1
|
An in silico reverse vaccinology study of Brachyspira pilosicoli, the causative organism of intestinal spirochaetosis, to identify putative vaccine candidates. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
2
|
Keith BA, Harding JCS, Loewen ME. Mutational analysis of TlyA from Brachyspira hampsonii reveals two key residues conserved in pathogenic bacteria responsible for oligomerization and hemolytic activity. Biochim Biophys Acta Gen Subj 2022; 1866:130045. [PMID: 34715264 DOI: 10.1016/j.bbagen.2021.130045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/07/2021] [Accepted: 10/22/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND TlyA proteins are expressed in a variety of pathogenic bacteria and possess dual hemolytic and ribosomal RNA methyltransferase functions. While the mechanism of TlyA mediated rRNA methylation is well understood, relatively little is known about the mechanism of TlyA induced hemolysis. METHODS TlyA protein from the pig pathogen Brachyspira hampsonii was heterologously expressed and purified from an E. coli host. Hemolytic activity and rRNA methylation were assessed in vitro. Site-directed mutagenesis was used to mutate amino acids believed to be involved in TlyA mediated hemolysis. RESULTS Purified TlyA-His protein exhibited both hemolytic and rRNA methyltransferase activities in vitro, with partial inhibition of hemolysis observed under reducing conditions. Mutation of cysteine 80 to alanine impaired hemolytic activity. A C27A/C93A mutant was capable of dimerizing under non-reducing conditions, indicating that a C80-C80 disulfide bond is involved in TlyA oligomerization. A mutation conserved in several avirulent Brachyspira species (S9K) completely abolished hemolytic activity of TlyA. This loss of activity was attributed to impaired oligomerization in the S9K mutant, as assessed by ITC and size-exclusion chromatography experiments. CONCLUSIONS Oligomeric assembly and hemolytic activity of TlyA from Brachyspira hampsonii is dependent on the formation of an intermolecular C80-C80 disulfide bond and noncovalent interactions involving serine 9. The conservation of these amino acids in TlyA proteins from pathogenic bacteria suggests a correlation between tlyA gene mutations and bacterial virulence. GENERAL SIGNIFICANCE Our results further elucidate the mechanisms underlying TlyA mediated hemolysis and provide evidence of a conserved mechanism of oligomerization for TlyA family proteins.
Collapse
Affiliation(s)
- Brandon A Keith
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - John C S Harding
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Matthew E Loewen
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
3
|
Exploring the Cause of Diarrhoea and Poor Growth in 8-11-Week-Old Pigs from an Australian Pig Herd Using Metagenomic Sequencing. Viruses 2021; 13:v13081608. [PMID: 34452472 PMCID: PMC8402840 DOI: 10.3390/v13081608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 12/24/2022] Open
Abstract
Diarrhoea and poor growth among growing pigs is responsible for significant economic losses in pig herds globally and can have a wide range of possible aetiologies. Next generation sequencing (NGS) technologies are useful for the detection and characterisation of diverse groups of viruses and bacteria and can thereby provide a better understanding of complex interactions among microorganisms potentially causing clinical disease. Here, we used a metagenomics approach to identify and characterise the possible pathogens in colon and lung samples from pigs with diarrhoea and poor growth in an Australian pig herd. We identified and characterized a wide diversity of porcine viruses including RNA viruses, in particular several picornaviruses—porcine sapelovirus (PSV), enterovirus G (EV-G), and porcine teschovirus (PTV), and a porcine astrovirus (PAstV). Single stranded DNA viruses were also detected and included parvoviruses like porcine bocavirus (PBoV) and porcine parvovirus 2 (PPV2), porcine parvovirus 7 (PPV7), porcine bufa virus (PBuV), and porcine adeno-associated virus (AAV). We also detected single stranded circular DNA viruses such as porcine circovirus type 2 (PCV2) at very low abundance and torque teno sus viruses (TTSuVk2a and TTSuVk2b). Some of the viruses detected here may have had an evolutionary past including recombination events, which may be of importance and potential involvement in clinical disease in the pigs. In addition, our metagenomics data found evidence of the presence of the bacteria Lawsonia intracellularis, Brachyspira spp., and Campylobacter spp. that may, together with these viruses, have contributed to the development of clinical disease and poor growth.
Collapse
|
4
|
Carranza A, Parada J, Tamiozzo P, León MF, Camacho P, Cola GD, Corona-Barrera E, Ambrogi A, Zielinski G. Identification and distribution of Brachyspira species in feces from finishing pigs in Argentina. Vet World 2021; 14:607-613. [PMID: 33935405 PMCID: PMC8076473 DOI: 10.14202/vetworld.2021.607-613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/22/2021] [Indexed: 12/03/2022] Open
Abstract
Background and Aim: Brachyspira are Gram-negative, aerotolerant spirochetes that colonize the large intestine of various species of domestic animals and humans. The aim of this study was to determine the presence and distribution of different species of Brachyspira presents in feces from finishing pigs in Argentina. Materials and Methods: Fecal samples (n=1550) were collected from finishing pigs in 53 farms of the most important swine production areas of Argentina, and Brachyspiras species were identified by bacteriological and molecular methods. Results: The regional prevalence of Brachyspira spp. was at the level of 75.5% (confidence interval 95%, 62.9-87.9), and it was lower among those farms with >1001 sows. One hundred and twenty-eight isolates of Brachyspira were properly identified and the species found were: Brachyspira hyodysenteriae, Brachyspira pilosicoli, Brachyspira innocens, and Brachyspira murdochii. B. hyodysenteriae and B. pilosicoli had low prevalence (1.9% and 7.5%, respectively), B. innocens was isolated from 34% of the farms and B. murdochii was found in 39.6%. Conclusion: The present study provides epidemiological data about herd prevalence of the different Brachyspira species in Argentina, showing that the prevalence figure seems to be higher than that reported in other countries.
Collapse
Affiliation(s)
- Alicia Carranza
- Department of Animal Pathology, Faculty of Agronomy and Veterinary, National University of Rio Cuarto, Río Cuarto, Argentina
| | - Julián Parada
- Department of Animal Pathology, Faculty of Agronomy and Veterinary, National University of Rio Cuarto, Río Cuarto, Argentina.,National Scientific and Technical Research Council (CONICET), Córdoba, Argentina
| | - Pablo Tamiozzo
- Department of Animal Pathology, Faculty of Agronomy and Veterinary, National University of Rio Cuarto, Río Cuarto, Argentina
| | - Malena Flores León
- Department of Animal Pathology, Faculty of Agronomy and Veterinary, National University of Rio Cuarto, Río Cuarto, Argentina
| | - Pablo Camacho
- Department of Animal Pathology, Faculty of Agronomy and Veterinary, National University of Rio Cuarto, Río Cuarto, Argentina
| | - Gabriel Di Cola
- Department of Animal Pathology, Faculty of Agronomy and Veterinary, National University of Rio Cuarto, Río Cuarto, Argentina
| | - Enrique Corona-Barrera
- Faculty of Veterinary Medicine and Animal Science, Autonomous University of Tamaulipas, Victoria, México
| | - Arnaldo Ambrogi
- Department of Animal Pathology, Faculty of Agronomy and Veterinary, National University of Rio Cuarto, Río Cuarto, Argentina
| | - Gustavo Zielinski
- National Agricultural Technology Institute (INTA), Marcos Juárez, Córdoba, Argentina
| |
Collapse
|
5
|
Pandey A, Humbert MV, Jackson A, Passey JL, Hampson DJ, Cleary DW, La Ragione RM, Christodoulides M. Evidence of homologous recombination as a driver of diversity in Brachyspira pilosicoli. Microb Genom 2020; 6:mgen000470. [PMID: 33174833 PMCID: PMC8116685 DOI: 10.1099/mgen.0.000470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022] Open
Abstract
The enteric, pathogenic spirochaete Brachyspira pilosicoli colonizes and infects a variety of birds and mammals, including humans. However, there is a paucity of genomic data available for this organism. This study introduces 12 newly sequenced draft genome assemblies, boosting the cohort of examined isolates by fourfold and cataloguing the intraspecific genomic diversity of the organism more comprehensively. We used several in silico techniques to define a core genome of 1751 genes and qualitatively and quantitatively examined the intraspecific species boundary using phylogenetic analysis and average nucleotide identity, before contextualizing this diversity against other members of the genus Brachyspira. Our study revealed that an additional isolate that was unable to be species typed against any other Brachyspira lacked putative virulence factors present in all other isolates. Finally, we quantified that homologous recombination has as great an effect on the evolution of the core genome of the B. pilosicoli as random mutation (r/m=1.02). Comparative genomics has informed Brachyspira diversity, population structure, host specificity and virulence. The data presented here can be used to contribute to developing advanced screening methods, diagnostic assays and prophylactic vaccines against this zoonotic pathogen.
Collapse
Affiliation(s)
- Anish Pandey
- Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton SO16 6YD, UK
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Trust, SO166YD, UK
| | - Maria Victoria Humbert
- Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Alexandra Jackson
- Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Jade L. Passey
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7AL, UK
| | - David J. Hampson
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - David W. Cleary
- Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton SO16 6YD, UK
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Trust, SO166YD, UK
| | - Roberto M. La Ragione
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7AL, UK
| | - Myron Christodoulides
- Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton SO16 6YD, UK
| |
Collapse
|
6
|
Harms M, Schmidt V, Heydel T, Hauptmann J, Ahlers C, Bergmann R, Baums CG. Differentiation of Brachyspira spp. isolated from laying hens using PCR-based methods and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Vet Diagn Invest 2018; 30:545-553. [PMID: 29717640 DOI: 10.1177/1040638718772319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Avian intestinal spirochetosis (AIS), an important but neglected disease in laying hens, is caused by Brachyspira pilosicoli, B. intermedia, and B. alvinipulli. Poultry are also frequently colonized by putatively nonpathogenic species such as B. murdochii and B. innocens. We evaluated the differentiation of Brachyspira species by 3 methods: sequencing of the reduced nicotinamide adenine dinucleotide (NADH) oxidase gene ( nox), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), and a new multiplex (m)PCR targeting genes such as the tryptophanase A gene ( tnaA) and the p-aminobenzoyl-glutamate hydrolase subunit B gene ( abgB). Sequencing of 414 bp of the nox PCR amplification products generated from 41 pure cultures of avian Brachyspira isolates allowed presumptive species identification in 33 isolates with at least 99% identity in basic local alignment search tool analysis, including B. pilosicoli, B. intermedia, B. murdochii, B. innocens, and " B. pulli". MALDI-TOF MS analysis was found to be a reliable tool for differentiation after extension of the manufacturer's database. In the mPCR, all isolates identified as B. pilosicoli and B. intermedia were positive for abgB and tnaA, respectively. The mPCR might be very useful in detecting Brachyspira species in mixed cultures including not only nonpathogenic species, such as B. innocens, but also one of the AIS pathogens. We found that MALDI-TOF MS analysis combined with the mPCR targeting tnaA and abgB was suitable for the identification of avian isolates of B. pilosicoli and B. intermedia, 2 important agents of AIS.
Collapse
Affiliation(s)
- Monika Harms
- Institute for Bacteriology and Mycology, Centre for Infectious Diseases (Harms, Heydel, Hauptmann, Bergmann, Baums).,Clinic for Birds and Reptiles (Schmidt), Faculty of Veterinary Medicine, University of Leipzig, Germany.,Poultry Health Service, Thuringian Animal Health Fund, Jena, Germany (Ahlers)
| | - Volker Schmidt
- Institute for Bacteriology and Mycology, Centre for Infectious Diseases (Harms, Heydel, Hauptmann, Bergmann, Baums).,Clinic for Birds and Reptiles (Schmidt), Faculty of Veterinary Medicine, University of Leipzig, Germany.,Poultry Health Service, Thuringian Animal Health Fund, Jena, Germany (Ahlers)
| | - Tilo Heydel
- Institute for Bacteriology and Mycology, Centre for Infectious Diseases (Harms, Heydel, Hauptmann, Bergmann, Baums).,Clinic for Birds and Reptiles (Schmidt), Faculty of Veterinary Medicine, University of Leipzig, Germany.,Poultry Health Service, Thuringian Animal Health Fund, Jena, Germany (Ahlers)
| | - Jutta Hauptmann
- Institute for Bacteriology and Mycology, Centre for Infectious Diseases (Harms, Heydel, Hauptmann, Bergmann, Baums).,Clinic for Birds and Reptiles (Schmidt), Faculty of Veterinary Medicine, University of Leipzig, Germany.,Poultry Health Service, Thuringian Animal Health Fund, Jena, Germany (Ahlers)
| | - Christine Ahlers
- Institute for Bacteriology and Mycology, Centre for Infectious Diseases (Harms, Heydel, Hauptmann, Bergmann, Baums).,Clinic for Birds and Reptiles (Schmidt), Faculty of Veterinary Medicine, University of Leipzig, Germany.,Poultry Health Service, Thuringian Animal Health Fund, Jena, Germany (Ahlers)
| | - Rene Bergmann
- Institute for Bacteriology and Mycology, Centre for Infectious Diseases (Harms, Heydel, Hauptmann, Bergmann, Baums).,Clinic for Birds and Reptiles (Schmidt), Faculty of Veterinary Medicine, University of Leipzig, Germany.,Poultry Health Service, Thuringian Animal Health Fund, Jena, Germany (Ahlers)
| | - Christoph G Baums
- Institute for Bacteriology and Mycology, Centre for Infectious Diseases (Harms, Heydel, Hauptmann, Bergmann, Baums).,Clinic for Birds and Reptiles (Schmidt), Faculty of Veterinary Medicine, University of Leipzig, Germany.,Poultry Health Service, Thuringian Animal Health Fund, Jena, Germany (Ahlers)
| |
Collapse
|
7
|
Jiménez Martínez MÁ, Gasper DJ, Carmona Muciño MDC, Terio KA. Suidae and Tayassuidae. PATHOLOGY OF WILDLIFE AND ZOO ANIMALS 2018. [PMCID: PMC7150131 DOI: 10.1016/b978-0-12-805306-5.00008-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The Suidae and Tayassuidae live on all continents except Antarctica. True wild boars were indigenous to Europe and Asia and are the ancestors to the domestic pig; with whom they share the same scientific name Sus scrofa. Wild boars have been introduced to the Americas and many islands. Because of the close genetic relationship, in many areas they have interbred with domestic pigs and formed considerable populations of feral suids that represent wild boar and feral pig crosses. Wild suid populations are relatively hardy and most disease research has been focused on their potential as a reservoir for diseases of concern for commercial pig production. The Togian Island babirusa, pygmy hog, Visayan warty pig, Javan warty pig, and Chacoan peccary are endangered. For all species, hunting, habitat loss, and hybridization are important threats to conservation.
Collapse
|
8
|
Johnson LA, Fernando C, Harding JCS, Hill JE. Characterization of Brachyspira communities from clinical cases of swine mucohaemorrhagic diarrhea through deep sequencing of the NADH oxidase (nox) gene. Vet Microbiol 2017; 214:81-88. [PMID: 29408037 DOI: 10.1016/j.vetmic.2017.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 11/20/2022]
Abstract
Swine dysentery is traditionally associated with Brachyspira hyodysenteriae, but the re-emergence of Brachyspira-associated disease in North America associated with a novel causative species, B. hampsonii, is now a concern for swine producers. The pathogenesis of Brachyspira-associated disease is not completely understood, and it is not known whether mixed infections of Brachyspira spp. are important in disease development. Deep sequencing of partial sequences of the nox gene amplified with genus-specific primers was used to detect Brachyspira spp. in 55 fecal samples from clinical cases of mucohaemorrhagic diarrhea in pigs from Western Canada that had been identified as positive for one or more Brachyspira species using established diagnostic tests. Synthetic mixtures of Brachyspira genomic DNA were included in the study to define detection limits for the technique and identify biases in detection of different species. Multiple species were detected in all clinical cases for which sufficient nox sequence data were generated (n = 47), indicating that mixed species Brachyspira infections are common, although in most cases, one species accounted for at least half of the sequences identified. In all cases, the species detected in the original diagnostic investigation of each case was also detected by nox sequencing. Results from synthetic communities indicated that the method was highly reproducible, but also indicated potential PCR bias against B. hampsonii genomovar I. Deep sequencing of the nox gene target is a suitable method for simultaneous detection of multiple Brachyspira species in clinical case material that may offer advantages over current, more targeted diagnostic approaches for investigating the significance of mixed infections in disease development.
Collapse
Affiliation(s)
- Lisa A Johnson
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada
| | - Champika Fernando
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada
| | - John C S Harding
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada
| | - Janet E Hill
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada.
| |
Collapse
|
9
|
Zeeh F, De Luca S, Nicholson P, Grützner N, Nathues C, Perreten V, Nathues H. Brachyspira hyodysenteriae detection in the large intestine of slaughtered pigs. J Vet Diagn Invest 2017; 30:56-63. [PMID: 28906177 DOI: 10.1177/1040638717722816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Detection of subclinical Brachyspira hyodysenteriae infection in pig herds using feces is challenging. However, the ability to detect the pathogen in intestinal samples of slaughtered pigs has not been investigated, to our knowledge. Therefore, we determined the detection of B. hyodysenteriae in the colon, cecum, and rectum from slaughtered pigs. We analyzed the correlation between detection rates and intestinal lesions, ingesta or fecal consistency, and time from sample collection until processing. A total of 400 ingesta-mucosal (colon, cecum) and 200 fecal (rectum) samples from 200 pigs originating from 20 different herds were bacteriologically examined using selective culture followed by Brachyspira spp. identification by PCR and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Ingesta or fecal consistency and intestinal lesions were scored. Brachyspira hyodysenteriae was detected in 23 samples from 16 intestines originating from 7 herds. Brachyspira spp. were detected in 96 samples. More intestinal (16) than fecal (7) samples tested positive for B. hyodysenteriae. For Brachyspira spp., this difference was significant (69 vs. 27; p < 0.01). In particular, colon samples tested positive ( n = 42, p = 0.06). Most (91%) of the intestines showed no lesions typical for clinical B. hyodysenteriae infection, and median ingesta or fecal consistency was "soft and formed," indicating subclinical infection, colonization, or absence of infection. Ingesta from slaughtered pigs, in particular from the colon and sites with lesions, is useful material for detection of B. hyodysenteriae.
Collapse
Affiliation(s)
- Friederike Zeeh
- Clinic for Swine (Zeeh, Grützner, H Nathues), Vetsuisse Faculty, University of Bern, Switzerland.,Institute of Veterinary Bacteriology (Perreten, Nicholson), Vetsuisse Faculty, University of Bern, Switzerland.,Veterinary Public Health Institute (C Nathues), Vetsuisse Faculty, University of Bern, Switzerland.,Faculty of Veterinary Medicine, University of Perugia, Perugia, Italy (De Luca)
| | - Silvio De Luca
- Clinic for Swine (Zeeh, Grützner, H Nathues), Vetsuisse Faculty, University of Bern, Switzerland.,Institute of Veterinary Bacteriology (Perreten, Nicholson), Vetsuisse Faculty, University of Bern, Switzerland.,Veterinary Public Health Institute (C Nathues), Vetsuisse Faculty, University of Bern, Switzerland.,Faculty of Veterinary Medicine, University of Perugia, Perugia, Italy (De Luca)
| | - Pamela Nicholson
- Clinic for Swine (Zeeh, Grützner, H Nathues), Vetsuisse Faculty, University of Bern, Switzerland.,Institute of Veterinary Bacteriology (Perreten, Nicholson), Vetsuisse Faculty, University of Bern, Switzerland.,Veterinary Public Health Institute (C Nathues), Vetsuisse Faculty, University of Bern, Switzerland.,Faculty of Veterinary Medicine, University of Perugia, Perugia, Italy (De Luca)
| | - Niels Grützner
- Clinic for Swine (Zeeh, Grützner, H Nathues), Vetsuisse Faculty, University of Bern, Switzerland.,Institute of Veterinary Bacteriology (Perreten, Nicholson), Vetsuisse Faculty, University of Bern, Switzerland.,Veterinary Public Health Institute (C Nathues), Vetsuisse Faculty, University of Bern, Switzerland.,Faculty of Veterinary Medicine, University of Perugia, Perugia, Italy (De Luca)
| | - Christina Nathues
- Clinic for Swine (Zeeh, Grützner, H Nathues), Vetsuisse Faculty, University of Bern, Switzerland.,Institute of Veterinary Bacteriology (Perreten, Nicholson), Vetsuisse Faculty, University of Bern, Switzerland.,Veterinary Public Health Institute (C Nathues), Vetsuisse Faculty, University of Bern, Switzerland.,Faculty of Veterinary Medicine, University of Perugia, Perugia, Italy (De Luca)
| | - Vincent Perreten
- Clinic for Swine (Zeeh, Grützner, H Nathues), Vetsuisse Faculty, University of Bern, Switzerland.,Institute of Veterinary Bacteriology (Perreten, Nicholson), Vetsuisse Faculty, University of Bern, Switzerland.,Veterinary Public Health Institute (C Nathues), Vetsuisse Faculty, University of Bern, Switzerland.,Faculty of Veterinary Medicine, University of Perugia, Perugia, Italy (De Luca)
| | - Heiko Nathues
- Clinic for Swine (Zeeh, Grützner, H Nathues), Vetsuisse Faculty, University of Bern, Switzerland.,Institute of Veterinary Bacteriology (Perreten, Nicholson), Vetsuisse Faculty, University of Bern, Switzerland.,Veterinary Public Health Institute (C Nathues), Vetsuisse Faculty, University of Bern, Switzerland.,Faculty of Veterinary Medicine, University of Perugia, Perugia, Italy (De Luca)
| |
Collapse
|
10
|
Zeeh F, Nathues H, Frey J, Muellner P, Fellström C. A review of methods used for studying the molecular epidemiology of Brachyspira hyodysenteriae. Vet Microbiol 2017; 207:181-194. [PMID: 28757022 DOI: 10.1016/j.vetmic.2017.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 06/13/2017] [Accepted: 06/14/2017] [Indexed: 11/28/2022]
Abstract
Brachyspira (B.) spp. are intestinal spirochaetes isolated from pigs, other mammals, birds and humans. In pigs, seven Brachyspira spp. have been described, i.e. B. hyodysenteriae, B. pilosicoli, B. intermedia, B. murdochii, B. innocens, B. suanatina and B. hampsonii. Brachyspira hyodysenteriae is especially relevant in pigs as it causes swine dysentery and hence considerable economic losses to the pig industry. Furthermore, reduced susceptibility of B. hyodysenteriae to antimicrobials is of increasing concern. The epidemiology of B. hyodysenteriae infections is only partially understood, but different methods for detection, identification and typing have supported recent improvements in knowledge and understanding. In the last years, molecular methods have been increasingly used. Molecular epidemiology links molecular biology with epidemiology, offering unique opportunities to advance the study of diseases. This review is based on papers published in the field of epidemiology and molecular epidemiology of B. hyodysenteriae in pigs. Electronic databases were screened for potentially relevant papers using title and abstract and finally, Barcellos et al. papers were systemically selected and assessed. The review summarises briefly the current knowledge on B. hyodysenteriae epidemiology and elaborates on molecular typing techniques available. Results of the studies are compared and gaps in the knowledge are addressed. Finally, potential areas for future research are proposed.
Collapse
Affiliation(s)
- Friederike Zeeh
- Clinic for Swine, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, PB 3350, 3001 Bern, Switzerland.
| | - Heiko Nathues
- Clinic for Swine, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, PB 3350, 3001 Bern, Switzerland.
| | - Joachim Frey
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, PB 3350, CH-3001 Bern 3001 Bern, Switzerland.
| | - Petra Muellner
- Epi-interactive, PO Box 15327, Miramar, Wellington, 6243, New Zealand.
| | - Claes Fellström
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Swedish University of Agricultural Sciences, Box 7054, 750 07 Uppsala, Sweden.
| |
Collapse
|
11
|
Vadillo S, San-Juan C, Calderón M, Risco D, Fernández-Llario P, Pérez-Sancho M, Redondo E, Hurtado MA, Igeño MI. Isolation of Brachyspira species from farmed wild boar in Spain. Vet Rec 2017; 181:vetrec-2017-104348. [PMID: 28765497 DOI: 10.1136/vr.104348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/06/2017] [Accepted: 06/04/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Santiago Vadillo
- Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | - Carlos San-Juan
- Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | - Marta Calderón
- Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | - David Risco
- Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | | | | | - Eloy Redondo
- Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | - Miguel A Hurtado
- Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | - M Isabel Igeño
- Departamento de Bioquímica y Biología Molecular y Genética, IPROCAR, Universidad de Extremadura, Cáceres, Spain
| |
Collapse
|
12
|
Casas V, Rodríguez-Asiain A, Pinto-Llorente R, Vadillo S, Carrascal M, Abian J. Brachyspira hyodysenteriae and B. pilosicoli Proteins Recognized by Sera of Challenged Pigs. Front Microbiol 2017; 8:723. [PMID: 28522991 PMCID: PMC5415613 DOI: 10.3389/fmicb.2017.00723] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/07/2017] [Indexed: 11/13/2022] Open
Abstract
The spirochetes Brachyspira hyodysenteriae and B. pilosicoli are pig intestinal pathogens that are the causative agents of swine dysentery (SD) and porcine intestinal spirochaetosis (PIS), respectively. Although some inactivated bacterin and recombinant vaccines have been explored as prophylactic treatments against these species, no effective vaccine is yet available. Immunoproteomics approaches hold the potential for the identification of new, suitable candidates for subunit vaccines against SD and PIS. These strategies take into account the gene products actually expressed and present in the cells, and thus susceptible of being targets of immune recognition. In this context, we have analyzed the immunogenic pattern of two B. pilosicoli porcine isolates (the Spanish farm isolate OLA9 and the commercial P43/6/78 strain) and one B. hyodysenteriae isolate (the Spanish farm V1). The proteins from the Brachyspira lysates were fractionated by preparative isoelectric focusing, and the fractions were analyzed by Western blot with hyperimmune sera from challenged pigs. Of the 28 challenge-specific immunoreactive bands detected, 21 were identified as single proteins by MS, while the other 7 were shown to contain several major proteins. None of these proteins were detected in the control immunoreactive bands. The proteins identified included 11 from B. hyodysenteriae and 28 from the two B. pilosicoli strains. Eight proteins were common to the B. pilosicoli strains (i.e., elongation factor G, aspartyl-tRNA synthase, biotin lipoyl, TmpB outer membrane protein, flagellar protein FlaA, enolase, PEPCK, and VspD), and enolase and PEPCK were common to both species. Many of the identified proteins were flagellar proteins or predicted to be located on the cell surface and some of them had been previously described as antigenic or as bacterial virulence factors. Here we report on the identification and semiquantitative data of these immunoreactive proteins which constitute a unique antigen collection from these bacteria.
Collapse
Affiliation(s)
- Vanessa Casas
- CSIC/UAB Proteomics Laboratory, IIBB-CSIC, IDIBAPSBarcelona, Spain.,Faculty of Medicine, Autonomous University of BarcelonaBarcelona, Spain
| | | | | | - Santiago Vadillo
- Departamento Sanidad Animal, Facultad de Veterinaria, Universidad de ExtremaduraCáceres, Spain
| | | | - Joaquin Abian
- CSIC/UAB Proteomics Laboratory, IIBB-CSIC, IDIBAPSBarcelona, Spain.,Faculty of Medicine, Autonomous University of BarcelonaBarcelona, Spain
| |
Collapse
|
13
|
La T, Phillips ND, Hampson DJ. An Investigation into the Etiological Agents of Swine Dysentery in Australian Pig Herds. PLoS One 2016; 11:e0167424. [PMID: 27907102 PMCID: PMC5131991 DOI: 10.1371/journal.pone.0167424] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/14/2016] [Indexed: 11/18/2022] Open
Abstract
Swine dysentery (SD) is a mucohemorrhagic colitis, classically seen in grower/finisher pigs and caused by infection with the anaerobic intestinal spirochete Brachyspira hyodysenteriae. More recently, however, the newly described species Brachyspira hampsonii and Brachyspira suanatina have been identified as causing SD in North America and/or Europe. Furthermore, there have been occasions where strains of B. hyodysenteriae have been recovered from healthy pigs, including in multiplier herds with high health status. This study investigated whether cases of SD in Australia may be caused by the newly described species; how isolates of B. hyodysenteriae recovered from healthy herds compared to isolates from herds with disease; and how contemporary isolates compare to those recovered in previous decades, including in their plasmid gene content and antimicrobial resistance profiles. In total 1103 fecal and colon samples from pigs in 97 Australian herds were collected and tested. Of the agents of SD only B. hyodysenteriae was found, being present in 34 (35.1%) of the herds, including in 14 of 24 (58%) herds that had been considered to be free of SD. Multilocus sequence typing applied to 96 isolates from 30 herds and to 53 Australian isolates dating from the 1980s through the early 2000s showed that they were diverse, distinct from those reported in other countries, and that the 2014/16 isolates generally were different from those from earlier decades. These findings provided evidence for ongoing evolution of B. hyodysenteriae strains in Australia. In seven of the 20 herds where multiple isolates were available, two to four different sequence types (STs) were identified. Isolates with the same STs also were found in some herds with epidemiological links. Analysis of a block of six plasmid virulence-associated genes showed a lack of consistency between their presence or absence and their origin from herds currently with or without disease; however, significantly fewer isolates from the 2000s and from 2014/16 had this block of genes compared to isolates from the 1980s and 1990s. It is speculated that loss of these genes may have been responsible for the occurrence of milder disease occurring in recent years. In addition, fewer isolates from 2014/16 were susceptible to the antimicrobials lincomycin, and to a lesser extent tiamulin, than those from earlier Australian studies. Four distinct multi-drug resistant strains were identified in five herds, posing a threat to disease control.
Collapse
Affiliation(s)
- Tom La
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia
| | - Nyree D. Phillips
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia
| | - David J. Hampson
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia
- * E-mail:
| |
Collapse
|
14
|
Development of a serological ELISA using a recombinant protein to identify pig herds infected with Brachyspira hyodysenteriae. Vet J 2015; 206:365-70. [DOI: 10.1016/j.tvjl.2015.08.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/12/2015] [Accepted: 08/15/2015] [Indexed: 11/20/2022]
|
15
|
Molecular Epidemiology of Novel Pathogen "Brachyspira hampsonii" Reveals Relationships between Diverse Genetic Groups, Regions, Host Species, and Other Pathogenic and Commensal Brachyspira Species. J Clin Microbiol 2015; 53:2908-18. [PMID: 26135863 DOI: 10.1128/jcm.01236-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 06/22/2015] [Indexed: 11/20/2022] Open
Abstract
Outbreaks of bloody diarrhea in swine herds in the late 2000s signaled the reemergence of an economically significant disease, swine dysentery, in the United States. Investigations confirmed the emergence of a novel spirochete in swine, provisionally designated "Brachyspira hampsonii," with two genetically distinct clades. Although it has since been detected in swine and migratory birds in Europe and North America, little is known about its genetic diversity or its relationships with other Brachyspira species. This study characterizes B. hampsonii using a newly developed multilocus sequence typing (MLST) approach and elucidates the diversity, distribution, population structure, and genetic relationships of this pathogen from diverse epidemiological sources globally. Genetic characterization of 81 B. hampsonii isolates, originating from six countries, with our newly established MLST scheme identified a total of 20 sequence types (STs) belonging to three clonal complexes (CCs). B. hampsonii showed a heterogeneous population structure with evidence of microevolution locally in swine production systems, while its clustering patterns showed associations with its epidemiological origins (country, swine production system, and host species). The close genetic relatedness of B. hampsonii isolates from different countries and host species highlights the importance of strict biosecurity control measures. A comparative analysis of 430 isolates representing seven Brachyspira species (pathogens and commensals) from 19 countries and 10 host species depicted clustering by microbial species. It revealed the close genetic relatedness of B. hampsonii with commensal Brachyspira species and also provided support for the two clades of B. hampsonii to be considered a single species.
Collapse
|
16
|
Black M, Moolhuijzen P, Barrero R, La T, Phillips N, Hampson D, Herbst W, Barth S, Bellgard M. Analysis of Multiple Brachyspira hyodysenteriae Genomes Confirms That the Species Is Relatively Conserved but Has Potentially Important Strain Variation. PLoS One 2015; 10:e0131050. [PMID: 26098837 PMCID: PMC4476648 DOI: 10.1371/journal.pone.0131050] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/28/2015] [Indexed: 12/19/2022] Open
Abstract
The intestinal spirochete Brachyspira hyodysenteriae is an important pathogen in swine, causing mucohemorrhagic colitis in a disease known as swine dysentery. Based on the detection of significant linkage disequilibrium in multilocus sequence data, the species is considered to be clonal. An analysis of the genome sequence of Western Australian B. hyodysenteriae strain WA1 has been published, and in the current study 19 further strains from countries around the world were sequenced with Illumina technology. The genomes were assembled and aligned to over 97.5% of the reference WA1 genome at a percentage sequence identity better than 80%. Strain regions not aligned to the reference ranged between 0.2 and 2.5%. Clustering of the strain genes found on average 2,354 (88%) core genes, 255 (8.6%) ancillary genes and 77 (2.9%) unique genes per strain. Depending on the strain the proportion of genes with 100% sequence identity to WA1 ranged from 85% to 20%. The result is a global comparative genomic analysis of B. hyodysenteriae genomes revealing potential differential phenotypic markers for numerous strains. Despite the differences found, the genomes were less varied than those of the related pathogenic species Brachyspira pilosicoli, and the analysis supports the clonal nature of the species. From this study, a public genome resource has been created that will serve as a repository for further genetic and phenotypic studies of these important porcine bacteria. This is the first intra-species B. hyodysenteriae comparative genomic analysis.
Collapse
Affiliation(s)
- Michael Black
- Centre for Comparative Genomics, Murdoch University, Murdoch, Western Australia, Australia
| | - Paula Moolhuijzen
- Centre for Comparative Genomics, Murdoch University, Murdoch, Western Australia, Australia
| | - Roberto Barrero
- Centre for Comparative Genomics, Murdoch University, Murdoch, Western Australia, Australia
| | - Tom La
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia
| | - Nyree Phillips
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia
| | - David Hampson
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia
| | - Werner Herbst
- Institute for Hygiene and Infectious Diseases of Animals, Justus-Liebig University Giessen, Giessen, Germany
| | - Stefanie Barth
- Institute for Hygiene and Infectious Diseases of Animals, Justus-Liebig University Giessen, Giessen, Germany
| | - Matthew Bellgard
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia
- * E-mail:
| |
Collapse
|
17
|
Hampson DJ, La T, Phillips ND. Emergence of Brachyspira species and strains: reinforcing the need for surveillance. Porcine Health Manag 2015; 1:8. [PMID: 28694985 PMCID: PMC5499009 DOI: 10.1186/s40813-015-0002-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/05/2015] [Indexed: 11/24/2022] Open
Abstract
This short review discusses the increasing complexity that has developed around the understanding of Brachyspira species that infect pigs, and their ability to cause disease. It describes the recognition of new weakly haemolytic Brachyspira species, and the growing appreciation that Brachyspira pilosicoli and some other weakly haemolytic species may be pathogenic in pigs. It discusses swine dysentery (SD) caused by the strongly haemolytic Brachyspira hyodysenteriae, particularly the cyclical nature of the disease whereby it can largely disappear as a clinical problem from a farm or region, and re-emerge years later. The review then describes the recent emergence of two newly described strongly haemolytic pathogenic species, “Brachyspira suanatina” and “Brachyspira hampsonii” both of which appear to have reservoirs in migratory waterbirds, and which may be transmitted to and between pigs. “B. suanatina” seems to be confined to Scandinavia, whereas “B. hampsonii” has been reported in North America and Europe, causes a disease indistinguishable from SD, and has required the development of new routine diagnostic tests. Besides the emergence of new species, strains of known Brachyspira species have emerged that vary in important biological properties, including antimicrobial susceptibility and virulence. Strains can be tracked locally and at the national and international levels by identifying them using multilocus sequence typing (MLST) and comparing them against sequence data for strains in the PubMLST databases. Using MLST in conjunction with data on antimicrobial susceptibility can form the basis for surveillance programs to track the movement of resistant clones. In addition some strains of B. hyodysenteriae have low virulence potential, and some of these have been found to lack the B. hyodysenteriae 36 kB plasmid or certain genes on the plasmid whose activity may be associated with colonization. Lack of the plasmid or the genes can be identified using PCR testing, and this information can be added to the MLST and resistance data to undertake detailed surveillance. Strains of low virulence are particularly important where they occur in high health status breeding herds without causing obvious disease: potentially they could be transmitted to production herds where they may colonize more effectively and cause disease under stressful commercial conditions.
Collapse
Affiliation(s)
- David J Hampson
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6112 Australia
| | - Tom La
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6112 Australia
| | - Nyree D Phillips
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6112 Australia
| |
Collapse
|
18
|
Costa MO, Hill JE, Fernando C, Lemieux HD, Detmer SE, Rubin JE, Harding JCS. Confirmation that "Brachyspira hampsonii" clade I (Canadian strain 30599) causes mucohemorrhagic diarrhea and colitis in experimentally infected pigs. BMC Vet Res 2014; 10:129. [PMID: 24917084 PMCID: PMC4059474 DOI: 10.1186/1746-6148-10-129] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 05/28/2014] [Indexed: 11/30/2022] Open
Abstract
Background “Brachyspira hampsonii”, discovered in North America in 2010 associated with dysentery-like illness, is an economically relevant swine pathogen resulting in decreased feed efficiency and increased morbidity, mortality and medication usage. “B. hampsonii” clade II strain 30446 has been shown to be causally associated with mucohemorrhagic diarrhea and colitis. Our objectives were to determine if “Brachyspira hampsonii” clade I strain 30599 is pathogenic to pigs, and to evaluate the relative diagnostic performance of three ante mortem sampling methodologies (direct PCR on feces, PCR on rectal GenoTube Livestock swabs, Brachyspira culture from rectal swabs). Five-week old pigs were intragastrically inoculated thrice with 108 genomic equivalents "B. hampsonii" (n = 12), or served as sham controls (n = 6). Feces were sampled and consistency assessed daily. Necropsies were performed 24 h after peak clinical signs. Results One pig died due to unrelated illness. Nine of 11 inoculated pigs, but no controls, developed mucoid or mucohemorrhagic diarrhea (MHD). Characteristic lesions of swine dysentery were observed in large intestine. “B. hampsonii” strain 30599 DNA was detected by qPCR in feces of all inoculated pigs for up to 6 days prior to the onset of MHD. The organism was isolated from the feces and colons of pigs demonstrating MHD, but not from controls. B. intermedia was isolated from inoculated pigs without MHD, and from 5 of 6 controls. Conclusions We conclude that “Brachyspira hampsonii” clade I strain 30599 is pathogenic and causes mucohemorrhagic diarrhea and colitis in susceptible pigs. Moreover, the three sampling methodologies performed similarly. GenoTube Livestock, a forensic swab designed to preserve DNA during shipping is a useful tool especially in settings where timely transport of diagnostic samples is challenging.
Collapse
Affiliation(s)
| | | | | | | | | | | | - John C S Harding
- Department of Large Animal Clinical Sciences, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
19
|
Prohaska S, Pflüger V, Ziegler D, Scherrer S, Frei D, Lehmann A, Wittenbrink M, Huber H. MALDI-TOF MS for identification of porcine Brachyspira
species. Lett Appl Microbiol 2013; 58:292-8. [DOI: 10.1111/lam.12189] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 10/09/2013] [Accepted: 10/28/2013] [Indexed: 12/01/2022]
Affiliation(s)
- S. Prohaska
- Vetsuisse Faculty; Institute of Veterinary Bacteriology; University of Zurich; Zurich Switzerland
| | | | | | - S. Scherrer
- Vetsuisse Faculty; Institute of Veterinary Bacteriology; University of Zurich; Zurich Switzerland
| | - D. Frei
- Vetsuisse Faculty; Institute of Veterinary Bacteriology; University of Zurich; Zurich Switzerland
| | - A. Lehmann
- Vetsuisse Faculty; Institute of Veterinary Bacteriology; University of Zurich; Zurich Switzerland
| | - M.M. Wittenbrink
- Vetsuisse Faculty; Institute of Veterinary Bacteriology; University of Zurich; Zurich Switzerland
| | - H. Huber
- Vetsuisse Faculty; Institute of Veterinary Bacteriology; University of Zurich; Zurich Switzerland
| |
Collapse
|