungray AK. Physico-chemical and biological treatment strategies for converting municipal wastewater and its residue to resources. CHEMOSPHERE 2021; 282:130881. [PMID: 34087557 DOI: 10.1016/j.chemosphere.2021.130881] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/03/2021] [Accepted: 05/09/2021] [Indexed: 06/12/2023]
Abstract
An increase in urbanization and industrialization has not only contributed to an improvement in the lifestyle of people, but it has also contributed to a surge in the generation of wastewater. To date, conventional physico-chemical and biological treatment methods are widely used for the treatment of wastewater. However, the efficient operation of these systems require substantial operation and maintenance costs, and the application of novel technologies for the treatment and disposal of sludge/residues. This review paper focuses on the application of different treatment options such as chemical, catalyst-based, thermochemical and biological processes for wastewater or sludge treatment and membrane-based technologies (i.e. pressure-driven and non-pressure driven) for the separation of the recovered products from wastewater and its residues. As evident from the literature, a wide variety of treatment and resource recovery options are possible, both from wastewater and its residues; however, the lack of planning and selecting the most appropriate design (treatment train) to scale up from pilot to the field scale has limited its practical application. The economic feasibility of the selected technologies was critically analyzed and the future research prospects of resource recovery from wastewater have been outlined in this review.
Collapse
Affiliation(s)
- Asfak Patel
- Department of Chemical Engineering, S. V. National Institute of Technology Surat, Ichchhanath Surat-Dumas Road, Keval Chowk, Surat, 395007, Gujarat, India
| | - Ambika Arkatkar
- Department of Chemical Engineering, S. V. National Institute of Technology Surat, Ichchhanath Surat-Dumas Road, Keval Chowk, Surat, 395007, Gujarat, India
| | - Srishti Singh
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, P.O. Box 3015, 2601DA, Delft, the Netherlands
| | - Alija Rabbani
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, P.O. Box 3015, 2601DA, Delft, the Netherlands
| | - Juan David Solorza Medina
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, P.O. Box 3015, 2601DA, Delft, the Netherlands
| | - Ee Shen Ong
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, P.O. Box 3015, 2601DA, Delft, the Netherlands
| | - Mahmoud M Habashy
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, P.O. Box 3015, 2601DA, Delft, the Netherlands
| | - Dipak A Jadhav
- Department of Agricultural Engineering, Maharashtra Institute of Technology, Aurangabad 431010, Maharashtra, India
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, P.O. Box 3015, 2601DA, Delft, the Netherlands
| | - Alka A Mungray
- Department of Chemical Engineering, S. V. National Institute of Technology Surat, Ichchhanath Surat-Dumas Road, Keval Chowk, Surat, 395007, Gujarat, India
| | - Arvind Kumar Mungray
- Department of Chemical Engineering, S. V. National Institute of Technology Surat, Ichchhanath Surat-Dumas Road, Keval Chowk, Surat, 395007, Gujarat, India.
| |
Collapse
|
28
|
Mier AA, Olvera-Vargas H, Mejía-López M, Longoria A, Verea L, Sebastian PJ, Arias DM. A review of recent advances in electrode materials for emerging bioelectrochemical systems: From biofilm-bearing anodes to specialized cathodes. CHEMOSPHERE 2021; 283:131138. [PMID: 34146871 DOI: 10.1016/j.chemosphere.2021.131138] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/27/2021] [Accepted: 06/04/2021] [Indexed: 06/12/2023]
Abstract
Bioelectrochemical systems (BES), mainly microbial fuel cells (MEC) and microbial electrolysis cells (MFC), are unique biosystems that use electroactive bacteria (EAB) to produce electrons in the form of electric energy for different applications. BES have attracted increasing attention as a sustainable, low-cost, and neutral-carbon option for energy production, wastewater treatment, and biosynthesis. Complex interactions between EAB and the electrode materials play a crucial role in system performance and scalability. The electron transfer processes from the EAB to the anode surface or from the cathode surface to the EAB have been the object of numerous investigations in BES, and the development of new materials to maximize energy production and overall performance has been a hot topic in the last years. The present review paper discusses the advances on innovative electrode materials for emerging BES, which include MEC coupled to anaerobic digestion (MEC-AD), Microbial Desalination Cells (MDC), plant-MFC (P-MFC), constructed wetlands-MFC (CW-MFC), and microbial electro-Fenton (BEF). Detailed insights on innovative electrode modification strategies to improve the electrode transfer kinetics on each emerging BES are provided. The effect of materials on microbial population is also discussed in this review. Furthermore, the challenges and opportunities for materials scientists and engineers working in BES are presented at the end of this work aiming at scaling up and industrialization of such versatile systems.
Collapse
Affiliation(s)
- Alicia A Mier
- Bioenergy Lab, Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco S/n, Col. Centro, Temixco, Morelos, CP 62580, Mexico
| | - Hugo Olvera-Vargas
- Bioenergy Lab, Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco S/n, Col. Centro, Temixco, Morelos, CP 62580, Mexico
| | - M Mejía-López
- Bioenergy Lab, Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco S/n, Col. Centro, Temixco, Morelos, CP 62580, Mexico
| | - Adriana Longoria
- Bioenergy Lab, Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco S/n, Col. Centro, Temixco, Morelos, CP 62580, Mexico
| | - Laura Verea
- Instituto de Investigación e Innovación en Energías Renovables, Universidad de Ciencias y Artes de Chiapas, Libramiento Norte Poniente 1150, 29039, Tuxtla Gutiérrez, Chiapas, Mexico
| | - P J Sebastian
- Bioenergy Lab, Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco S/n, Col. Centro, Temixco, Morelos, CP 62580, Mexico
| | - Dulce María Arias
- Bioenergy Lab, Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco S/n, Col. Centro, Temixco, Morelos, CP 62580, Mexico.
| |
Collapse
|
29
|
Zhang S, Jiang J, Wang H, Li F, Hua T, Wang W. A review of microbial electrosynthesis applied to carbon dioxide capture and conversion: The basic principles, electrode materials, and bioproducts. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101640] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
30
|
Soltani F, Navidjouy N, Khorsandi H, Rahimnejad M, Alizadeh S. A novel bio-electro-Fenton system with dual application for the catalytic degradation of tetracycline antibiotic in wastewater and bioelectricity generation. RSC Adv 2021; 11:27160-27173. [PMID: 35480664 PMCID: PMC9037666 DOI: 10.1039/d1ra04584a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/22/2021] [Indexed: 12/20/2022] Open
Abstract
In this new insight, the potential application of the eco-friendly Bio-Electro-Fenton (BEF) system was surveyed with the aim of simultaneous degradation of tetracycline and in situ generation of renewable bioenergy without the need for an external electricity source. To shed light on this issue, catalytic degradation of tetracycline was directly accrued via in situ generated hydroxyl free radicals from Fenton's reaction in the cathode chamber. Simultaneously, the in situ electricity generation as renewable bioenergy was carried out through microbial activities. The effects of operating parameters, such as electrical circuit conditions (in the absence and presence of external resistor load), substrate concentration (1000, 2000, 5000, and 10 000 mg L−1), catholyte pH (3, 5, and 7), and FeSO4 concentration (2, 5, and 10 mg L−1) were investigated in detail. The obtained results indicated that the tetracycline degradation was up to 99.04 ± 0.91% after 24 h under the optimal conditions (short-circuit, pH 3, FeSO4 concentration of 5 mg L−1, and substrate concentration of 2000 mg L−1). Also, the maximum removal efficiency of anodic COD (85.71 ± 1.81%) was achieved by increasing the substrate concentration up to 2000 mg L−1. However, the removal efficiencies decreased to 78.29 ± 2.68% with increasing substrate concentration up to 10 000 mg L−1. Meanwhile, the obtained maximum voltage, current density, and power density were 322 mV, 1195 mA m−2, and 141.60 mW m−2, respectively, at the substrate concentration of 10 000 mg L−1. Present results suggested that the BEF system could be employed as an energy-saving and promising technology for antibiotic-containing wastewater treatment and simultaneous sustainable bioelectricity generation. In this new insight, the potential application of the Bio-Electro-Fenton system was surveyed with the aim of simultaneous degradation of tetracycline and in situ generation of renewable bioenergy without the need for an external electricity source.![]()
Collapse
Affiliation(s)
- Fatemeh Soltani
- Department of Environmental Health Engineering, School of Public Health, Urmia University of Medical Sciences Urmia Iran +98 9143489617
| | - Nahid Navidjouy
- Department of Environmental Health Engineering, School of Public Health, Urmia University of Medical Sciences Urmia Iran +98 9143489617
| | - Hassan Khorsandi
- Department of Environmental Health Engineering, School of Public Health, Urmia University of Medical Sciences Urmia Iran +98 9143489617
| | - Mostafa Rahimnejad
- Biofuel and Renewable Energy Research Center, Department of Chemical Engineering, Babol Noshirvani University of Technology Babol Iran
| | - Saber Alizadeh
- Faculty of Chemistry, Bu-Ali-Sina University Hamedan Iran
| |
Collapse
|
31
|
Syed Z, Sogani M, Dongre A, Kumar A, Sonu K, Sharma G, Gupta AB. Bioelectrochemical systems for environmental remediation of estrogens: A review and way forward. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146544. [PMID: 33770608 DOI: 10.1016/j.scitotenv.2021.146544] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 03/13/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
Globally estrogenic pollutants are a cause of concern in wastewaters and water bodies because of their high endocrine disrupting activity leading to extremely negative impacts on humans and other organisms even at very low environmental concentrations. Bioremediation of estrogens has been studied extensively and one technology that has emerged with its promising capabilities is Bioelectrochemical Systems (BESs). Several studies in the past have investigated BESs applications for treatment of wastewaters containing toxic recalcitrant pollutants with a primary focus on improvement of performance of these systems for their deployment in real field applications. But the information is scattered and further the improvements are difficult to achieve for standalone BESs. This review critically examines the various existing treatment technologies for the effective estrogen degradation. The major focus of this paper is on the technological advancements for scaling up of these BESs for the real field applications along with their integration with the existing and conventional wastewater treatment systems. A detailed discussion on few selected microbial species having the unusual properties of heterotrophic nitrification and extraordinary stress response ability to toxic compounds and their degradation has been highlighted. Based on the in-depth study and analysis of BESs, microbes and possible benefits of various treatment methods for estrogen removal, we have proposed a sustainable Hybrid BES-centered treatment system for this purpose as a choice for wastewater treatment. We have also identified three pipeline tasks that reflect the vital parts of the life cycle of drugs and integrated treatment unit, as a way forward to foster bioeconomy along with an approach for sustainable wastewater treatment.
Collapse
Affiliation(s)
- Zainab Syed
- Department of Civil Engineering, Manipal University Jaipur, Jaipur 303007, Rajasthan, India; Department of Biosciences, Manipal University Jaipur, Jaipur 303007, Rajasthan, India
| | - Monika Sogani
- Department of Civil Engineering, Manipal University Jaipur, Jaipur 303007, Rajasthan, India; Department of Biosciences, Manipal University Jaipur, Jaipur 303007, Rajasthan, India.
| | - Aman Dongre
- Department of Civil Engineering, Manipal University Jaipur, Jaipur 303007, Rajasthan, India; Department of Biosciences, Manipal University Jaipur, Jaipur 303007, Rajasthan, India
| | - Anu Kumar
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), L&W, Waite Campus, Urrbrae, SA, 5064, Australia.
| | - Kumar Sonu
- Department of Civil Engineering, Manipal University Jaipur, Jaipur 303007, Rajasthan, India
| | - Gopesh Sharma
- Department of Biosciences, Manipal University Jaipur, Jaipur 303007, Rajasthan, India
| | - Akhilendra Bhushan Gupta
- Department of Civil Engineering, Malaviya National Institute of Technology, Jaipur 302017, Rajasthan, India
| |
Collapse
|
32
|
Microbial Fuel Cell as a Bioelectrochemical Sensor of Nitrite Ions. Processes (Basel) 2021. [DOI: 10.3390/pr9081330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The deteriorating environmental quality requires a rapid in situ real-time monitoring of toxic compounds in environment including water and wastewater. One of the most toxic nitrogen-containing ions is nitrite ion, therefore, it is particularly important to ensure that nitrite ions are completely absent in surface and ground waters as well as in wastewater or, at least, their concentration does not exceed permissible levels. However, no selective ion electrode, which would enable continuous measurement of nitrite ion concentration in wastewater by bioelectrochemical sensor, is available. Microbial fuel cell (MFC)-based biosensor offers a sustainable low-cost alternative to the monitoring by periodic sampling for laboratory testing. It has been determined, that at low (0.01–0.1 mg·L−1) and moderate (1.0–10 mg·L−1) concentration of nitrite ions in anolyte-model wastewater, the voltage drop in MFC linearly depends on the logarithm of nitrite ion concentration of proving the potential of the application of MFC-based biosensor for the quantitative monitoring of nitrite ion concentration in wastewater and other surface water. Higher concentrations (100–1000 mg·L−1) of nitrite ions in anolyte-model wastewater could not be accurately quantified due to a significant drop in MFC voltage. In this case MFC can potentially serve as a bioelectrochemical early warning device for extremely high nitrite pollution.
Collapse
|
33
|
Blázquez E, Gabriel D, Baeza JA, Guisasola A, Ledezma P, Freguia S. Implementation of a Sulfide-Air Fuel Cell Coupled to a Sulfate-Reducing Biocathode for Elemental Sulfur Recovery. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18115571. [PMID: 34071068 PMCID: PMC8197079 DOI: 10.3390/ijerph18115571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/12/2021] [Accepted: 05/19/2021] [Indexed: 11/17/2022]
Abstract
Bio-electrochemical systems (BES) are a flexible biotechnological platform that can be employed to treat several types of wastewaters and recover valuable products concomitantly. Sulfate-rich wastewaters usually lack an electron donor; for this reason, implementing BES to treat the sulfate and the possibility of recovering the elemental sulfur (S0) offers a solution to this kind of wastewater. This study proposes a novel BES configuration that combines bio-electrochemical sulfate reduction in a biocathode with a sulfide–air fuel cell (FC) to recover S0. The proposed system achieved high elemental sulfur production rates (up to 386 mg S0-S L−1 d−1) with 65% of the sulfate removed recovered as S0 and a 12% lower energy consumption per kg of S0 produced (16.50 ± 0.19 kWh kg−1 S0-S) than a conventional electrochemical S0 recovery system.
Collapse
Affiliation(s)
- Enric Blázquez
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (D.G.); (J.A.B.); (A.G.)
- Correspondence:
| | - David Gabriel
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (D.G.); (J.A.B.); (A.G.)
| | - Juan Antonio Baeza
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (D.G.); (J.A.B.); (A.G.)
| | - Albert Guisasola
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (D.G.); (J.A.B.); (A.G.)
| | - Pablo Ledezma
- Advanced Water Management Centre, The University of Queensland, Brisbane 4072, Australia; (P.L.); (S.F.)
| | - Stefano Freguia
- Advanced Water Management Centre, The University of Queensland, Brisbane 4072, Australia; (P.L.); (S.F.)
| |
Collapse
|
34
|
Huang T, Junjun T, Liu W, Song D, Yin LX, Zhang S. Biotreatment for the spent lithium-ion battery in a three-module integrated microbial-fuel-cell recycling system. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 126:377-387. [PMID: 33819901 DOI: 10.1016/j.wasman.2021.03.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/22/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
A bio-electrochemically (BE) recycling platform was assembled to recover Li and Co from the cathodic materials of spent LIBs in one integrated system. The BE platform consists of three microbial-fuel-cell (MFC) subsystems, including MFC-A, MFC-B, and MFC-C. Co and Li were smoothly recovered from the cathodic materials in the assembled platform. The initial pH and the loading ratios of LiCoO2 both significantly influenced the leaching efficiencies of Li and Co in MFC-A. Approximately 45% Li and 93% Co were simultaneously released through the reduction of LiCoO2 at the initial pH of 1 and the loading ratios of LiCoO2 of 0.2 g/L. The (NH4)2C2O4-modified granular activated carbons (GAC) with a thickness of 1.5 cm was favorably stacked adjacent to the cathode of the MFC-B system. About 98% of removal efficiency (RECo1) and 96% of recovery efficiency (RECo2) of Co were achieved in MFC-B under optimum conditions. The dosing concentration of Li+ lower than 2 mg/L and the (NH4)2CO3 of 0.01-0.02 M were conducive to enhancing the recovery of Li from raffinate and guaranteed the higher power output and coulombic efficiencies in MFC-C. The continuous release of CO2 caused by exoelectrogenic microorganisms on the biofilm facilitated the precipitation of Li2CO3.
Collapse
Affiliation(s)
- Tao Huang
- School of Materials Engineering, Changshu Institute of Technology, 215500, China; Suzhou Key Laboratory of Functional Ceramic Materials, Changshu Institute of Technology, Changshu 215500, China; School of Chemical Engineering & Technology China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
| | - Tao Junjun
- School of Materials Engineering, Changshu Institute of Technology, 215500, China.
| | - Wanhui Liu
- School of Materials Engineering, Changshu Institute of Technology, 215500, China; Suzhou Key Laboratory of Functional Ceramic Materials, Changshu Institute of Technology, Changshu 215500, China.
| | - Dongping Song
- School of Materials Engineering, Changshu Institute of Technology, 215500, China
| | - Li-Xin Yin
- School of Economics and Management, Changshu Institute of Technology, No. 99, South 3rd Ring Road, Changshu 215500, China.
| | - Shuwen Zhang
- Nuclear Resources Engineering College, University of South China, 421001, China
| |
Collapse
|
35
|
Aydin MI, Karaca AE, Qureshy AMMI, Dincer I. A comparative review on clean hydrogen production from wastewaters. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 279:111793. [PMID: 33360275 DOI: 10.1016/j.jenvman.2020.111793] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
This paper provides a unique review of hydrogen production methods with wastewater treatment to depict a clean and sustainable approach. Various methods for hydrogen production from wastewaters are identified and discussed with recent details by discussing the critical challenges, opportunities, and future directions. Five main performance sectors are considered in detail for each hydrogen production method of the recent case studies, including economic, environmental, social, technical, and reliability. Eight hydrogen production methods are reviewed, including anaerobic method, photo fermentation, dark fermentation, electrolysis, electrodialysis, photocatalysis, photoelectrochemical methods, and super water gasification. A comparative assessment of six reviewed methods for hydrogen production, including environmental, economic, energetic, and exergetic impacts, is evaluated. The comparative assessment results indicate that dark fermentation technology is the most economical method, and it is followed by microbial electrolysis and photofermentation. The most environmentally friendly method for the lowest global warming potential (GWP) is the microbial electrolysis method, and it is followed by photocatalysis and photoelectrochemical methods. Furthermore, the highest energy and exergy efficiencies have been recorded for the microbial electrolysis to be 68% and 64.7%, respectively.
Collapse
Affiliation(s)
- Muhammed Iberia Aydin
- Istanbul University-Cerrahpasa, Engineering Faculty, Environmental Engineering Dept, Avcilar, Istanbul, Turkey; Clean Energy Research Laboratory, Faculty of Engineering and Applied Science, Ontario Tech. University, Oshawa, Ontario, Canada.
| | - Ali Erdogan Karaca
- Clean Energy Research Laboratory, Faculty of Engineering and Applied Science, Ontario Tech. University, Oshawa, Ontario, Canada
| | - Ali M M I Qureshy
- Clean Energy Research Laboratory, Faculty of Engineering and Applied Science, Ontario Tech. University, Oshawa, Ontario, Canada
| | - Ibrahim Dincer
- Clean Energy Research Laboratory, Faculty of Engineering and Applied Science, Ontario Tech. University, Oshawa, Ontario, Canada; Faculty of Mechanical Engineering, Yildiz Technical University, Besiktas, Istanbul, Turkey
| |
Collapse
|
36
|
Munoz-Cupa C, Hu Y, Xu C, Bassi A. An overview of microbial fuel cell usage in wastewater treatment, resource recovery and energy production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142429. [PMID: 33254845 DOI: 10.1016/j.scitotenv.2020.142429] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/04/2020] [Accepted: 09/15/2020] [Indexed: 06/12/2023]
Abstract
Wastewater treatment is a high-cost and energy-intensive process not only due to large amounts of pollutants but also for the large volumes of water to be treated, which are mainly generated by human activities and different industries. In this regard, biological wastewater treatments have become substitutes to the current technologies, owing to the improved treatment efficiency and added value. Microbial fuel cells (MFCs) as one of the promising biological treatments have arisen as a viable solution for chemical oxygen demand (COD) removal and electricity generation simultaneously. Therefore, in this article, the effects of various operating conditions on the COD removal and power production from MFCs are thoroughly discussed. In addition, the advantages and weaknesses of current MFCs technologies used for different types of wastewater are summarized. Finally, the technical barriers facing by MFCs operation and the economic feasibility of using MFCs for wastewater treatment are provided.
Collapse
Affiliation(s)
- Carlos Munoz-Cupa
- Department of Chemical and Biochemical Engineering, Western University, London, ON N6A 0A7, Canada
| | - Yulin Hu
- Department of Chemical and Biochemical Engineering, Western University, London, ON N6A 0A7, Canada.
| | - Chunbao Xu
- Department of Chemical and Biochemical Engineering, Western University, London, ON N6A 0A7, Canada
| | - Amarjeet Bassi
- Department of Chemical and Biochemical Engineering, Western University, London, ON N6A 0A7, Canada.
| |
Collapse
|
37
|
Jadhav DA, Carmona-Martínez AA, Chendake AD, Pandit S, Pant D. Modeling and optimization strategies towards performance enhancement of microbial fuel cells. BIORESOURCE TECHNOLOGY 2021; 320:124256. [PMID: 33120058 DOI: 10.1016/j.biortech.2020.124256] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
Considering the complexity associated with bioelectrochemical processes, the performance of a microbial fuel cell (MFC) is governed by input operating parameters. For scaled-up applications, a MFC system needs to be modeled from engineering perspectives in terms of optimum operating conditions to get higher performance and energy recovery. Several conceptual numerical models to advanced computational simulation approaches have been developed to represent simple-form of a complex MFC system. Application of mathematical and computation models are explored to establish the relationship between operating input-variables and power output. The present review discusses about the complexity of system, modeling strategies used and reality of such modeling for scaling-up applications of MFCs. Additionally, the selection of an appropriate mathematical model reduces the computational duration and provides better understanding of the system process. It also explores the possibility and progress towards commercialization of MFCs and thus the need of development of model-based optimization and process-control approaches.
Collapse
Affiliation(s)
- Dipak A Jadhav
- Department of Agricultural Engineering, Maharashtra Institute of Technology, Aurangabad, Maharashtra 431010, India.
| | - Alessandro A Carmona-Martínez
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, Valladolid University, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Ashvini D Chendake
- Shiv Shankar College of Agricultural Engineering, Mirajgaon, Ahmednagar, Maharashtra 414401, India
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida 201306, India
| | - Deepak Pant
- Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| |
Collapse
|
38
|
Leng L, Zhang W, Leng S, Chen J, Yang L, Li H, Jiang S, Huang H. Bioenergy recovery from wastewater produced by hydrothermal processing biomass: Progress, challenges, and opportunities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:142383. [PMID: 33113702 DOI: 10.1016/j.scitotenv.2020.142383] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
Hydrothermal carbonization (HTC)/liquefaction (HTL)/gasification (HTG) are promising processes for biofuel production from biomass containing high moisture. However, wastewater, the aqueous phase (AP) byproduct from these hydrothermal processes, is inevitably produced in large amounts. The AP contains >20% of the biomass carbon, and the total organic carbon in AP is as high as 10-20 g/L. The treatment and utilization of AP are becoming a bottleneck for the industrialization of hydrothermal technologies. The major challenges are the presence of various inhibitory substances and the high complexity of AP. Bioenergy recovery from AP has attracted increasing interest. In the present review, the compositions and characteristics of AP are first presented. Then, the progress in recovering bioenergy from AP by recirculation as the reaction solvent, anaerobic digestion (AD), supercritical water gasification (SCWG), microbial fuel cell (MFC), microbial electrolysis cell (MEC), and microalgae cultivation is discussed. Recirculation of AP as reaction solvent is preferable for AP from biomass with relatively low moisture; AD, MFC/MEC, and microalgae cultivation are desirable for the treatment of AP produced from processing biomass with low lignin content at relatively low temperatures; SCWG is widely applicable but is energy-intensive. Finally, challenges and corresponding strategies are proposed to promote the development of AP valorization technologies. Comprehensive analysis of AP compositions, clarification of the mechanisms of valorization processes, valorization process integration detoxification of AP, polycultures and co-processing of AP with other waste, enhancement in pollutant removal, scaling-up performance, and the techno-economic analysis and life-cycle assessment of valorization systems are promising directions in future investigations.
Collapse
Affiliation(s)
- Lijian Leng
- School of Energy Science and Engineering, Central South University, Changsha 410083, China.
| | - Weijin Zhang
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Songqi Leng
- School of Resources, Environmental & Chemical Engineering and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, China
| | - Jie Chen
- School of Resources, Environmental & Chemical Engineering and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, China
| | - Lihong Yang
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Hailong Li
- School of Energy Science and Engineering, Central South University, Changsha 410083, China.
| | - Shaojian Jiang
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Huajun Huang
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
39
|
Jadhav DA, Das I, Ghangrekar MM, Pant D. Moving towards practical applications of microbial fuel cells for sanitation and resource recovery. JOURNAL OF WATER PROCESS ENGINEERING 2020. [DOI: 10.1016/j.jwpe.2020.101566] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
40
|
Chakraborty I, Bhowmick GD, Ghosh D, Dubey B, Pradhan D, Ghangrekar M. Novel low-cost activated algal biochar as a cathode catalyst for improving performance of microbial fuel cell. SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS 2020. [DOI: 10.1016/j.seta.2020.100808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
41
|
Methanogenesis inhibitors used in bio-electrochemical systems: A review revealing reality to decide future direction and applications. BIORESOURCE TECHNOLOGY 2020; 319:124141. [PMID: 32977094 DOI: 10.1016/j.biortech.2020.124141] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 02/08/2023]
Abstract
Microbial fuel cell (MFC) is a robust technology capable of treating real wastewaters by utilizing mixed anaerobic microbiota as inoculum for producing electricity from oxidation of the biodegradable matters. However, these mixed microbiota comprises of both electroactive microorganisms (EAM) and substrate/electron scavenging microorganisms such as methanogens. Hence, in order to maximize bioelectricity from MFC, different physio-chemical techniques have been applied in past investigations to suppress activity of methanogens. Interestingly, recent investigations exhibit that methanogens can produce electricity in MFC and possess the cellular machinery like cytochrome c and Type IV pili to perform extracellular electron transfer (EET) in the presence of suitable electron acceptors. Hence, in this review, in-depth analysis of versatile behaviour of methanogens in both MFC and natural anaerobic conditions with different inhibition techniques is explored. This review also discusses the future research directions based on the latest scientific evidence on role of methanogens for EET in MFC.
Collapse
|
42
|
Abstract
Due to rapid urbanization and industrialization, the population density of the world is intense in developing countries. This overgrowing population has resulted in the production of huge amounts of waste/refused water due to various anthropogenic activities. Household, municipal corporations (MC), urban local bodies (ULBs), and industries produce a huge amount of waste water, which is discharged into nearby water bodies and streams/rivers without proper treatment, resulting in water pollution. This mismanaged treatment of wastewater leads to various challenges like loss of energy to treat the wastewater and scarcity of fresh water, beside various water born infections. However, all these major issues can provide solutions to each other. Most of the wastewater generated by ULBs and industries is rich in various biopolymers like starch, lactose, glucose lignocellulose, protein, lipids, fats, and minerals, etc. These biopolymers can be converted into sustainable biofuels, i.e., ethanol, butanol, biodiesel, biogas, hydrogen, methane, biohythane, etc., through its bioremediation followed by dark fermentation (DF) and anaerobic digestion (AD). The key challenge is to plan strategies in such a way that they not only help in the treatment of wastewater, but also produce some valuable energy driven products from it. This review will deal with various strategies being used in the treatment of wastewater as well as for production of some valuable energy products from it to tackle the upcoming future demands and challenges of fresh water and energy crisis, along with sustainable development.
Collapse
|
43
|
Chakraborty I, Sathe S, Dubey B, Ghangrekar M. Waste-derived biochar: Applications and future perspective in microbial fuel cells. BIORESOURCE TECHNOLOGY 2020; 312:123587. [PMID: 32480350 DOI: 10.1016/j.biortech.2020.123587] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 02/08/2023]
|
44
|
Bhowmick GD, Neethu B, Ghangrekar MM, Banerjee R. Improved Performance of Microbial Fuel Cell by In Situ Methanogenesis Suppression While Treating Fish Market Wastewater. Appl Biochem Biotechnol 2020; 192:1060-1075. [PMID: 32648058 DOI: 10.1007/s12010-020-03366-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/22/2020] [Indexed: 02/05/2023]
Affiliation(s)
- G D Bhowmick
- Department of Agricultural and Food Engineering, Indian Institute of Technology Kharagpu, Kharagpur, 721302, India
| | - B Neethu
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - M M Ghangrekar
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - R Banerjee
- Department of Agricultural and Food Engineering, Indian Institute of Technology Kharagpu, Kharagpur, 721302, India
| |
Collapse
|
45
|
Zangarini S, Pepè Sciarria T, Tambone F, Adani F. Phosphorus removal from livestock effluents: recent technologies and new perspectives on low-cost strategies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:5730-5743. [PMID: 31919818 DOI: 10.1007/s11356-019-07542-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/29/2019] [Indexed: 06/10/2023]
Abstract
Phosphorus is an essential element in the food production chain, even though it is a non-renewable and limited natural resource, which is going to run out soon. However, it is also a pollutant if massively introduced into soil and water ecosystems. This study focuses on the current alternative low-cost technologies for phosphorus recovery from livestock effluents. Recovering phosphorus from these wastewaters is considered a big challenge due to the high phosphorus concentration (between 478 and 1756 mg L-1) and solids content (> 2-6% of total solids). In particular, the methods discussed in this study are (i) magnesium-based crystallization (struvite synthesis), (ii) calcium-based crystallization, (iii) electrocoagulation and (iv) biochar production, which differ among them for some advantages and disadvantages. According to the data collected, struvite crystallization achieves the highest phosphorus removal (> 95%), even when combined with the use of seawater bittern (a by-product of sea salt processing) instead of magnesium chloride pure salt as the magnesium source. Moreover, the crystallizer technology used for struvite precipitation has already been tested in wastewater treatment plants, and data reported in this review showed the feasibility of this technology for use with high total solids (> 5%) livestock manure. Furthermore, economic and energetic analyses here reported show that struvite crystallization is the most practicable among the low-cost phosphorus recovery technologies for treating livestock effluents.
Collapse
Affiliation(s)
- Sara Zangarini
- Gruppo Ricicla, Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Via Celoria, 2, 20133, Milano, Italy
| | - Tommy Pepè Sciarria
- Gruppo Ricicla, Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Via Celoria, 2, 20133, Milano, Italy.
| | - Fulvia Tambone
- Gruppo Ricicla, Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Via Celoria, 2, 20133, Milano, Italy
| | - Fabrizio Adani
- Gruppo Ricicla, Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Via Celoria, 2, 20133, Milano, Italy
| |
Collapse
|
46
|
Chakraborty I, Sathe S, Khuman C, Ghangrekar M. Bioelectrochemically powered remediation of xenobiotic compounds and heavy metal toxicity using microbial fuel cell and microbial electrolysis cell. MATERIALS SCIENCE FOR ENERGY TECHNOLOGIES 2020. [DOI: 10.1016/j.mset.2019.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
47
|
Chakraborty I, Das S, Dubey B, Ghangrekar M. Novel low cost proton exchange membrane made from sulphonated biochar for application in microbial fuel cells. MATERIALS CHEMISTRY AND PHYSICS 2020. [DOI: 10.1016/j.matchemphys.2019.122025] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
48
|
Liu S, Feng Y, Niu J, Liu J, Li N, He W. A novel single chamber vertical baffle flow biocathode microbial electrochemical system with microbial separator. BIORESOURCE TECHNOLOGY 2019; 294:122236. [PMID: 31610499 DOI: 10.1016/j.biortech.2019.122236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 09/27/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
A 10-liter single chamber vertical baffle flow biocathode microbial electrochemical system (MES) with microbial separator was designed for wastewater treatment. The anode and cathode compartments were incompletely isolated by the microbial separator, which enabled module integration and centralized sludge collection of MES. The effluent COD was <50 mg L-1 with COD removal of 86 ± 2% and low sludge yield rate of 0.05 ± 0.02 g-sludge g-1 -COD. The MES performance was mainly restricted by biocathodes and supporting matrixes with higher permeability resulted in better cathode performance. The MES obtained the maximum power density of 67.5 ± 7.8 mW m-2 with two layers of filter cloth and one layer of polyurethane sponge (S2P1) and supporting matrix with moderate permeability was more suitable in overall power generation and anode stability. The influences on bio-community of both cathodes and separators by the permeability of supporting matrixes were observed.
Collapse
Affiliation(s)
- Shujuan Liu
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Yujie Feng
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Jiaojiao Niu
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Jia Liu
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Nan Li
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Weihua He
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China.
| |
Collapse
|
49
|
Bhowmick G, Chakraborty I, Ghangrekar M, Mitra A. TiO2/Activated carbon photo cathode catalyst exposed to ultraviolet radiation to enhance the efficacy of integrated microbial fuel cell-membrane bioreactor. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.100303] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
50
|
Chen H, Lu D, Chen L, Wang C, Xu X, Zhu L. A study of the coupled bioelectrochemical system-upflow anaerobic sludge blanket for efficient transformation of 2,4-dichloronitrobenzene. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:13002-13013. [PMID: 30895540 DOI: 10.1007/s11356-019-04751-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
Coupled bioelectrochemical system-upflow anaerobic sludge blanket (BES-UASB) was utilized for wastewater treatment containing 2,4-dichloronitrobenzene (DClNB). The results indicated that a proper voltage enhanced the DClNB reduction, however, over high voltage presented a negative impact (2.0 V). Synergistic effect of external voltage and anaerobic sludge was observed, and dechlorination efficiency reached 57.8 ± 5.4% in the coupled BES, which was higher than the sum of anaerobic sludge and electric system (48.2%). Moreover, the coupled system was more tolerant of high salinity and pollutant concentration. Dehydrogenase activity (DHA) was related to microbial electron transfer activity and DHA reached a maximum 453 ± 33 μgTF g-1VSS h-1 in the coupled reactor which was 1.6-fold that of the control, meanwhile, extracellular polymeric substances (EPS) content was significantly enhanced in the presence of external voltage. In summary, the coupled BES-UASB systems could be an alternative for removal of recalcitrant pollutants such as DClNB.
Collapse
Affiliation(s)
- Hui Chen
- Institute of Environment Pollution Control and Treatment, Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Donghui Lu
- Institute of Environment Pollution Control and Treatment, Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Linlin Chen
- Institute of Environment Pollution Control and Treatment, Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Caiqin Wang
- Institute of Environment Pollution Control and Treatment, Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xiangyang Xu
- Institute of Environment Pollution Control and Treatment, Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, 310058, China
| | - Liang Zhu
- Institute of Environment Pollution Control and Treatment, Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, 310058, China.
| |
Collapse
|