1
|
Kontogiannis S. Beehive Smart Detector Device for the Detection of Critical Conditions That Utilize Edge Device Computations and Deep Learning Inferences. SENSORS (BASEL, SWITZERLAND) 2024; 24:5444. [PMID: 39205138 PMCID: PMC11359104 DOI: 10.3390/s24165444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
This paper presents a new edge detection process implemented in an embedded IoT device called Bee Smart Detection node to detect catastrophic apiary events. Such events include swarming, queen loss, and the detection of Colony Collapse Disorder (CCD) conditions. Two deep learning sub-processes are used for this purpose. The first uses a fuzzy multi-layered neural network of variable depths called fuzzy-stranded-NN to detect CCD conditions based on temperature and humidity measurements inside the beehive. The second utilizes a deep learning CNN model to detect swarming and queen loss cases based on sound recordings. The proposed processes have been implemented into autonomous Bee Smart Detection IoT devices that transmit their measurements and the detection results to the cloud over Wi-Fi. The BeeSD devices have been tested for easy-to-use functionality, autonomous operation, deep learning model inference accuracy, and inference execution speeds. The author presents the experimental results of the fuzzy-stranded-NN model for detecting critical conditions and deep learning CNN models for detecting swarming and queen loss. From the presented experimental results, the stranded-NN achieved accuracy results up to 95%, while the ResNet-50 model presented accuracy results up to 99% for detecting swarming or queen loss events. The ResNet-18 model is also the fastest inference speed replacement of the ResNet-50 model, achieving up to 93% accuracy results. Finally, cross-comparison of the deep learning models with machine learning ones shows that deep learning models can provide at least 3-5% better accuracy results.
Collapse
Affiliation(s)
- Sotirios Kontogiannis
- Laboratory Team of Distributed MicroComputer Systems, Department of Mathematics, University of Ioannina, University Campus, 45110 Ioannina, Greece
| |
Collapse
|
2
|
Svedberg D, Winiger RR, Berg A, Sharma H, Tellgren-Roth C, Debrunner-Vossbrinck BA, Vossbrinck CR, Barandun J. Functional annotation of a divergent genome using sequence and structure-based similarity. BMC Genomics 2024; 25:6. [PMID: 38166563 PMCID: PMC10759460 DOI: 10.1186/s12864-023-09924-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/18/2023] [Indexed: 01/04/2024] Open
Abstract
BACKGROUND Microsporidia are a large taxon of intracellular pathogens characterized by extraordinarily streamlined genomes with unusually high sequence divergence and many species-specific adaptations. These unique factors pose challenges for traditional genome annotation methods based on sequence similarity. As a result, many of the microsporidian genomes sequenced to date contain numerous genes of unknown function. Recent innovations in rapid and accurate structure prediction and comparison, together with the growing amount of data in structural databases, provide new opportunities to assist in the functional annotation of newly sequenced genomes. RESULTS In this study, we established a workflow that combines sequence and structure-based functional gene annotation approaches employing a ChimeraX plugin named ANNOTEX (Annotation Extension for ChimeraX), allowing for visual inspection and manual curation. We employed this workflow on a high-quality telomere-to-telomere sequenced tetraploid genome of Vairimorpha necatrix. First, the 3080 predicted protein-coding DNA sequences, of which 89% were confirmed with RNA sequencing data, were used as input. Next, ColabFold was used to create protein structure predictions, followed by a Foldseek search for structural matching to the PDB and AlphaFold databases. The subsequent manual curation, using sequence and structure-based hits, increased the accuracy and quality of the functional genome annotation compared to results using only traditional annotation tools. Our workflow resulted in a comprehensive description of the V. necatrix genome, along with a structural summary of the most prevalent protein groups, such as the ricin B lectin family. In addition, and to test our tool, we identified the functions of several previously uncharacterized Encephalitozoon cuniculi genes. CONCLUSION We provide a new functional annotation tool for divergent organisms and employ it on a newly sequenced, high-quality microsporidian genome to shed light on this uncharacterized intracellular pathogen of Lepidoptera. The addition of a structure-based annotation approach can serve as a valuable template for studying other microsporidian or similarly divergent species.
Collapse
Affiliation(s)
- Dennis Svedberg
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Science for Life Laboratory, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, 90187, Sweden
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, 90736, Sweden
| | - Rahel R Winiger
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Science for Life Laboratory, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, 90187, Sweden
| | - Alexandra Berg
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Science for Life Laboratory, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, 90187, Sweden
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, 90736, Sweden
| | - Himanshu Sharma
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Science for Life Laboratory, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, 90187, Sweden
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, 90736, Sweden
| | - Christian Tellgren-Roth
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | - Charles R Vossbrinck
- Department of Environmental Science, Connecticut Agricultural Experiment Station, New Haven, CT, 06504, USA
| | - Jonas Barandun
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Science for Life Laboratory, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, 90187, Sweden.
| |
Collapse
|
3
|
Blot N, Clémencet J, Jourda C, Lefeuvre P, Warrit N, Esnault O, Delatte H. Geographic population structure of the honeybee microsporidian parasite Vairimorpha (Nosema) ceranae in the South West Indian Ocean. Sci Rep 2023; 13:12122. [PMID: 37495608 PMCID: PMC10372035 DOI: 10.1038/s41598-023-38905-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023] Open
Abstract
The microsporidian Vairimorpha (Nosema) ceranae is one of the most common parasites of the honeybee. A single honeybee carries many parasites and therefore multiple alleles of V. ceranae genes that seem to be ubiquitous. As a consequence, nucleotide diversity analyses have not allowed discriminating genetic structure of parasite populations. We performed deep loci-targeted sequencing to monitor the haplotype frequencies of genome markers in isolates from discontinuous territories, namely the tropical islands of the South West Indian Ocean. The haplotype frequency distribution corroborated the suspected tetraploidy of the parasite. Most major haplotypes were ubiquitous in the area but with variable frequency. While oceanic isolates differed from European and Asian outgroups, parasite populations from distinct archipelagoes also differed in their haplotype distribution. Interestingly an original and very divergent Malagasy isolate was detected. The observed population structure allowed formulating hypotheses upon the natural history of V. ceranae in this oceanic area. We also discussed the usefulness of allelic distribution assessment, using multiple informative loci or genome-wide analyses, when parasite population is not clonal within a single host.
Collapse
Affiliation(s)
- Nicolas Blot
- Université Clermont Auvergne, CNRS, "Laboratoire Microorganismes: Génome et Environnement", Clermont-Ferrand, France.
| | - Johanna Clémencet
- Université de la Réunion, UMR Peuplements Végétaux et Bio-agresseurs en Milieu Tropical, 97410, Saint-Pierre, La Réunion, France
| | - Cyril Jourda
- CIRAD, UMR Peuplements Végétaux et Bio-agresseurs en Milieu Tropical, 97410, Saint-Pierre, La Réunion, France
| | - Pierre Lefeuvre
- CIRAD, UMR Peuplements Végétaux et Bio-agresseurs en Milieu Tropical, 97410, Saint-Pierre, La Réunion, France
| | - Natapot Warrit
- Center of Excellence in Entomology, Department of Biology, Faculty of Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Olivier Esnault
- Groupement de Défense Sanitaire de la Réunion, La Plaine des Cafres, France
| | - Hélène Delatte
- CIRAD, UMR Peuplements Végétaux et Bio-agresseurs en Milieu Tropical, 101, Antananarivo, Madagascar
| |
Collapse
|
4
|
Nekoei S, Rezvan M, Khamesipour F, Mayack C, Molento MB, Revainera PD. A systematic review of honey bee (Apis mellifera, Linnaeus, 1758) infections and available treatment options. Vet Med Sci 2023. [PMID: 37335585 PMCID: PMC10357250 DOI: 10.1002/vms3.1194] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/11/2023] [Accepted: 06/03/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Honey bees and honeycomb bees are very valuable for wild flowering plants and economically important crops due to their role as pollinators. However, these insects confront many disease threats (viruses, parasites, bacteria and fungi) and large pesticide concentrations in the environment. Varroa destructor is the most prevalent disease that has had the most negative effects on the fitness and survival of different honey bees (Apis mellifera and A. cerana). Moreover, honey bees are social insects and this ectoparasite can be easily transmitted within and across bee colonies. OBJECTIVE This review aims to provide a survey of the diversity and distribution of important bee infections and possible management and treatment options, so that honey bee colony health can be maintained. METHODS We used PRISMA guidelines throughout article selection, published between January 1960 and December 2020. PubMed, Google Scholar, Scopus, Cochrane Library, Web of Science and Ovid databases were searched. RESULTS We have collected 132 articles and retained 106 articles for this study. The data obtained revealed that V. destructor and Nosema spp. were found to be the major pathogens of honey bees worldwide. The impact of these infections can result in the incapacity of forager bees to fly, disorientation, paralysis, and death of many individuals in the colony. We find that both hygienic and chemical pest management strategies must be implemented to prevent, reduce the parasite loads and transmission of pathogens. The use of an effective miticide (fluvalinate-tau, coumaphos and amitraz) now seems to be an essential and common practice required to minimise the impact of Varroa mites and other pathogens on bee colonies. New, alternative biofriendly control methods, are on the rise, and could be critical for maintaining honey bee hive health and improving honey productivity. CONCLUSIONS We suggest that critical health control methods be adopted globally and that an international monitoring system be implemented to determine honey bee colony safety, regularly identify parasite prevalence, as well as potential risk factors, so that the impact of pathogens on bee health can be recognised and quantified on a global scale.
Collapse
Affiliation(s)
- Shahin Nekoei
- Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mahsa Rezvan
- Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Faham Khamesipour
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Christopher Mayack
- Faculty of Engineering and Natural Sciences, Department of Molecular Biology, Genetics, and Bioengineering, Sabanci University, İstanbul, Turkey
| | - Marcelo Beltrão Molento
- Laboratory of Veterinary Clinical Parasitology, Department of Veterinary Medicine, Federal University of Parana, Curitiba, PR, Brazil
- Microbiology, Parasitology, Pathology Program, Federal University of Parana, Curitiba, PR, Brazil
| | - Pablo Damián Revainera
- Centro de Investigación en Abejas Sociales (CIAS), Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Comisión de Investigaciones Científicas de la provincia de Buenos Aires (CIC), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| |
Collapse
|
5
|
García-Vicente EJ, Martín M, Rey-Casero I, Pérez A, Martínez R, Bravo M, Alonso JM, Risco D. Effect of feed supplementation with probiotics and postbiotics on strength and health status of honey bee (Apis mellifera) hives during late spring. Res Vet Sci 2023; 159:237-243. [PMID: 37178627 DOI: 10.1016/j.rvsc.2023.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023]
Abstract
Currently, beekeeping faces many risks, such as deteriorating health of honeybees in hives, which results in high mortality rates, mainly during winter. An important consequence is the emergence/re-emergence of communicable diseases such as varroosis or nosemosis. These diseases jeopardize the continuity of the sector because of the absence of effective treatments and harmful residues that they can be retained on wax or honey. This study aimed to evaluate how feed supplementation with probiotic and postbiotic products derived from lactic acid bacteria affected the strength, dynamic population, and sanitary parameters of honey bees. Three groups of 30 hives were established and fed with feed supplemented with control, probiotic, or postbiotic products, with a total of nine applications over two months in late spring. Two monitoring tests were conducted to evaluate the strength and health status of hives. Hives that consumed postbiotic products enhanced their strength, increased bee population and egg laying of the queen, and maintained their reserves of pollen, whereas these parameters decreased in hives belonging to other groups. Furthermore, although the results suggested a favorable effect of postbiotic products on the trend of N. ceranae infection levels, probiotics showed intermediate results. While awaiting long-term results regarding V. destructor infestation, which showed similar trends in all groups, feed supplementation with postbiotics could be an important tool for beekeepers to enhance the strength and health status of their hives.
Collapse
Affiliation(s)
| | - María Martín
- Neobéitar S.L. Av. Alemania 6 1°B, 10001 Cáceres, Spain
| | | | - Ana Pérez
- Neobéitar S.L. Av. Alemania 6 1°B, 10001 Cáceres, Spain
| | - Remigio Martínez
- Department of Animal Health, Facultad de Veterinaria, Universidad de Extremadura, Av. de la Universidad s/n, 10003 Cáceres, Spain
| | - María Bravo
- Ingulados, Miguel Servet 11-13, 10004 Cáceres, Spain.
| | - Juan Manuel Alonso
- Department of Animal Health, Facultad de Veterinaria, Universidad de Extremadura, Av. de la Universidad s/n, 10003 Cáceres, Spain.
| | - David Risco
- Department of Animal Medicine, Facultad de Veterinaria, Universidad de Extremadura, Av. de la Universidad s/n, 10003 Cáceres, Spain.
| |
Collapse
|
6
|
Schüler V, Liu YC, Gisder S, Horchler L, Groth D, Genersch E. Significant, but not biologically relevant: Nosema ceranae infections and winter losses of honey bee colonies. Commun Biol 2023; 6:229. [PMID: 36859713 PMCID: PMC9977864 DOI: 10.1038/s42003-023-04587-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 02/13/2023] [Indexed: 03/03/2023] Open
Abstract
The Western honey bee Apis mellifera, which provides about 90% of commercial pollination, is under threat from diverse abiotic and biotic factors. The ectoparasitic mite Varroa destructor vectoring deformed wing virus (DWV) has been identified as the main biotic contributor to honey bee colony losses worldwide, while the role of the microsporidium Nosema ceranae is still controversially discussed. In an attempt to solve this controversy, we statistically analyzed a unique data set on honey bee colony health collected from a cohort of honey bee colonies over 15 years and comprising more than 3000 data sets on mite infestation levels, Nosema spp. infections, and winter losses. Multivariate statistical analysis confirms that V. destructor is the major cause of colony winter losses. Although N. ceranae infections are also statistically significantly correlated with colony losses, determination of the effect size reveals that N. ceranae infections are of no or low biological relevance.
Collapse
Affiliation(s)
- Vivian Schüler
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Friedrich-Engels-Str. 32, 16540, Hohen Neuendorf, Germany
| | - Yuk-Chien Liu
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Friedrich-Engels-Str. 32, 16540, Hohen Neuendorf, Germany
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
| | - Sebastian Gisder
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Friedrich-Engels-Str. 32, 16540, Hohen Neuendorf, Germany
| | - Lennart Horchler
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Friedrich-Engels-Str. 32, 16540, Hohen Neuendorf, Germany
| | - Detlef Groth
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
| | - Elke Genersch
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Friedrich-Engels-Str. 32, 16540, Hohen Neuendorf, Germany.
- Freie Universität Berlin, Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Robert-von-Ostertag-Str. 7, 14163, Berlin, Germany.
| |
Collapse
|
7
|
Lopes AR, Martín-Hernández R, Higes M, Segura SK, Henriques D, Pinto MA. Colonisation Patterns of Nosema ceranae in the Azores Archipelago. Vet Sci 2022; 9:vetsci9070320. [PMID: 35878337 PMCID: PMC9323992 DOI: 10.3390/vetsci9070320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Abstract
Nosema ceranae is a highly prevalent pathogen of Apis mellifera, which is distributed worldwide. However, there may still exist isolated areas that remain free of N. ceranae. Herein, we used molecular tools to survey the Azores to detect N. ceranae and unravel its colonisation patterns. To that end, we sampled 474 colonies from eight islands in 2014/2015 and 91 from four islands in 2020. The findings revealed that N. ceranae was not only present but also the dominant species in the Azores. In 2014/2015, N. apis was rare and N. ceranae prevalence varied between 2.7% in São Jorge and 50.7% in Pico. In 2020, N. ceranae prevalence increased significantly (p < 0.001) in Terceira and São Jorge also showing higher infection levels. The spatiotemporal patterns suggest that N. ceranae colonised the archipelago recently, and it rapidly spread across other islands, where at least two independent introductions might have occurred. Flores and Santa Maria have escaped the N. ceranae invasion, and it is remarkable that Santa Maria is also free of Varroa destructor, which makes it one of the last places in Europe where the honey bee remains naive to these two major biotic stressors.
Collapse
Affiliation(s)
- Ana Rita Lopes
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (A.R.L.); (D.H.)
| | - Raquel Martín-Hernández
- Laboratorio de Patología Apícola, IRIAF—Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Centro de Investigación Apícola y Agroambiental (CIAPA), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Camino de San Martín, 19180 Marchamalo, Spain; (R.M.-H.); (M.H.)
- Instituto de Recursos Humanos para la Ciencia y la Tecnología (INCRECYT-FSE/EC-ESF), Fundación Parque Científico y Tecnológico de Castilla—La Mancha, 02006 Albacete, Spain
| | - Mariano Higes
- Laboratorio de Patología Apícola, IRIAF—Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Centro de Investigación Apícola y Agroambiental (CIAPA), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Camino de San Martín, 19180 Marchamalo, Spain; (R.M.-H.); (M.H.)
| | - Sara Kafafi Segura
- Zoología y Antropología Física, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, 28014 Madrid, Spain;
| | - Dora Henriques
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (A.R.L.); (D.H.)
| | - Maria Alice Pinto
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (A.R.L.); (D.H.)
- Correspondence:
| |
Collapse
|
8
|
High genetic variability of Nosema ceranae populations in Apis mellifera from East Asia compared to central Asia and the Americas. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02835-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Marín-García PJ, Peyre Y, Ahuir-Baraja AE, Garijo MM, Llobat L. The Role of Nosema ceranae (Microsporidia: Nosematidae) in Honey Bee Colony Losses and Current Insights on Treatment. Vet Sci 2022; 9:vetsci9030130. [PMID: 35324858 PMCID: PMC8952814 DOI: 10.3390/vetsci9030130] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
Honeybee populations have locally and temporally declined in the last few years because of both biotic and abiotic factors. Among the latter, one of the most important reasons is infection by the microsporidia Nosema ceranae, which is the etiological agent of type C nosemosis. This species was first described in Asian honeybees (Apis cerana). Nowadays, domestic honeybees (Apis mellifera) worldwide are also becoming infected due to globalization. Type C nosemosis can be asymptomatic or can cause important damage to bees, such as changes in temporal polyethism, energy and oxidative stress, immunity loss, and decreased average life expectancy. It causes drastic reductions in workers, numbers of broods, and honey production, finally leading to colony loss. Common treatment is based on fumagillin, an antibiotic with side effects and relatively poor efficiency, which is banned in the European Union. Natural products, probiotics, food supplements, nutraceuticals, and other veterinary drugs are currently under study and might represent alternative treatments. Prophylaxis and management of affected colonies are essential to control the disease. While N. ceranae is one potential cause of bee losses in a colony, other factors must also be considered, especially synergies between microsporidia and the use of insecticides.
Collapse
Affiliation(s)
- Pablo Jesús Marín-García
- Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology (PASAPTA), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain; (P.J.M.-G.); (A.E.A.-B.)
| | - Yoorana Peyre
- Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain;
| | - Ana Elena Ahuir-Baraja
- Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology (PASAPTA), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain; (P.J.M.-G.); (A.E.A.-B.)
| | - María Magdalena Garijo
- Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology (PASAPTA), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain; (P.J.M.-G.); (A.E.A.-B.)
- Correspondence: (M.M.G.); (L.L.)
| | - Lola Llobat
- Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology (PASAPTA), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain; (P.J.M.-G.); (A.E.A.-B.)
- Correspondence: (M.M.G.); (L.L.)
| |
Collapse
|
10
|
Tejerina MR, Benítez-Ahrendts MR, Audisio MC. Lactobacillus salivarius A3iob Reduces the Incidence of Varroa destructor and Nosema Spp. in Commercial Apiaries Located in the Northwest of Argentina. Probiotics Antimicrob Proteins 2021; 12:1360-1369. [PMID: 32172463 DOI: 10.1007/s12602-020-09638-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lactobacillus salivarius A3iob was administered to productive colonies belonging to commercial apiaries of small beekeepers (around 30-50 hives each one), from four departments of the province of Jujuy (Argentina): Yala, Tilquiza, El Carmen, and Los Alisos. The incidence of Varroa destructor and Nosema spp., before and after winter, was monitored during 2 years of study (2014-2015). Depending on the geographical location of each apiary and the application time, a monthly dose of the bacteria (105 CFU/mL) reduced the levels of varroasis between 50 and 80%. Interestingly, L. salivarius A3iob cells remitted the percentage of the mites to undetectable values in an apiary treated with flumethrin (at Yala, Yungas region).On the other hand, the spore levels of Nosema spp. in the lactobacilli-treated colonies also depended on the apiary and the year of application, but a significant decrease was mainly observed in the post-winter period. However, at Rivera (El Carmen's department), no significant changes were detected in both parameters.These results obtained after 2 years of work suggest that delivering L. salivarius A3iob cells to the bee colonies can become a new eco-friendly tool to cooperate with the control of these bees' pests.
Collapse
Affiliation(s)
- Marcos Raúl Tejerina
- Facultad de Ciencias Agrarias, Universidad Nacional de Jujuy, Alberdi 47, 4600, Jujuy, Argentina
| | | | - Marcela Carina Audisio
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta, Av. Bolivia 5150, 4402FDC, Salta, Argentina.
| |
Collapse
|
11
|
Urbieta-Magro A, Higes M, Meana A, Barrios L, Martín-Hernández R. Age and Method of Inoculation Influence the Infection of Worker Honey Bees ( Apis mellifera) by Nosema ceranae. INSECTS 2019; 10:E417. [PMID: 31766667 PMCID: PMC6956240 DOI: 10.3390/insects10120417] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 01/09/2023]
Abstract
The microsporidian parasite Nosema ceranae is a highly prevalent, global honey bee pathogen. Apis mellifera is considered to be a relatively recent host for this microsporidia, which raises questions as to how it affects its host's physiology, behavior and longevity, both at the individual and colony level. As such, honey bees were inoculated with fresh purified spores of this pathogen, both individually (Group A) or collectively (Group B) and they were studied from 0 to 15 days post-emergence (p.e.) to evaluate the effect of bee age and the method of inoculation at 7 days post-infection. The level of infection was analyzed individually by qPCR by measuring the relative amount of the N. ceranae polar tubule protein 3 (PTP3) gene. The results show that the bee's age and the method of infection directly influence parasite load, and thus, early disease development. Significant differences were found regarding bee age at the time of infection, whereby the youngest bees (new-born and 1 day p.e.) developed the highest parasite load, with this load decreasing dramatically in bees infected at 2 days p.e. before increasing again in bees infected at 3-4 days p.e. The parasite load in bees infected when older than 4 days p.e. diminished as they aged. When the age cohort data was pooled and grouped according to the method of infection, a significantly higher mean concentration and lower variation in N. ceranae infection was evident in Group A, indicating greater variation in experimental infection when spores were administered collectively to bees through their food. In summary, these data indicate that both biological and experimental factors should be taken into consideration when comparing data published in the literature.
Collapse
Affiliation(s)
- Almudena Urbieta-Magro
- IRIAF. Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Camino de San Martín s/n, 19180 Marchamalo, Spain; (A.U.-M.); (M.H.)
| | - Mariano Higes
- IRIAF. Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Camino de San Martín s/n, 19180 Marchamalo, Spain; (A.U.-M.); (M.H.)
| | - Aránzazu Meana
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Laura Barrios
- Statistics Department, Computing Center SGAI-CSIC, 28006 Madrid, Spain
| | - Raquel Martín-Hernández
- IRIAF. Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Camino de San Martín s/n, 19180 Marchamalo, Spain; (A.U.-M.); (M.H.)
- Instituto de Recursos Humanos para la Ciencia y la Tecnología (INCRECYT-FEDER), Fundación Parque Científico y Tecnológico de Castilla—La Mancha, 02006 Albacete, Spain
| |
Collapse
|
12
|
Matović K, Vidanović D, Manić M, Stojiljković M, Radojičić S, Debeljak Z, Šekler M, Ćirić J. Twenty-five-year study of Nosema spp. in honey bees ( Apis mellifera) in Serbia. Saudi J Biol Sci 2019; 27:518-523. [PMID: 31889877 PMCID: PMC6933281 DOI: 10.1016/j.sjbs.2019.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 11/04/2022] Open
Abstract
A total of 7386 samples of adult honey bees from different areas of Serbia (fifteen regions and 79 municipalities) were selected for light microscopy analysis for Nosema species during 1992–2017. A selection of honey bee samples from colonies positive for microsporidian spores during 2009–2011, 2015 and 2017 were then subjected to molecular diagnosis by multiplex PCR using specific primers for a region of the 16S rRNA gene of Nosema species. The prevalence of microsporidian spore-positive bee colonies ranged between 14.4% in 2013 and 65.4% in 1992. PCR results show that Nosema ceranae is not the only Nosema species to infect honey bees in Serbia. Mixed N. apis/N. ceranae infections were detected in the two honey bee samples examined by mPCR during 2017. The beekeeping management of disease prevention, such as replacement of combs and queens and hygienic handling of colonies are useful in the prevention of Nosema infection.
Collapse
Affiliation(s)
- Kazimir Matović
- Veterinary Specialized Institute Kraljevo, 34 Zicka Street, 36000 Kraljevo, Serbia
| | - Dejan Vidanović
- Veterinary Specialized Institute Kraljevo, 34 Zicka Street, 36000 Kraljevo, Serbia
| | - Marija Manić
- Veterinary Specialized Institute Niš, 175, Dimitrija Tucovića, 18000 Niš, Serbia
| | - Marko Stojiljković
- Veterinary Specialized Institute Niš, 175, Dimitrija Tucovića, 18000 Niš, Serbia
| | - Sonja Radojičić
- Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobođenja 18, 11000 Belgrade, Serbia
| | - Zoran Debeljak
- Veterinary Specialized Institute Kraljevo, 34 Zicka Street, 36000 Kraljevo, Serbia
| | - Milanko Šekler
- Veterinary Specialized Institute Kraljevo, 34 Zicka Street, 36000 Kraljevo, Serbia
| | - Jelena Ćirić
- Institute of Meat Hygiene and Technology, Kaćanskog 13, 11000 Belgrade, Serbia
| |
Collapse
|
13
|
Urbieta-Magro A, Higes M, Meana A, Gómez-Moracho T, Rodríguez-García C, Barrios L, Martín-Hernández R. The levels of natural Nosema spp. infection in Apis mellifera iberiensis brood stages. Int J Parasitol 2019; 49:657-667. [PMID: 31170411 DOI: 10.1016/j.ijpara.2019.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 02/06/2023]
Abstract
Nosema ceranae is the most prevalent endoparasite of Apis mellifera iberiensis and it is a major health problem for bees worldwide. The infective capacity of N. ceranae has been demonstrated experimentally in honey bee brood, however no data are available about its prevalence in brood under natural conditions. Thus, brood combs from 10 different hives were analyzed over two consecutive years, taking samples before and after winter. A total of 1433 larvae/pupae were analyzed individually and N. ceranae (3.53%) was the microsporidian most frequently detected, as opposed to Nosema apis (0.42%) which was more frequently detected in conjunction with N. ceranae (0.71%). The active multiplication of both microsporidians was confirmed by the expression (real-time-PCR) of the N. ceranae polar tube protein 3 gene and/or the N. apis RNA polymerase II gene in 24% of the brood samples positive for Nosema spp. Both genes are related to microsporidian multiplication. As such, N. ceranae multiplication was confirmed in 1.06% of the samples, while N. apis multiplication was only observed in co-infections with N. ceranae (0.07%). Brood cells were analyzed for the presence of Nosema spp., as those are the immediate environment where the brood stages develop. The brood samples infected by Nosema spp. were in brood cells in which that microsporidians were not detected, while brood cells positive for N. ceranae hosted brood stages that were not apparently infected, indicating that this is unlikely to be the main pathway of infection. Finally, the colonies with brood infected by N. ceranae showed higher levels (numbers) of infected adult bees, although the differences were not significant before (P = 0.260), during (P = 0.055) or after (P = 0.056) brood sampling. These results show that N. ceranae is a bee parasite ubiquitous to all members of the colony, irrespective of the age of the bee. It is also of veterinary interest and should be considered when studying the epidemiology of the disease.
Collapse
Affiliation(s)
- Almudena Urbieta-Magro
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Camino de San Martín s/n, 19180 Marchamalo, Guadalajara, Spain
| | - Mariano Higes
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Camino de San Martín s/n, 19180 Marchamalo, Guadalajara, Spain
| | - Aránzazu Meana
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Spain
| | - Tamara Gómez-Moracho
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Camino de San Martín s/n, 19180 Marchamalo, Guadalajara, Spain
| | - Cristina Rodríguez-García
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Camino de San Martín s/n, 19180 Marchamalo, Guadalajara, Spain
| | - Laura Barrios
- Statistics Department, Computing Center SGAI-CSIC, Madrid, Spain
| | - Raquel Martín-Hernández
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Camino de San Martín s/n, 19180 Marchamalo, Guadalajara, Spain; Instituto de Recursos Humanos para la Ciencia y la Tecnología (INCRECYT-FEDER), Fundación Parque Científico y Tecnológico de Castilla - La Mancha, Spain.
| |
Collapse
|
14
|
Khezri M, Moharrami M, Modirrousta H, Torkaman M, Salehi S, Rokhzad B, Khanbabai H. Molecular detection of Nosema ceranae in the apiaries of Kurdistan province, Iran. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2018; 9:273-278. [PMID: 30357093 PMCID: PMC6198153 DOI: 10.30466/vrf.2018.32086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/24/2018] [Indexed: 11/27/2022]
Abstract
Nosema disease is one of the most important diseases of adult honey bees worldwide. It is known as silent killer because there are no characteristic symptoms. The aim of the present study was to determine prevalence of Nosema species in various towns of Kurdistan province in Iran. A multiplex polymerase chain reaction (multiplex-PCR) was performed for identification of Nosema species infecting European honeybee, Apis mellifera. A total of 100 samples were collected from apiaries (870 hives) in 10 counties of Kurdistan province, located in the west of Iran. Samples were examined using light microscope and PCR. The light microscope was used to determine the presence of Nosema spores in all of the collected samples. Multiplex-PCR based on 16S ribosomal RNA was used to differentiate N. apis from N. ceranae. Overall prevalence of the microscopic evaluation and PCR method were 29.00% and 32.00%, respectively. The analysis of Nosema isolates from interrogation of DNA databank entries of Kurdistan apiaries (based on rRNA sequence data) indicated that only N. ceranae was widespread in these apiaries, and it had already been found in high percentages (50.00%) in Marivan and Kamiaran counties of Kurdistan province. It was shown that only N. ceranae was found by PCR assay in the region.
Collapse
Affiliation(s)
- Mohammad Khezri
- Department of Veterinary Research, Kurdistan Agricultural and Natural Resources Research Center, AREEO, Sanandaj, Iran;
| | - Mojtaba Moharrami
- Department of Honey Bee, Silk Worm and Wildlife Research Diseases, Razi Vaccine and Serum Research Institute, AREEO, Karaj, Iran.
| | - Hossain Modirrousta
- Department of Honey Bee, Silk Worm and Wildlife Research Diseases, Razi Vaccine and Serum Research Institute, AREEO, Karaj, Iran.
| | - Maryam Torkaman
- Department of Honey Bee, Silk Worm and Wildlife Research Diseases, Razi Vaccine and Serum Research Institute, AREEO, Karaj, Iran.
| | - Saleh Salehi
- Department of Veterinary Research, Kurdistan Agricultural and Natural Resources Research Center, AREEO, Sanandaj, Iran;
| | - Babak Rokhzad
- Department of Veterinary Research, Kurdistan Agricultural and Natural Resources Research Center, AREEO, Sanandaj, Iran;
| | - Homan Khanbabai
- Department of Veterinary Research, Kurdistan Agricultural and Natural Resources Research Center, AREEO, Sanandaj, Iran;
| |
Collapse
|
15
|
Assessing the health status of managed honeybee colonies (HEALTHY-B): a toolbox to facilitate harmonised data collection. EFSA J 2016. [DOI: 10.2903/j.efsa.2016.4578] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
16
|
Jack CJ, Lucas HM, Webster TC, Sagili RR. Colony Level Prevalence and Intensity of Nosema ceranae in Honey Bees (Apis mellifera L.). PLoS One 2016; 11:e0163522. [PMID: 27658258 PMCID: PMC5033419 DOI: 10.1371/journal.pone.0163522] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/09/2016] [Indexed: 01/30/2023] Open
Abstract
Nosema ceranae is a widely prevalent microsporidian parasite in the western honey bee. There is considerable uncertainty regarding infection dynamics of this important pathogen in honey bee colonies. Understanding the infection dynamics at the colony level may aid in development of a reliable sampling protocol for N. ceranae diagnosis, and provide insights into efficient treatment strategies. The primary objective of this study was to characterize the prevalence (proportion of the sampled bees found infected) and intensity (number of spores per bee) of N. ceranae infection in bees from various age cohorts in a colony. We examined N. ceranae infection in both overwintered colonies that were naturally infected with N. ceranae and in quadruple cohort nucleus colonies that were established and artificially inoculated with N. ceranae. We also examined and quantified effects of N. ceranae infection on hypopharyngeal gland protein content and gut pH. There was no correlation between the prevalence and intensity of N. ceranae infection in composite samples (pooled bee samples used for analysis). Our results indicated that the prevalence and intensity of N. ceranae infection is significantly influenced by honey bee age. The N. ceranae infection prevalence values from composite samples of background bees (unmarked bees collected from four different locations in a colony) were not significantly different from those pertaining to marked-bee age cohorts specific to each sampling date. The foraging-aged bees had a higher prevalence of N. ceranae infection when compared to nurse-aged bees. N. ceranae did not have a significant effect on hypopharyngeal gland protein content. Further, there was no significant difference in mean gut pH of N. ceranae infected bees and non-infected bees. This study provides comprehensive insights into N. ceranae infection dynamics at the colony level, and also demonstrates the effects of N. ceranae infection on hypopharyngeal gland protein content and midgut pH.
Collapse
Affiliation(s)
- Cameron J. Jack
- Department of Horticulture, Oregon State University, Corvallis, Oregon, United States of America
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| | - Hannah M. Lucas
- Department of Horticulture, Oregon State University, Corvallis, Oregon, United States of America
| | - Thomas C. Webster
- College of Agriculture, Food Science & Sustainable Systems, Kentucky State University, Frankfort, Kentucky, United States of America
| | - Ramesh R. Sagili
- Department of Horticulture, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
17
|
Holt HL, Grozinger CM. Approaches and Challenges to Managing Nosema (Microspora: Nosematidae) Parasites in Honey Bee (Hymenoptera: Apidae) Colonies. JOURNAL OF ECONOMIC ENTOMOLOGY 2016; 109:1487-503. [PMID: 27340190 DOI: 10.1093/jee/tow103] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 04/18/2016] [Indexed: 05/23/2023]
Abstract
UNLABELLED The microsporidia Nosema apis (Zander) and Nosema ceranae (Fries) are common intestinal parasites in honey bee (Apis mellifera L.) colonies. Though globally prevalent, there are mixed reports of Nosema infection costs, with some regions reporting high parasite virulence and colony losses, while others REPORT high Nosema prevalence but few costs. Basic and applied studies are urgently needed to help beekeepers effectively manage Nosema spp., ideally through an integrated pest management approach that allows beekeepers to deploy multiple strategies to control Nosema when Nosema is likely to cause damage to the colonies, rather than using prophylactic treatments. Beekeepers need practical and affordable technologies that facilitate disease diagnosis and science-backed guidelines that recommend when, if at all, to treat infections. In addition, new treatment methods are needed, as there are several problems associated with the chemical use of fumagillin (the only currently extensively studied, but not globally available treatment) to control Nosema parasites. Though selective breeding of Nosema-resistant or tolerant bees may offer a long-term, sustainable solution to Nosema management, other treatments are needed in the interim. Furthermore, the validation of alternative treatment efficacy in field settings is needed along with toxicology assays to ensure that treatments do not have unintended, adverse effects on honey bees or humans. Finally, given variation in Nosema virulence, development of regional management guidelines, rather than universal guidelines, may provide optimal and cost-effective Nosema management, though more research is needed before regional plans can be developed.
Collapse
Affiliation(s)
- Holly L Holt
- Department of Entomology, Center for Pollinator Research, The Pennsylvania State University, 3A Chemical Ecology Laboratory, University Park, PA, 16802 Current Affiliation: Department of Fisheries, Wildlife and Conservation Biology, The University of Minnesota, Skok Hall, St. Paul, MN, 55108
| | - Christina M Grozinger
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, The Pennsylvania State University, 1A Chemical Ecology Laboratory, University Park, PA, 16802
| |
Collapse
|
18
|
Porrini C, Mutinelli F, Bortolotti L, Granato A, Laurenson L, Roberts K, Gallina A, Silvester N, Medrzycki P, Renzi T, Sgolastra F, Lodesani M. The Status of Honey Bee Health in Italy: Results from the Nationwide Bee Monitoring Network. PLoS One 2016; 11:e0155411. [PMID: 27182604 PMCID: PMC4868308 DOI: 10.1371/journal.pone.0155411] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 04/28/2016] [Indexed: 11/19/2022] Open
Abstract
In Italy a nation-wide monitoring network was established in 2009 in response to significant honey bee colony mortality reported during 2008. The network comprised of approximately 100 apiaries located across Italy. Colonies were sampled four times per year, in order to assess the health status and to collect samples for pathogen, chemical and pollen analyses. The prevalence of Nosema ceranae ranged, on average, from 47-69% in 2009 and from 30-60% in 2010, with strong seasonal variation. Virus prevalence was higher in 2010 than in 2009. The most widespread viruses were BQCV, DWV and SBV. The most frequent pesticides in all hive contents were organophosphates and pyrethroids such as coumaphos and tau-fluvalinate. Beeswax was the most frequently contaminated hive product, with 40% of samples positive and 13% having multiple residues, while 27% of bee-bread and 12% of honey bee samples were contaminated. Colony losses in 2009/10 were on average 19%, with no major differences between regions of Italy. In 2009, the presence of DWV in autumn was positively correlated with colony losses. Similarly, hive mortality was higher in BQCV infected colonies in the first and second visits of the year. In 2010, colony losses were significantly related to the presence of pesticides in honey bees during the second sampling period. Honey bee exposure to poisons in spring could have a negative impact at the colony level, contributing to increase colony mortality during the beekeeping season. In both 2009 and 2010, colony mortality rates were positively related to the percentage of agricultural land surrounding apiaries, supporting the importance of land use for honey bee health.
Collapse
Affiliation(s)
- Claudio Porrini
- Dipartimento di Scienze Agrarie (DipSA), Università di Bologna, Bologna, Italy
| | - Franco Mutinelli
- Istituto Zooprofilattico Sperimentale delle Venezie, NRL for beekeeping, Legnaro (Padova), Italy
| | - Laura Bortolotti
- CRA-API, Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Bologna, Italy
| | - Anna Granato
- Istituto Zooprofilattico Sperimentale delle Venezie, NRL for beekeeping, Legnaro (Padova), Italy
| | | | | | - Albino Gallina
- Istituto Zooprofilattico Sperimentale delle Venezie, NRL for beekeeping, Legnaro (Padova), Italy
| | - Nicholas Silvester
- Istituto Zooprofilattico Sperimentale delle Venezie, NRL for beekeeping, Legnaro (Padova), Italy
| | - Piotr Medrzycki
- CRA-API, Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Bologna, Italy
| | - Teresa Renzi
- Dipartimento di Scienze Agrarie (DipSA), Università di Bologna, Bologna, Italy
| | - Fabio Sgolastra
- Dipartimento di Scienze Agrarie (DipSA), Università di Bologna, Bologna, Italy
| | - Marco Lodesani
- CRA-API, Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Bologna, Italy
| |
Collapse
|
19
|
Graystock P, Blane EJ, McFrederick QS, Goulson D, Hughes WO. Do managed bees drive parasite spread and emergence in wild bees? Int J Parasitol Parasites Wildl 2016; 5:64-75. [PMID: 28560161 PMCID: PMC5439461 DOI: 10.1016/j.ijppaw.2015.10.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/27/2015] [Accepted: 10/01/2015] [Indexed: 11/20/2022]
Abstract
Bees have been managed and utilised for honey production for centuries and, more recently, pollination services. Since the mid 20th Century, the use and production of managed bees has intensified with hundreds of thousands of hives being moved across countries and around the globe on an annual basis. However, the introduction of unnaturally high densities of bees to areas could have adverse effects. Importation and deployment of managed honey bee and bumblebees may be responsible for parasite introductions or a change in the dynamics of native parasites that ultimately increases disease prevalence in wild bees. Here we review the domestication and deployment of managed bees and explain the evidence for the role of managed bees in causing adverse effects on the health of wild bees. Correlations with the use of managed bees and decreases in wild bee health from territories across the globe are discussed along with suggestions to mitigate further health reductions in wild bees.
Collapse
Affiliation(s)
- Peter Graystock
- Department of Entomology, University of California, Riverside, CA 92507, USA
| | - Edward J. Blane
- Natural England, Mail Hub Block B, Whittington Road, Worcester, WR5 2LQ, UK
| | | | - Dave Goulson
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | | |
Collapse
|
20
|
Determination of selected environmental contaminants in foraging honeybees. Talanta 2016; 148:1-6. [DOI: 10.1016/j.talanta.2015.10.064] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 10/20/2015] [Accepted: 10/23/2015] [Indexed: 11/18/2022]
|
21
|
Jara L, Muñoz I, Cepero A, Martín-Hernández R, Serrano J, Higes M, De la Rúa P. Stable genetic diversity despite parasite and pathogen spread in honey bee colonies. Naturwissenschaften 2015; 102:53. [PMID: 26306398 DOI: 10.1007/s00114-015-1298-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 06/26/2015] [Accepted: 07/31/2015] [Indexed: 11/24/2022]
Abstract
In the last decades, the rapid spread of diseases, such as varroosis and nosemosis, associated with massive honey bee colonies mortality around the world has significantly decreased the number and size of honey bee populations and possibly their genetic diversity. Here, we compare the genetic diversity of Iberian honey bee colonies in two samplings performed in 2006 and 2010 in relation to the presence of the pathogenic agents Nosema apis, Nosema ceranae, and Varroa destructor in order to determine whether parasite and pathogen spread in honey bee colonies reflects changes in genetic diversity. We found that the genetic diversity remained similar, while the incidence of N. ceranae increased and the incidence of N. apis and V. destructor decreased slightly. These results indicate that the genetic diversity was not affected by the presence of these pathogenic agents in the analyzed period. However, the two groups of colonies with and without Nosema/Varroa detected showed significant genetic differentiation (G test). A detailed analysis of the allelic segregation of microsatellite loci in Nosema/Varroa-negative colonies and parasitized ones revealed two outlier loci related to genes involved in immune response.
Collapse
Affiliation(s)
- Laura Jara
- Departamento de Zoología y Antropología Física, Facultad de Veterinaria, Universidad de Murcia, 30100, Murcia, Spain
| | | | | | | | | | | | | |
Collapse
|
22
|
Nosema ceranae Can Infect Honey Bee Larvae and Reduces Subsequent Adult Longevity. PLoS One 2015; 10:e0126330. [PMID: 26018139 PMCID: PMC4446295 DOI: 10.1371/journal.pone.0126330] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 03/10/2015] [Indexed: 11/19/2022] Open
Abstract
Nosema ceranae causes a widespread disease that reduces honey bee health but is only thought to infect adult honey bees, not larvae, a critical life stage. We reared honey bee (Apis mellifera) larvae in vitro and provide the first demonstration that N. ceranae can infect larvae and decrease subsequent adult longevity. We exposed three-day-old larvae to a single dose of 40,000 (40K), 10,000 (10K), zero (control), or 40K autoclaved (control) N. ceranae spores in larval food. Spores developed intracellularly in midgut cells at the pre-pupal stage (8 days after egg hatching) of 41% of bees exposed as larvae. We counted the number of N. ceranae spores in dissected bee midguts of pre-pupae and, in a separate group, upon adult death. Pre-pupae exposed to the 10K or 40K spore treatments as larvae had significantly elevated spore counts as compared to controls. Adults exposed as larvae had significantly elevated spore counts as compared to controls. Larval spore exposure decreased longevity: a 40K treatment decreased the age by which 75% of adult bees died by 28%. Unexpectedly, the low dose (10K) led to significantly greater infection (1.3 fold more spores and 1.5 fold more infected bees) than the high dose (40K) upon adult death. Differential immune activation may be involved if the higher dose triggered a stronger larval immune response that resulted in fewer adult spores but imposed a cost, reducing lifespan. The impact of N. ceranae on honey bee larval development and the larvae of naturally infected colonies therefore deserve further study.
Collapse
|
23
|
Kielmanowicz MG, Inberg A, Lerner IM, Golani Y, Brown N, Turner CL, Hayes GJR, Ballam JM. Prospective large-scale field study generates predictive model identifying major contributors to colony losses. PLoS Pathog 2015; 11:e1004816. [PMID: 25875764 PMCID: PMC4395366 DOI: 10.1371/journal.ppat.1004816] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 03/16/2015] [Indexed: 11/19/2022] Open
Abstract
Over the last decade, unusually high losses of colonies have been reported by beekeepers across the USA. Multiple factors such as Varroa destructor, bee viruses, Nosema ceranae, weather, beekeeping practices, nutrition, and pesticides have been shown to contribute to colony losses. Here we describe a large-scale controlled trial, in which different bee pathogens, bee population, and weather conditions across winter were monitored at three locations across the USA. In order to minimize influence of various known contributing factors and their interaction, the hives in the study were not treated with antibiotics or miticides. Additionally, the hives were kept at one location and were not exposed to potential stress factors associated with migration. Our results show that a linear association between load of viruses (DWV or IAPV) in Varroa and bees is present at high Varroa infestation levels (>3 mites per 100 bees). The collection of comprehensive data allowed us to draw a predictive model of colony losses and to show that Varroa destructor, along with bee viruses, mainly DWV replication, contributes to approximately 70% of colony losses. This correlation further supports the claim that insufficient control of the virus-vectoring Varroa mite would result in increased hive loss. The predictive model also indicates that a single factor may not be sufficient to trigger colony losses, whereas a combination of stressors appears to impact hive health.
Collapse
Affiliation(s)
| | - Alex Inberg
- Monsanto Company, Chesterfield, Missouri, United States of America
| | | | - Yael Golani
- Monsanto Company, Chesterfield, Missouri, United States of America
| | - Nicholas Brown
- Monsanto Company, Chesterfield, Missouri, United States of America
| | | | | | - Joan M. Ballam
- Monsanto Company, Chesterfield, Missouri, United States of America
| |
Collapse
|
24
|
van den Heever JP, Thompson TS, Curtis JM, Pernal SF. Stability of dicyclohexylamine and fumagillin in honey. Food Chem 2015; 179:152-8. [PMID: 25722149 DOI: 10.1016/j.foodchem.2015.01.111] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 01/14/2015] [Accepted: 01/21/2015] [Indexed: 11/19/2022]
Abstract
Fumagillin is extensively used to control nosema disease in apiculture. In the commercial formulation, fumagillin is present as a salt in an equimolar quantity with dicyclohexylamine (DCH). In this study DCH was observed to be significantly more resistant to degradation in honey than fumagillin using LC-MS/MS analysis. Observed half-lives for DCH ranged from a minimum of 368 days when kept at 34 °C in darkness, to a maximum of 852 days when stored at 21 °C in darkness. A maximum half-life of 246 days was observed for fumagillin in samples kept in darkness at a temperature of 21 °C. The observed half-life of fumagillin was estimated to be 3 days when exposed to light at 21 °C, and complete decomposition was observed after 30 days under the same conditions. The stability of DCH, combined with its genotoxicity and tumorigenic properties make it an important potential contaminant in honey destined for human consumption.
Collapse
Affiliation(s)
- Johan P van den Heever
- Alberta Agriculture and Rural Development, Animal Health and Assurance Division, Agri-Food Laboratories Branch, 6909-116 Street, Edmonton, Alberta T6H 4P2, Canada.
| | - Thomas S Thompson
- Alberta Agriculture and Rural Development, Animal Health and Assurance Division, Agri-Food Laboratories Branch, 6909-116 Street, Edmonton, Alberta T6H 4P2, Canada
| | - Jonathan M Curtis
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Stephen F Pernal
- Agriculture & Agri-Food Canada, Beaverlodge Research Farm, P.O. Box 29, Beaverlodge, Alberta T0H 0C0, Canada
| |
Collapse
|
25
|
Cepero A, Higes M, Martínez-Salvador A, Meana A, Martín-Hernández R. A two year national surveillance for Aethina tumida reflects its absence in Spain. BMC Res Notes 2014; 7:878. [PMID: 25475654 PMCID: PMC4289331 DOI: 10.1186/1756-0500-7-878] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 11/28/2014] [Indexed: 11/19/2022] Open
Abstract
Background The Small Hive Beetle (SHB) is considered one of the major threats to the long-term sustainability and economic success of honey bee colonies in Europe. The risk of introduction into the EU had been reported as moderate to high. Indeed, it has been recently reported an outbreak in the south of Italy. Here, the presence of Aethina tumida in beekeeping farms in Spain was evaluated using a previously described qPCR protocol. Findings When hive debris from 398 colonies (collected in 2010 and 2011) was analysed, grouped by region, SHB were not detected in any of the samples, making it unnecessary to analyse the samples individually. Conclusion The SHB free-status is shown. This epidemiological surveillance would appear to be useful to detect the possible future entry of this pathogen.
Collapse
Affiliation(s)
| | | | | | | | - Raquel Martín-Hernández
- Centro Apícola de Marchamalo, Consejería de Agricultura, Castilla-La Mancha, Camino de San Martín s/n, 19180 Guadalajara, Spain.
| |
Collapse
|
26
|
van den Heever JP, Thompson TS, Curtis JM, Pernal SF. Determination of Dicyclohexylamine and Fumagillin in Honey by LC-MS/MS. FOOD ANAL METHOD 2014. [DOI: 10.1007/s12161-014-9956-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Van der Zee R, Gómez-Moracho T, Pisa L, Sagastume S, García-Palencia P, Maside X, Bartolomé C, Martín-Hernández R, Higes M. Virulence and polar tube protein genetic diversity of Nosema ceranae (Microsporidia) field isolates from Northern and Southern Europe in honeybees (Apis mellifera iberiensis). ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:401-413. [PMID: 24992540 DOI: 10.1111/1758-2229.12133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 12/05/2013] [Indexed: 06/03/2023]
Abstract
Infection of honeybees by the microsporidian Nosema ceranae is considered to be one of the factors underlying the increased colony losses and decreased honey production seen in recent years. However, these effects appear to differ in function of the climatic zone, the distinct beekeeping practices and the honeybee species employed. Here, we compared the response of Apis mellifera iberiensis worker bees to experimental infection with field isolates of N. ceranae from an Oceanic climate zone in Northern Europe (Netherlands) and from a Mediterranean region of Southern Europe (Spain). We found a notable but non-significant trend (P = 0.097) towards higher honeybee survival for bees infected with N. ceranae from the Netherlands, although no differences were found between the two isolates in terms of anatomopathological lesions in infected ventricular cells or the morphology of the mature and immature stages of the parasite. In addition, the population genetic survey of the N. ceranae PTP3 locus revealed high levels of genetic diversity within each isolate, evidence for meiotic recombination, and no signs of differentiation between the Dutch and Spanish populations. A cross-infection study is needed to further explore the differences in virulence observed between the two N. ceranae populations in field conditions.
Collapse
|
28
|
van den Heever JP, Thompson TS, Curtis JM, Ibrahim A, Pernal SF. Fumagillin: an overview of recent scientific advances and their significance for apiculture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:2728-37. [PMID: 24621007 DOI: 10.1021/jf4055374] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Fumagillin is a potent fungal metabolite first isolated from Aspergillus fumigatus. It is widely used in apiculture and human medicine against a variety of microsporidian fungal infections. It has been the subject of research in cancer treatments by employing its angiogenesis inhibitory properties. The toxicity of fumagillin has limited its use for human applications and spurred the development of analogues using structure-activity relationships relating to its angiogenesis properties. These discoveries may hold the key to the development of alternative chemical treatments for use in apiculture. The toxicity of fumagillin to humans is important for beekeeping, because any residues remaining in hive products pose a direct risk to the consumer. The analytical methods published to date measure fumagillin and its decomposition products but overlook the dicyclohexylamine counterion of the salt form widely used in apiculture.
Collapse
Affiliation(s)
- Johan P van den Heever
- Alberta Agriculture and Rural Development , Animal Health and Assurance Division, Agri-Food Laboratories Branch, 6909-116 Street, Edmonton, Alberta, Canada T6H 4P2
| | | | | | | | | |
Collapse
|
29
|
Presence of Nosema ceranae associated with honeybee queen introductions. INFECTION GENETICS AND EVOLUTION 2014; 23:161-8. [DOI: 10.1016/j.meegid.2014.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 01/17/2014] [Accepted: 02/07/2014] [Indexed: 12/28/2022]
|
30
|
Aufauvre J, Misme-Aucouturier B, Viguès B, Texier C, Delbac F, Blot N. Transcriptome analyses of the honeybee response to Nosema ceranae and insecticides. PLoS One 2014; 9:e91686. [PMID: 24646894 PMCID: PMC3960157 DOI: 10.1371/journal.pone.0091686] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 02/14/2014] [Indexed: 12/18/2022] Open
Abstract
Honeybees (Apis mellifera) are constantly exposed to a wide variety of environmental stressors such as parasites and pesticides. Among them, Nosema ceranae and neurotoxic insecticides might act in combination and lead to a higher honeybee mortality. We investigated the molecular response of honeybees exposed to N. ceranae, to insecticides (fipronil or imidacloprid), and to a combination of both stressors. Midgut transcriptional changes induced by these stressors were measured in two independent experiments combining a global RNA-Seq transcriptomic approach with the screening of the expression of selected genes by quantitative RT-PCR. Although N. ceranae-insecticide combinations induced a significant increase in honeybee mortality, we observed that they did not lead to a synergistic effect. According to gene expression profiles, chronic exposure to insecticides had no significant impact on detoxifying genes but repressed the expression of immunity-related genes. Honeybees treated with N. ceranae, alone or in combination with an insecticide, showed a strong alteration of midgut immunity together with modifications affecting cuticle coatings and trehalose metabolism. An increasing impact of treatments on gene expression profiles with time was identified suggesting an absence of stress recovery which could be linked to the higher mortality rates observed.
Collapse
Affiliation(s)
- Julie Aufauvre
- Clermont Université, Université Blaise Pascal, Laboratoire “Microorganismes: Génome et Environnement”, BP 10448, Clermont-Ferrand, France
- CNRS, UMR 6023, LMGE, Aubière, France
| | - Barbara Misme-Aucouturier
- Clermont Université, Université Blaise Pascal, Laboratoire “Microorganismes: Génome et Environnement”, BP 10448, Clermont-Ferrand, France
- CNRS, UMR 6023, LMGE, Aubière, France
| | - Bernard Viguès
- Clermont Université, Université Blaise Pascal, Laboratoire “Microorganismes: Génome et Environnement”, BP 10448, Clermont-Ferrand, France
- CNRS, UMR 6023, LMGE, Aubière, France
| | - Catherine Texier
- Clermont Université, Université Blaise Pascal, Laboratoire “Microorganismes: Génome et Environnement”, BP 10448, Clermont-Ferrand, France
- CNRS, UMR 6023, LMGE, Aubière, France
| | - Frédéric Delbac
- Clermont Université, Université Blaise Pascal, Laboratoire “Microorganismes: Génome et Environnement”, BP 10448, Clermont-Ferrand, France
- CNRS, UMR 6023, LMGE, Aubière, France
| | - Nicolas Blot
- Clermont Université, Université Blaise Pascal, Laboratoire “Microorganismes: Génome et Environnement”, BP 10448, Clermont-Ferrand, France
- CNRS, UMR 6023, LMGE, Aubière, France
- * E-mail:
| |
Collapse
|
31
|
Abstract
SUMMARYNosema ceranaeis a widespread honeybee parasite, considered to be one of the pathogens involved in the colony losses phenomenon. To date, little is known about its intraspecific genetic variability. The few studies onN. ceranaevariation have focused on the subunits of ribosomal DNA, which are not ideal for this purpose and have limited resolution. Here we characterized three single copy loci (Actin, Hsp70andRPB1) in threeN. ceranaeisolates from Hungary and Hawaii. Our results provide evidence of unexpectedly high levels of intraspecific polymorphism, the coexistence of a wide variety of haplotypes within each bee colony, and the occurrence of genetic recombination inRPB1. Most haplotypes are not shared across isolates and derive from a few frequent haplotypes by a reduced number of singletons (mutations that appear usually just once in the sample), which suggest that they have a fairly recent origin. Overall, our data indicate that this pathogen has experienced a recent population expansion. The presence of multiple haplotypes within individual isolates could be explained by the existence of different strains ofN. ceranaeinfecting honeybee colonies in the field which complicates, and must not be overlooked, further analysis of host–parasite interactions.
Collapse
|
32
|
Sagastume S, Martín-Hernández R, Higes M, Henriques-Gil N. Ribosomal gene polymorphism in small genomes: analysis of different 16S rRNA sequences expressed in the honeybee parasite Nosema ceranae (Microsporidia). J Eukaryot Microbiol 2013; 61:42-50. [PMID: 24102764 DOI: 10.1111/jeu.12084] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 08/14/2013] [Indexed: 01/10/2023]
Abstract
To date, few organisms have been shown to possess variable ribosomal RNA, otherwise considered a classic example of uniformity by concerted evolution. The polymorphism for the 16S rRNA in Nosema ceranae analysed here is striking as Microsporidia are intracellular parasites which have suffered a strong reduction in their genomes and cellular organization. Moreover, N. ceranae infects the honeybee Apis mellifera, and has been associated with the colony-loss phenomenon during the last decade. The variants of 16S rRNA include single nucleotide substitutions, one base insertion-deletion, plus a tetranucleotide indel. We show that different gene variants are expressed. The polymorphic sites tend to be located in particular regions of the rRNA molecule, and the comparison to the Escherichia coli 16S rRNA secondary structure indicates that most variations probably do not preclude ribosomal activity. The fact that the polymorphisms in such a minimal organism as N. ceranae are maintained in samples collected worldwide suggest that the existence of differently expressed rRNA may play an adaptive role in the microsporidian.
Collapse
Affiliation(s)
- Soledad Sagastume
- Centro Apícola Regional, Bee Pathology Laboratory, Marchamalo, Guadalajara, 19180, Spain
| | | | | | | |
Collapse
|
33
|
Comparative susceptibility of three Western honeybee taxa to the microsporidian parasite Nosema ceranae. INFECTION GENETICS AND EVOLUTION 2013; 17:188-94. [PMID: 23619100 DOI: 10.1016/j.meegid.2013.04.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/05/2013] [Accepted: 04/06/2013] [Indexed: 11/23/2022]
Abstract
Genetic diversity of a host species is a key factor to counter infection by parasites. Since two separation events and the beginning of beekeeping, the Western honeybee, Apis mellifera, has diverged in many phylogenetically-related taxa that share common traits but also show specific physiological, behavioural and morphological traits. In this study, we tested the hypothesis that A. mellifera taxa living in a same habitat should respond differently to parasites like Nosema ceranae, a microsporidia living in host's midgut. We used the Poulin and Combes' concept of virulence to compare the susceptibility of three A. mellifera taxa to N. ceranae infection. Three criteria were measured 10 days post-infection (dpi): the host mortality, the host sugar consumption and the development success of the parasite (i.e. number of spores produced). Interestingly, we showed that the observed variation in susceptibility to infection by N. ceranae is not linked to honeybee taxa but results from the variability between colonies, and that those differences are probably linked to genetic variations. The use of these three criteria allows us to conclude that the differences in susceptibility are mediated by a genetic variability in honeybee workers from resistance to tolerance. Finally, we discuss the consequences of our findings for beekeeping management.
Collapse
|
34
|
Jara L, Cepero A, Garrido-Bailón E, Martín-Hernández R, Higes M, De la Rúa P. Linking evolutionary lineage with parasite and pathogen prevalence in the Iberian honey bee. J Invertebr Pathol 2012; 110:8-13. [DOI: 10.1016/j.jip.2012.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 01/16/2012] [Accepted: 01/17/2012] [Indexed: 10/14/2022]
|
35
|
Botías C, Martín-Hernández R, Barrios L, Garrido-Bailón E, Nanetti A, Meana A, Higes M. Nosema spp. parasitization decreases the effectiveness of acaricide strips (Apivar(®) ) in treating varroosis of honey bee (Apis mellifera iberiensis) colonies. ENVIRONMENTAL MICROBIOLOGY REPORTS 2012; 4:57-65. [PMID: 23757230 DOI: 10.1111/j.1758-2229.2011.00299.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Given the key role played by honey bees in almost all terrestrial ecosystems, maintaining bee populations in adequate sanitary conditions is crucial for these essential pollinators to continue their work. From the beginning of the 21st century, beekeepers have reported a progressive increase in the overwintering mortality of honey bee colonies worldwide. Despite the failure to reach a consensus regarding the cause of this phenomenon, pathogens are thought to be strongly implicated. In the present work, we provide evidence of the negative effects of colony parasitization by Nosema spp. - primarily by N. ceranae- on the effectiveness of acaricide strips to treat Varroa destructor. The effectiveness of the Varroa mite strip treatment (Apivar(®) ) was greater in colonies in which Nosema spp. parasitization had been controlled. Several studies report that infection by Nosema spp. may affect the behaviour of worker bees. As the effectiveness of Varroa strip treatment depends on bees contacting the strips and their subsequent interaction within the colony, such behavioural and social alterations could interfere with the treatment and allow more severe effects to develop in the colonies infected by Nosema. These results should be considered when assessing acaricide treatments in field conditions due to the high prevalence of both pathogens worldwide.
Collapse
Affiliation(s)
- Cristina Botías
- Laboratorio de Patología Apícola, Centro Apícola Regional, CAR, Junta de Comunidades de Castilla La Mancha, 19180 Marchamalo, Spain
| | | | | | | | | | | | | |
Collapse
|