1
|
McConville J, Allen A, Moyce A, Donaghy A, Clarke J, Guelbenzu-Gonzalo M, Byrne AW, Verner S, Strain S, McInerney B, Holmes E. Genotypic analysis of a localised hotspot of Pestivirus A (BVDV-1) infections in Northern Ireland. Vet Rec 2024; 194:e4150. [PMID: 38693629 DOI: 10.1002/vetr.4150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/26/2024] [Accepted: 03/28/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Bovine viral diarrhoea (BVD) is caused by Pestivirus A and Pestivirus B. Northern Ireland (NI) embarked on a compulsory BVD eradication scheme in 2016, which continues to this day, so an understanding of the composition of the pestivirus genotypes in the cattle population of NI is required. METHODS This molecular epidemiology study employed 5' untranslated region (5'UTR) genetic sequencing to examine the pestivirus genotypes circulating in samples taken from a hotspot of BVD outbreaks in the Enniskillen area in 2019. RESULTS Bovine viral diarrhoea virus (BVDV)-1e (Pestivirus A) was detected for the first time in Northern Ireland, and at a high frequency, in an infection hotspot in Enniskillen in 2019. There was no evidence of infection with BVDV-2 (Pestivirus B), Border disease virus (pestivirus D) or HoBi-like virus/BVDV-3 (pestivirus H). LIMITATIONS Only 5'UTR sequencing was used, so supplementary sequencing, along with phylogenetic trees that include all BVDV-1 genotype reference strains, would improve accuracy. Examination of farm locations and animal movement/trade is also required. CONCLUSIONS Genotype BVDV-1e was found for the first time in Northern Ireland, indicating an increase in the genetic diversity of BVDV-1, which could have implications for vaccine design and highlights the need for continued pestivirus genotypic surveillance.
Collapse
Affiliation(s)
- James McConville
- Disease Surveillance and Investigations Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, UK
| | - Adrian Allen
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, UK
| | - Asa Moyce
- Disease Surveillance and Investigations Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, UK
| | - Aoibheann Donaghy
- Disease Surveillance and Investigations Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, UK
| | - Joe Clarke
- Disease Surveillance and Investigations Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, UK
| | | | - Andrew W Byrne
- Department of Agriculture, Food and Marine, Dublin, Ireland
| | - Sharon Verner
- Animal Health and Welfare Northern Ireland, Dungannon, UK
| | - Sam Strain
- Animal Health and Welfare Northern Ireland, Dungannon, UK
| | - Barry McInerney
- Disease Surveillance and Investigations Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, UK
| | - Emma Holmes
- Disease Surveillance and Investigations Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, UK
| |
Collapse
|
2
|
Graham D, More SJ, O'Sullivan P, Lane E, Barrett D, Lozano JM, Thulke HH, Verner S, Guelbenzu M. The Irish Programme to Eradicate Bovine Viral Diarrhoea Virus-Organization, Challenges, and Progress. Front Vet Sci 2021; 8:674557. [PMID: 34141734 PMCID: PMC8204052 DOI: 10.3389/fvets.2021.674557] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/19/2021] [Indexed: 02/03/2023] Open
Abstract
A mandatory national Irish bovine viral diarrhoea (BVD) eradication programme, coordinated by Animal Health Ireland, commenced in 2013. Key decisions and programme review are undertaken by a cross-industry Implementation Group (BVDIG) supported by a Technical Working Group. Ear notch tissue is collected from all new-born calves using modified official identity tags, supplemented by additional blood sampling, including for confirmatory testing of calves with initial positive results and testing of their dams. Testing is delivered by private laboratories in conjunction with the National Reference Laboratory, with all results reported to a central database. This database manages key elements of the programme, issuing results to herdowners by short message service messaging supplemented by letters; assigning and exchanging animal-level statuses with government databases of the Department of Agriculture, Food and the Marine to enable legislated restrictions on animal movements; assigning negative herd status based on test results; generating regular reports for programme management and evaluation and providing herd-specific dashboards for a range of users. Legislation supporting the programme has been in place throughout but has not thus far mandated the slaughter of persistently infected (PI) calves. A key challenge in the early years, highlighted by modeling, was the retention of PI animals by some herd owners. This has largely been resolved by measures including graduated financial supports to encourage their early removal, herd-level movement restrictions, ongoing programme communications and the input of private veterinary practitioners (PVPs). A framework for funded investigations by PVPs in positive herds was developed to identify plausible sources of infection, to resolve the status of all animals in the herd and to agree up to three measures to prevent re-introduction of the virus. The prevalence of PI calves in 2013 was 0.66%, within 11.3% of herds, reducing in each subsequent year, to 0.03 and 0.55%, respectively, at the end of 2020. Recent regulatory changes within the European Union for the first time make provision for official approval of national eradication programmes, or recognition of BVD freedom, and planning is underway to seek approval and, in due course, recognition of freedom within this framework by 2023.
Collapse
Affiliation(s)
- David Graham
- Animal Health Ireland, Carrick on Shannon, Ireland
| | - Simon J More
- Centre for Veterinary Epidemiology and Risk Analysis, UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | | | - Elizabeth Lane
- Centre for Veterinary Epidemiology and Risk Analysis, UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland.,Animal Health Division, Department of Agriculture, Food and the Marine, Dublin, Ireland
| | - Damien Barrett
- Surveillance, Animal By-products and TSEs (SAT) Division Department of Agriculture, Food and the Marine, Celbridge, Ireland
| | - Jose-Maria Lozano
- Central Veterinary Research Laboratory, Department of Agriculture, Food and the Marine, Celbridge, Ireland
| | - Hans-Hermann Thulke
- Department of Ecological Modelling, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Sharon Verner
- Animal Health and Welfare NI, Unit 49, Dungannon Enterprise Centre, Dungannon, United Kingdom
| | | |
Collapse
|
3
|
Ricci S, Bartolini S, Morandi F, Cuteri V, Preziuso S. Genotyping of Pestivirus A (Bovine Viral Diarrhea Virus 1) detected in faeces and in other specimens of domestic and wild ruminants at the wildlife-livestock interface. Vet Microbiol 2019; 235:180-187. [PMID: 31383300 DOI: 10.1016/j.vetmic.2019.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/04/2019] [Accepted: 07/06/2019] [Indexed: 11/19/2022]
Abstract
Pestiviruses are widespread in the world among ungulates and infect both domestic and wild animals causing severe economic losses in livestock. Bovine Viral Diarrhea Virus type 1 (BVDV-1), now re-designated as Pestivirus A, causes diseases mainly in cattle, while few data are available about infection in wild ruminants and about the role of these animals in viral maintenance and spread. In order to investigate BVDV-1 infection in domestic and wild ruminants, especially at the wildlife/livestock interface, bulk tank milk from dairy cattle and sheep and spleen from red deer, roe deer and fallow deer were analysed. Furthermore, faecal samples from Apennine chamois and from wild deer were evaluated as a suitable sample for detecting and genotyping pestiviruses. BVDV-1 RNA was found in all animal species tested but not sheep. Genotyping based on partial 5'UTR and Npro sequences detected BVDV-1a in samples from Apennine chamois, red deer, roe deer and pasture-raised cattle, while BVDV-1c was found in a faecal sample from Apennine chamois and in a spleen sample from roe deer. For the first time BVDV-1 RNA was found and genotyped from faecal samples of wild ruminants and of cattle. BVDV-1a detection in Apennine chamois, red deer, roe deer and pasture-raised cattle suggests that the eventuality of viral transmission at the wildlife/livestock interface should be carefully evaluated. BVDV subgenotype 1c was found for the first time in roe deer and Apennine chamois in Central Italy, therefore the epidemiological role of these animals and the viral ecology should be further investigated.
Collapse
Affiliation(s)
- Sara Ricci
- School of Biosciences and Veterinary Medicine, University of Camerino, Italy
| | - Sofia Bartolini
- School of Biosciences and Veterinary Medicine, University of Camerino, Italy
| | | | - Vincenzo Cuteri
- School of Biosciences and Veterinary Medicine, University of Camerino, Italy
| | - Silvia Preziuso
- School of Biosciences and Veterinary Medicine, University of Camerino, Italy.
| |
Collapse
|
4
|
Quintero Barbosa J, Corredor Figueroa AP, Salas SS, Camargo H, Sanchéz A, Tobón J, Ortiz D, Schachtebeck E, Gutierrez MF. High prevalence of persistently infected animals from bovine viral diarrhea in Colombian cattle. BMC Vet Res 2019; 15:23. [PMID: 30630483 PMCID: PMC6327412 DOI: 10.1186/s12917-018-1769-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/27/2018] [Indexed: 11/22/2022] Open
Abstract
Background Bovine Viral Diarrhea Virus (BVDV) is associated with gastrointestinal, respiratory and reproductive diseases of livestock across the world that causes continuous economic losses in the cattle industry. This virus can establish a persistent infection (PI) in calves after the fetal infection, making BVDV positive catle carriers and primary reservoirs which will constantly transmit the virus to healthy and new-born animals. For this reason, the detection of the PI animals in herds is the first line of prevention of the viral infection. Results In this study, PI animals were detected in five different regions of Colombia through RT-PCR techniques and confirmed by sequencing. BVDV genotypes were determined using one fragment of the 5’UTR. It was found a 7% BVDV prevalence in animals and 22% in farms; and genotype 1 was identified as a single genotype for all of the samples. All samples were BVDV 1a. Conclusion This is the first report in Colombia with higher prevalence rates compared with other places in the world, turned out to be of great importance for the ranchers, the vaccine producers and animal health control parties.
Collapse
Affiliation(s)
- Juan Quintero Barbosa
- Escuela de Biología, Universidad Industrial de Santander, Carrera 27 Calle 9, ed 45, Bucaramanga, Colombia
| | | | - Sandra S Salas
- Departamento de Microbiología, Pontificia Universidad Javeriana, Carrera 7 No. 40 - 62, Bogotá, Colombia
| | - Hugo Camargo
- Empresa Colombiana de Productos Veterinarios - VECOL, Av. Eldorado 82 -93, Bogotá, Colombia
| | - Alfredo Sanchéz
- Empresa Colombiana de Productos Veterinarios - VECOL, Av. Eldorado 82 -93, Bogotá, Colombia
| | - Julio Tobón
- Empresa Colombiana de Productos Veterinarios - VECOL, Av. Eldorado 82 -93, Bogotá, Colombia
| | - Diego Ortiz
- Corporación Colombiana de Investigación Agropecuaria - CORPOICA, Km 14 Vía Mosquera-Bogotá, Mosquera, Colombia
| | - Eric Schachtebeck
- Facultad de Veterinaria, Universidad Antonio Nariño, Carrera 3 Este # 47 A - 15, Bogotá, Colombia
| | - Maria Fernanda Gutierrez
- Departamento de Microbiología, Pontificia Universidad Javeriana, Carrera 7 No. 40 - 62, Bogotá, Colombia.
| |
Collapse
|
5
|
Yeşilbağ K, Alpay G, Becher P. Variability and Global Distribution of Subgenotypes of Bovine Viral Diarrhea Virus. Viruses 2017; 9:v9060128. [PMID: 28587150 PMCID: PMC5490805 DOI: 10.3390/v9060128] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 12/03/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV) is a globally-distributed agent responsible for numerous clinical syndromes that lead to major economic losses. Two species, BVDV-1 and BVDV-2, discriminated on the basis of genetic and antigenic differences, are classified in the genus Pestivirus within the Flaviviridae family and distributed on all of the continents. BVDV-1 can be segregated into at least twenty-one subgenotypes (1a–1u), while four subgenotypes have been described for BVDV-2 (2a–2d). With respect to published sequences, the number of virus isolates described for BVDV-1 (88.2%) is considerably higher than for BVDV-2 (11.8%). The most frequently-reported BVDV-1 subgenotype are 1b, followed by 1a and 1c. The highest number of various BVDV subgenotypes has been documented in European countries, indicating greater genetic diversity of the virus on this continent. Current segregation of BVDV field isolates and the designation of subgenotypes are not harmonized. While the species BVDV-1 and BVDV-2 can be clearly differentiated independently from the portion of the genome being compared, analysis of different genomic regions can result in inconsistent assignment of some BVDV isolates to defined subgenotypes. To avoid non-conformities the authors recommend the development of a harmonized system for subdivision of BVDV isolates into defined subgenotypes.
Collapse
Affiliation(s)
- Kadir Yeşilbağ
- Department of Virology, Faculty of Veterinary Medicine, Uludag University, TR-16059 Bursa, Turkey.
| | - Gizem Alpay
- Department of Virology, Faculty of Veterinary Medicine, Uludag University, TR-16059 Bursa, Turkey.
| | - Paul Becher
- Institute for Virology, Department of Infectious Diseases, University of Veterinary Medicine, D-30559 Hannover, Germany.
| |
Collapse
|