1
|
Essam A, Elmishmishy B, Hammad E, Elwafa SA, Abbas I. Occurrence and molecular characterization of Cryptosporidium oocysts in chickens from Egypt, and a meta-analysis for Cryptosporidium infections in chickens worldwide. Vet Parasitol Reg Stud Reports 2025; 57:101169. [PMID: 39855857 DOI: 10.1016/j.vprsr.2024.101169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/30/2024] [Accepted: 11/14/2024] [Indexed: 01/27/2025]
Abstract
Cryptosporidium is a leading cause of diarrhea in children and immunocompromised patients. Various animals and birds can also be infected with this protist, and Cryptosporidium zoonosis is common. A few reports have been published worldwide on Cryptosporidium infections in chickens. The present study surveyed Cryptosporidium infections in chickens from Dakahlia governorate, Egypt. Cryptosporidium oocysts were tested, using the Ziehl Neelsen modified acid-fast staining, in 884 chickens collected from various farms and live bird markets (LBMs) in Dakahlia governorate, Egypt. COWP (Cryptosporidium oocyst wall protein)-PCR testing coupled with isolate sequencing was conducted for 10 Cryptosporidium-positive samples. Intestinal contents of 58 (6.6 %) out of the surveyed chickens in Dakahlia, Egypt, had Cryptosporidium oocysts. The native breed (Balady) had a significantly higher prevalence than the commercial breeds. Oocysts of two different size ranges were detected; 4-5.5 × 4-5 μm and 6-7 × 5-6 μm. Two of the ten PCR-tested samples were successfully sequenced and identified as Cryptosporidium parvum. The present study conducted also the first meta-analysis describing the epidemiology, clinical disease, and species diversity of Cryptosporidium infecting chickens worldwide. The pooled Cryptosporidium prevalence in 18,579 chickens tested worldwide was 18.3 %, with insignificant geographical variations. The prevalence was two-fold higher (40.5 %) at the flock level. Chickens collected from LBMs (30.5 %) had significantly higher pooled prevalence than farmed chickens (14.4 %). Insignificant prevalence variations were detected according to the production type (broiler or layer), diagnostic method, or disease status. Three Cryptosporidium species common to infect birds were molecularly identified in 760 chickens tested worldwide: Cryptosporidium baileyi, Cryptosporidium meleagridis, and Cryptosporidium galli, with the former being the most frequently detected. Cryptosporidium parvum was detected in a few samples mostly from free-range chickens. In conclusion, potential C. parvum zoonosis from chickens is suggested in Egypt, where C. parvum is common among humans and various animals. Given that chicken has a substantial role in the global C. meleagridis zoonoses, and no bird-specific Cryptosporidium spp. were detected in the tested samples from Egypt, we do recommend a large-scale molecular survey to detect various species and genotypes infecting chickens throughout various Egyptian governorates.
Collapse
Affiliation(s)
- Ahmed Essam
- Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Bassem Elmishmishy
- Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Enas Hammad
- Department of Poultry Diseases, Animal Health Research Institute, Mansoura Branch, Agricultural Research Center (ARC), Egypt
| | - Salah Abu Elwafa
- Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ibrahim Abbas
- Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
2
|
Ali M, Ji Y, Xu C, Hina Q, Javed U, Li K. Food and Waterborne Cryptosporidiosis from a One Health Perspective: A Comprehensive Review. Animals (Basel) 2024; 14:3287. [PMID: 39595339 PMCID: PMC11591251 DOI: 10.3390/ani14223287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/07/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
A sharp rise in the global population and improved lifestyles has led to questions about the quality of both food and water. Among protozoan parasites, Cryptosporidium is of great importance in this regard. Hence, Cryptosporidium's associated risk factors, its unique characteristics compared to other protozoan parasites, its zoonotic transmission, and associated economic losses in the public health and livestock sectors need to be focused on from a One Health perspective, including collaboration by experts from all three sectors. Cryptosporidium, being the fifth largest food threat, and the second largest cause of mortality in children under five years of age, is of great significance. The contamination of vegetables, fresh fruits, juices, unpasteurized raw milk, uncooked meat, and fish by Cryptosporidium oocysts occurs through infected food handlers, sewage-based contamination, agricultural effluents, infected animal manure being used as biofertilizer, etc., leading to severe foodborne outbreaks. The only Food and Drug Administration (FDA)-approved drug, Nitazoxanide (NTZ), provides inconsistent results in all groups of patients, and currently, there is no vaccine against it. The prime concerns of this review are to provide a deep insight into the Cryptosporidium's global burden, associated water- and foodborne outbreaks, and some future perspectives in an attempt to effectively manage this protozoal disease. A thorough literature search was performed to organize the most relevant, latest, and quantified data, justifying the title. The estimation of its true burden, strategies to break the transmission pathways and life cycle of Cryptosporidium, and the search for vaccine targets through genome editing technology represent some future research perspectives.
Collapse
Affiliation(s)
- Munwar Ali
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yaru Ji
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Chang Xu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Qazal Hina
- Department of Animal Nutrition, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Usama Javed
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
3
|
Gomes-Gonçalves S, Rodrigues D, Santos N, Gantois N, Chabé M, Viscogliosi E, Mesquita JR. Molecular Screening and Characterization of Enteric Protozoan Parasites and Microsporidia in Wild Ducks from Portugal. Animals (Basel) 2024; 14:2956. [PMID: 39457886 PMCID: PMC11503927 DOI: 10.3390/ani14202956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Enteric parasites pose significant threats to both human and veterinary health, ranking among the top causes of mortality worldwide. Wild migratory waterfowl, such as ducks, may serve as hosts and vectors for these parasites, facilitating their transmission across ecosystems. This study conducted a molecular screening of enteric parasites in three species of wild ducks of the genus Anas (A. acuta, A. platyrhynchos and A. crecca) from Portugal, targeting Blastocystis sp., Balantioides coli, Cryptosporidium spp., Encephalitozoon spp., and Enterocytozoon bieneusi. Fecal samples from 71 ducks were analyzed using PCR and sequencing techniques. The results revealed a 2.82% occurrence of Blastocystis sp. subtype 7 and Cryptosporidium baileyi, marking the first molecular detection of these pathogens in wild ducks in Portugal. While previous studies have documented these parasites in Anas spp. in other regions, this study contributes novel data specific to the Portuguese context. No evidence of Balantioides coli, Encephalitozoon spp. or Enterocytozoon bieneusi was found. These findings highlight the potential role of migratory ducks as vectors for zoonotic protozoa, emphasizing the need for enhanced surveillance of avian populations to mitigate cross-species transmission risks. Further research is warranted to understand the global public health implications associated with migratory waterfowl.
Collapse
Affiliation(s)
- Sara Gomes-Gonçalves
- School of Medicine and Biomedical Sciences, Porto University, 4050-313 Porto, Portugal
| | - David Rodrigues
- Coimbra College of Agriculture, Polytechnic University of Coimbra, 3045-601 Coimbra, Portugal
- Forest Research Centre, School of Agriculture, University of Lisbon, 1649-004 Lisboa, Portugal
| | - Nuno Santos
- Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, 4485-661 Vairão, Portugal
| | - Nausicaa Gantois
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019–UMR 9017–CIIL–Centre d’Infection et d’Immunité de Lille, Université Lille, F-59000Lille, France (M.C.); (E.V.)
| | - Magali Chabé
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019–UMR 9017–CIIL–Centre d’Infection et d’Immunité de Lille, Université Lille, F-59000Lille, France (M.C.); (E.V.)
| | - Eric Viscogliosi
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019–UMR 9017–CIIL–Centre d’Infection et d’Immunité de Lille, Université Lille, F-59000Lille, France (M.C.); (E.V.)
| | - João R. Mesquita
- School of Medicine and Biomedical Sciences, Porto University, 4050-313 Porto, Portugal
- Epidemiology Research Unit (EPIUnit), Instituto de Saúde Pública da Universidade do Porto, 4050-600 Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), 4050-600 Porto, Portugal
| |
Collapse
|
4
|
Makouloutou-Nzassi P, Bouchedi B, Mangombi-Pambou JB, Longo-Pendy NM, N’dilimabaka N, Bangueboussa F, Koumba S, Matoumba AM, Boundenga L, Maganga GD, Mintsa-Nguema R. Prevalence of Cryptosporidium spp. infection in rodents and chickens in Franceville, Gabon. Vet World 2024; 17:1523-1529. [PMID: 39185057 PMCID: PMC11344106 DOI: 10.14202/vetworld.2024.1523-1529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 06/12/2024] [Indexed: 08/27/2024] Open
Abstract
Background and Aim Cryptosporidium spp. members of the phylum Apicomplexa are obligate protozoan parasites capable of infecting various vertebrate hosts, including rodents and chickens. Infection caused by these parasites may lead to zoonotic diseases in humans. The aim of this study was to estimate the prevalence of Cryptosporidium spp. in rodents and domestic chickens sampled in Franceville, Gabon. Materials and Methods Two hundred and eighty-five samples were collected, of which 185 samples were from rodents and 100 from domestic chickens. Microscopy after modified Ziehl-Neelsen staining and nested polymerase chain reaction targeting the small subunit (SSU) rRNA gene were used to examine Cryptosporidium spp. Results The overall prevalence of Cryptosporidium oocysts was 55.8%, with a prevalence of 72.4% in rodents and 25.0% in domestic chickens. Molecular analysis showed that Cryptosporidium spp. were present in 4.0% of the samples. No significant correlation was observed between Cryptosporidium spp. carriage and sex or location in this study. These results indicate that Cryptosporidium spp. persist and circulate in the studied animal species in Franceville, Gabon. Conclusion Infection with Cryptosporidium is very common in rodents and chickens in Franceville. The potential risk of human contamination cannot be ruled out. More research should be conducted to characterize Cryptosporidium species circulating in rodents and chickens in Gabon. Such studies are essential to better understand the epidemiology of this protozoan and its potential impact on public health.
Collapse
Affiliation(s)
- Patrice Makouloutou-Nzassi
- Unité de Recherche en Ecologie de la Santé, Centre Interdisciplinaire de Recherches Médicales de Franceville, Franceville, Gabon
- Département de Biologie et Ecologie Animale, Institut de Recherche en Ecologie Tropicale (IRET/CENAREST), Libreville, Gabon
| | - Bernie Bouchedi
- Unité de Recherche en Ecologie de la Santé, Centre Interdisciplinaire de Recherches Médicales de Franceville, Franceville, Gabon
- Department of Environment and Surveillance of Emerging and re-emerging diseases, Ecole Doctorale Régionale d’Infectiologie de Franceville, Franceville, Gabon
| | - J. B. Mangombi-Pambou
- Unité Emergence des Maladies Virales, Centre Interdisciplinaire de Recherches Médicales de Franceville, Franceville, Gabon
| | - Neil Michel Longo-Pendy
- Unité de Recherche en Ecologie de la Santé, Centre Interdisciplinaire de Recherches Médicales de Franceville, Franceville, Gabon
| | - Nadine N’dilimabaka
- Unité Emergence des Maladies Virales, Centre Interdisciplinaire de Recherches Médicales de Franceville, Franceville, Gabon
- Département de Biologie, Université des Sciences et Techniques de Masuku, Franceville, Gabon
| | - Félicien Bangueboussa
- Unité de Recherche en Ecologie de la Santé, Centre Interdisciplinaire de Recherches Médicales de Franceville, Franceville, Gabon
| | - Schedy Koumba
- Unité Emergence des Maladies Virales, Centre Interdisciplinaire de Recherches Médicales de Franceville, Franceville, Gabon
| | - Anicet Mouity Matoumba
- Unité Emergence des Maladies Virales, Centre Interdisciplinaire de Recherches Médicales de Franceville, Franceville, Gabon
| | - Larson Boundenga
- Unité de Recherche en Ecologie de la Santé, Centre Interdisciplinaire de Recherches Médicales de Franceville, Franceville, Gabon
- Department of Anthropology, Durham University, Durham, England, UK
| | - Gael Darren Maganga
- Unité Emergence des Maladies Virales, Centre Interdisciplinaire de Recherches Médicales de Franceville, Franceville, Gabon
- Department of Zootechnology, Institut National Supérieur d’ Agronomie et de Biotechnologies, Université des Sciences et Techniques de Masuku, Franceville, Gabon
| | - Rodrigue Mintsa-Nguema
- Département de Biologie et Ecologie Animale, Institut de Recherche en Ecologie Tropicale (IRET/CENAREST), Libreville, Gabon
- Department of Health and Environment, Université Libreville Nord, Libreville, Gabon
| |
Collapse
|
5
|
Li P, Zhang B, Zhao Y, Chen R, Yu F, Qi M, Zhang Z. Molecular detection of Cryptosporidium in Alpine musk deer (Moschus chrysogaster) in Gansu Province, Northwest China. Parasitol Res 2024; 123:231. [PMID: 38829429 DOI: 10.1007/s00436-024-08252-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
Cryptosporidium spp. are protozoa commonly found in domestic and wild animals. Limited information is available on Cryptosporidium in deer worldwide. In this study, 201 fecal samples were collected from Alpine musk deer on three farms in Gansu Province, China. Detection and subtyping of Cryptosporidium were performed by PCR and sequence analysis of the SSU rRNA and gp60 genes. The prevalence of Cryptosporidium infection in Alpine musk deer was 3.9% (8/201), with infection rates of 1.0% (1/100), 2.8% (1/36), and 9.2% (6/65) in three different farms. All positive samples for Cryptosporidium were from adult deer. Two Cryptosporidium species were identified, including C. parvum (n = 2) and C. xiaoi (n = 6). The C. parvum isolates were subtyped as IIdA15G1, while the C. xiaoi isolates were subtyped as XXIIIa (n = 2) and XXIIIg (n = 4). The IIdA15G1 subtype of C. parvum was found for the first time in deer. These results provide important insights into the identity and human infectious potential of Cryptosporidium in farmed Alpine musk deer.
Collapse
Affiliation(s)
- Ping Li
- College of Animal Science and Technology, Tarim University, Alar, 843300, Xinjiang, China
| | - Bowen Zhang
- College of Animal Science and Technology, Tarim University, Alar, 843300, Xinjiang, China
| | - Yafei Zhao
- College of Animal Science and Technology, Tarim University, Alar, 843300, Xinjiang, China
| | - Rong Chen
- College of Animal Science and Technology, Tarim University, Alar, 843300, Xinjiang, China
| | - Fuchang Yu
- College of Animal Science and Technology, Tarim University, Alar, 843300, Xinjiang, China
| | - Meng Qi
- College of Animal Science and Technology, Tarim University, Alar, 843300, Xinjiang, China.
| | - Zhenjie Zhang
- College of Animal Science and Technology, Tarim University, Alar, 843300, Xinjiang, China.
| |
Collapse
|
6
|
Holubová N, Zikmundová V, Kicia M, Zajączkowska Ż, Rajský M, Konečný R, Rost M, Mravcová K, Sak B, Kváč M. Genetic diversity of Cryptosporidium spp., Encephalitozoon spp. and Enterocytozoon bieneusi in feral and captive pigeons in Central Europe. Parasitol Res 2024; 123:158. [PMID: 38460006 DOI: 10.1007/s00436-024-08169-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/22/2024] [Indexed: 03/11/2024]
Abstract
Cryptosporidium spp., Enterocytozoon bieneusi and Encephalitozoon spp. are the most common protistan parasites of vertebrates. The results show that pigeon populations in Central Europe are parasitised by different species of Cryptosporidium and genotypes of microsporidia of the genera Enterocytozoon and Encephalitozoon. A total of 634 and 306 faecal samples of captive and feral pigeons (Columba livia f. domestica) from 44 locations in the Czech Republic, Slovakia and Poland were analysed for the presence of parasites by microscopy and PCR/sequence analysis of small subunit ribosomal RNA (18S rDNA), 60 kDa glycoprotein (gp60) and internal transcribed spacer (ITS) of SSU rDNA. Phylogenetic analyses revealed the presence of C. meleagridis, C. baileyi, C. parvum, C. andersoni, C. muris, C. galli and C. ornithophilus, E. hellem genotype 1A and 2B, E. cuniculi genotype I and II and E. bieneusi genotype Peru 6, CHN-F1, D, Peru 8, Type IV, ZY37, E, CHN4, SCF2 and WR4. Captive pigeons were significantly more frequently parasitised with screened parasite than feral pigeons. Cryptosporidium meleagridis IIIa and a new subtype IIIl have been described, the oocysts of which are not infectious to immunodeficient mice, whereas chickens are susceptible. This investigation demonstrates that pigeons can be hosts to numerous species, genotypes and subtypes of the studied parasites. Consequently, they represent a potential source of infection for both livestock and humans.
Collapse
Affiliation(s)
- Nikola Holubová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic.
| | - Veronika Zikmundová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| | - Marta Kicia
- Department of Biology and Medical Parasitology, Wrocław Medical University, Wrocław, Poland
| | - Żaneta Zajączkowska
- Department of Biology and Medical Parasitology, Wrocław Medical University, Wrocław, Poland
| | - Matúš Rajský
- Research Institute for Animal Production Nitra, National Agricultural and Food Centre, Lužianky, Slovakia
| | - Roman Konečný
- Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| | - Michael Rost
- Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| | - Kristina Mravcová
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Bohumil Sak
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Martin Kváč
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| |
Collapse
|
7
|
Egan S, Barbosa AD, Feng Y, Xiao L, Ryan U. The risk of wild birds contaminating source water with zoonotic Cryptosporidium and Giardia is probably overestimated. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169032. [PMID: 38123098 DOI: 10.1016/j.scitotenv.2023.169032] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
Cryptosporidium and Giardia are important waterborne protozoan parasites that are resistant to disinfectants commonly used for drinking water. Wild birds, especially wild migratory birds, are often implicated in the contamination of source and wastewater with zoonotic diseases, due to their abundance near water and in urban areas and their ability to spread enteric pathogens over long distances. This review summarises the diversity of Cryptosporidium and Giardia in birds, with a focus on zoonotic species, particularly in wild and migratory birds, which is critical for understanding zoonotic risks. The analysis revealed that both avian-adapted and zoonotic Cryptosporidium species have been identified in birds but that avian-adapted Cryptosporidium species dominate in wild migratory birds. Few studies have examined Giardia species and assemblages in birds, but the non-zoonotic Giardia psittaci and Giardia ardeae are the most commonly reported species. The identification of zoonotic Cryptosporidium and Giardia in birds, particularly C. parvum and G. duodenalis assemblages A and B in wild migratory birds, is likely due to mechanical carriage or spillback from birds co-grazing pastures contaminated with C. parvum from livestock. Therefore, the role of wild migratory birds in the transmission of zoonotic Cryptosporidium and Giardia to source water is likely overestimated. To address knowledge gaps, it is important to conduct more extensive studies on the prevalence of Cryptosporidium and Giardia in a broader range of migratory wild birds. There is also a need to investigate the extent to which zoonotic infections with C. hominis/C. parvum and G. duodenalis assemblages A and B are mechanical and/or transient, and to assess the load and viability of zoonotic oo/cysts shed in avian faeces. Understanding the contribution of birds to zoonoses is essential for effective disease surveillance, prevention, and control.
Collapse
Affiliation(s)
- Siobhon Egan
- Harry Butler Institute, Vector- and Water-Borne Pathogen Research Group, Murdoch University, Murdoch, Western Australia 6150, Australia.
| | - Amanda D Barbosa
- Harry Butler Institute, Vector- and Water-Borne Pathogen Research Group, Murdoch University, Murdoch, Western Australia 6150, Australia; CAPES Foundation, Ministry of Education of Brazil, Brasilia, DF 70040-020, Brazil
| | - Yaoyu Feng
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Lihua Xiao
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Una Ryan
- Harry Butler Institute, Vector- and Water-Borne Pathogen Research Group, Murdoch University, Murdoch, Western Australia 6150, Australia
| |
Collapse
|
8
|
Feng X, Deng J, Zhang Z, Yu F, Zhang J, Shi T, Sun H, Qi M, Liu X. Dominant infection of Cryptosporidium baileyi in broiler chickens in Zhejiang Province, China. Parasitol Res 2023; 122:1993-2000. [PMID: 37347286 DOI: 10.1007/s00436-023-07898-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 06/09/2023] [Indexed: 06/23/2023]
Abstract
Cryptosporidium is a common enteric parasite in chickens. A total of 812 fecal specimens were collected from 11 broiler farms in Zhejiang Province, China, and analyzed by nested PCR amplification based on the small subunit ribosomal RNA (SSU rRNA) gene. The overall infection rate of Cryptosporidium was 6.3% (51/812), and five of 11 farms were Cryptosporidium positive. Broilers aged > 90 days accounted for the highest infection rate of 16.1% (6/56), followed by those aged 30-60 days (10.6%, 38/358) and 60-90 days (4/378, 1.1%). Two Cryptosporidium species were identified by sequence analysis, with the predominant species being C. baileyi (96.1%, 49/51) and the minor infection being C. meleagridis (3.9%, 2/51). Based on the 60-kDa glycoprotein (gp60) gene, two C. meleagridis-positive isolates were identified as one known subtype, IIIbA24G1R1. This study indicated the common occurrence of C. baileyi in broiler chickens in this region and low zoonotic transmission potential of Cryptosporidium to humans.
Collapse
Affiliation(s)
- Xinwei Feng
- College of Animal Science and Technology, Tarim University, Alar, 843300, Xinjiang, China
| | - Jinhua Deng
- College of Animal Science and Technology, Tarim University, Alar, 843300, Xinjiang, China
| | - Zhenjie Zhang
- College of Animal Science and Technology, Tarim University, Alar, 843300, Xinjiang, China
| | - Fuchang Yu
- College of Animal Science and Technology, Tarim University, Alar, 843300, Xinjiang, China
| | - Jianing Zhang
- College of Animal Science and Technology, Tarim University, Alar, 843300, Xinjiang, China
| | - Tuanyuan Shi
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Science, Hangzhou, 310000, Zhejiang Province, China
| | - Hongchao Sun
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Science, Hangzhou, 310000, Zhejiang Province, China
| | - Meng Qi
- College of Animal Science and Technology, Tarim University, Alar, 843300, Xinjiang, China.
| | - Xuehan Liu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan Province, China.
| |
Collapse
|
9
|
Cryptosporidiosis: From Prevention to Treatment, a Narrative Review. Microorganisms 2022; 10:microorganisms10122456. [PMID: 36557709 PMCID: PMC9782356 DOI: 10.3390/microorganisms10122456] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Cryptosporidiosis is a water- and food-borne zoonotic disease caused by the protozoon parasite of the genus Cryptosporidium. C. hominis and C. parvum are the main two species causing infections in humans and animals. The disease can be transmitted by the fecal-oral route as well as the respiratory route. The infective stage (sporulated oocysts) is resistant to different disinfectants including chlorine. Currently, no effective therapeutic drugs or vaccines are available to treat and control Cryptosporidium infection. To prevent cryptosporidiosis in humans and animals, we need to understand better how the disease is spread and transmitted, and how to interrupt its transmission cycle. This review focuses on understanding cryptosporidiosis, including its infective stage, pathogenesis, life cycle, genomics, epidemiology, previous outbreaks, source of the infection, transmission dynamics, host spectrum, risk factors and high-risk groups, the disease in animals and humans, diagnosis, treatment and control, and the prospect of an effective anti-Cryptosporidium vaccine. It also focuses on the role of the One Health approach in managing cryptosporidiosis at the animal-human-environmental interface. The summarized data in this review will help to tackle future Cryptosporidium infections in humans and animals and reduce the disease occurrence.
Collapse
|
10
|
Feng X, Tuo H, Li T, Yu F, Hu D, Yang X, Ge Y, Qi M, Liu X. Longitudinal surveillance of Cryptosporidium spp. in broiler chickens in Xinjiang, northwest China: genetic diversity of Cryptosporidium meleagridis subtypes. Parasitol Res 2022; 121:3589-3595. [PMID: 36205770 DOI: 10.1007/s00436-022-07683-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/27/2022] [Indexed: 10/10/2022]
Abstract
Cryptosporidium spp. are common enteric parasites in humans and animals. Herein, 175 faecal specimens were collected from a broiler farm in Xinjiang, China, including seven repeated samplings at 10-day intervals of broilers aged 10 to 70 days. Cryptosporidium was detected and identified by PCR-RFLP analysis. The overall infection rate of Cryptosporidium in broilers was 23.4% (41/175), with the highest infection rate of 48.0% (12/25) at 40 days of age, and no infection was detected at 10 days of age. Two Cryptosporidium species were confirmed, namely, C. baileyi (3.4%, 6/175) and C. meleagridis (20%, 35/175). In total, 21 of 35 C. meleagridis isolates were successfully subtyped based on the gp60 gene, and one known subtype, IIIgA22G3R1 (n = 1), and three novel subtypes, IIIbA25G1R1 (n = 10), IIIgA24G3R1 (n = 9) and IIIgA25G2R1 (n = 1), were identified. Our findings highlight the genetic diversity of C. meleagridis in Xinjiang and the potential endemic characteristics of the subtypes.
Collapse
Affiliation(s)
- Xinwei Feng
- College of Animal Science and Technology, Tarim University, Alar, 843300, Xinjiang, China
| | - Haixin Tuo
- College of Animal Science and Technology, Tarim University, Alar, 843300, Xinjiang, China
| | - TianTian Li
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, Henan Province, China
| | - Fuchang Yu
- College of Animal Science and Technology, Tarim University, Alar, 843300, Xinjiang, China
| | - Dongfang Hu
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, Henan Province, China
| | - Xuefeng Yang
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, Henan Province, China
| | - Yaming Ge
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, Henan Province, China
| | - Meng Qi
- College of Animal Science and Technology, Tarim University, Alar, 843300, Xinjiang, China.
| | - Xuehan Liu
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, Henan Province, China.
| |
Collapse
|
11
|
Lin X, Xin L, Qi M, Hou M, Liao S, Qi N, Li J, Lv M, Cai H, Hu J, Zhang J, Ji X, Sun M. Dominance of the zoonotic pathogen Cryptosporidium meleagridis in broiler chickens in Guangdong, China, reveals evidence of cross-transmission. Parasit Vectors 2022; 15:188. [PMID: 35668467 PMCID: PMC9169408 DOI: 10.1186/s13071-022-05267-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 03/30/2022] [Indexed: 11/16/2022] Open
Abstract
Background Cryptosporidium is one of the most prevalent parasites infecting both birds and mammals. To examine the prevalence of Cryptosporidium species and evaluate the public health significance of domestic chickens in Guangdong Province, southern China, we analyzed 1001 fecal samples from 43 intensive broiler chicken farms across six distinct geographical regions. Methods Individual DNA samples were subjected to nested PCR-based amplification and sequencing of the small subunit of the nuclear ribosomal RNA gene (SSU rRNA). Analysis of the 60 kDa glycoprotein gene (gp60) was performed to characterize the subtypes of C. meleagridis. Results The overall prevalence of Cryptosporidium was 13.2% (95% CI 11.1–15.3) (24 of 43 farms), with C. meleagridis (7.8%), C. baileyi (4.8%) and mixed infections (0.6%). Using the gp60 gene, three subtype families, IIIb, IIIe and IIIg, were identified, including six subtypes: one novel (IIIgA25G3R1a) and five previously reported (IIIbA23G1R1c, IIIbA24G1R1, IIIbA21G1R1a, IIIeA17G2R1 and IIIeA26G2R1). Within these subtypes, five known subtypes were genetically identical to those identified in humans. Conclusions This is the first report of C. meleagridis in chickens from Guangdong. The frequent occurrence of C. meleagridis in domestic chickens and the common C. meleagridis subtypes identified in both humans and chickens is of public health significance. Our study indicates that broiler chickens represent a potential zoonotic risk for the transmission of Cryptosporidium in this region. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05267-x.
Collapse
Affiliation(s)
- Xuhui Lin
- Zhaoqing/Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory for prevention and control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs; Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, People's Republic of China
| | - Luyao Xin
- Zhaoqing/Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory for prevention and control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs; Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, People's Republic of China.,College of Animal Science, Tarim University, Alar, Xinjiang, 843300, People's Republic of China
| | - Meng Qi
- College of Animal Science, Tarim University, Alar, Xinjiang, 843300, People's Republic of China
| | - Minyu Hou
- College of Animal Science, Tarim University, Alar, Xinjiang, 843300, People's Republic of China
| | - Shenquan Liao
- Zhaoqing/Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory for prevention and control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs; Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, People's Republic of China
| | - Nanshan Qi
- Zhaoqing/Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory for prevention and control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs; Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, People's Republic of China
| | - Juan Li
- Zhaoqing/Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory for prevention and control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs; Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, People's Republic of China
| | - Minna Lv
- Zhaoqing/Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory for prevention and control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs; Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, People's Republic of China
| | - Haiming Cai
- Zhaoqing/Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory for prevention and control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs; Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, People's Republic of China
| | - Junjing Hu
- Zhaoqing/Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory for prevention and control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs; Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, People's Republic of China
| | - Jianfei Zhang
- Zhaoqing/Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory for prevention and control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs; Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, People's Republic of China
| | - Xiangbo Ji
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, People's Republic of China. .,Key Laboratory of Innovation and Utilization of Unconventional Feed Resources, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, Henan, People's Republic of China.
| | - Mingfei Sun
- Zhaoqing/Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory for prevention and control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs; Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, People's Republic of China.
| |
Collapse
|
12
|
Nakashima FT, Fonseca ABM, Coelho LFDO, Barbosa ADS, Bastos OMP, Uchôa CMA. Cryptosporidium species in non-human animal species in Latin America: Systematic review and meta-analysis. Vet Parasitol Reg Stud Reports 2022; 29:100690. [PMID: 35256118 DOI: 10.1016/j.vprsr.2022.100690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Cryptosporidiosis is an infection caused by a protozoon that inhabits the gastrointestinal tract. More than forty valid species have been described in the genus Cryptosporidium, infecting a broad range of hosts around the world, some with zoonotic transmission and others with predominant anthroponotic transmission. Prevalence studies conducted in Latin American countries have been specific, without consolidating information on species prevalences. Thus, the aim of this study was to perform a systematic review and meta-analysis addressing the prevalence of Cryptosporidium species in animals in Latin America. The estimated pooled prevalence rate for cryptosporidiosis in animals, by means of meta-analysis with a random-effects model, based on species identification, was 18.0% (95% CI 11.0%-27.0%) with high heterogeneity. The estimated overall prevalence was 20.3% (36/177) in pets, 19.9% (1309/6573) in livestock animals and 23.9% (954/3995) in exotic/captive animals. Evidence of circulation of 16 Cryptosporidium species was found in five Latin American countries: Brazil, Colombia, Chile, Argentina and Mexico. Through meta-analysis with a random-effects model, the pooled prevalence rate for Cryptosporidium parvum was 0.7% (95% CI 0.2%-2.4%). Cryptosporidium felis (8.5%) was the most prevalent species in pets, C. parvum (10.3%) in livestock animals and Cryptosporidium galli (17.6%) in exotic/captive animals. C. parvum was the species with the greatest geographical dispersion, which can be explained by its eurixenic and zoonotic potential. Few studies on cryptosporidiosis in animals in Latin America were found, which shows that there is a need for investment in and expansion of studies on this parasite. The pooled prevalence of C. parvum in Latin America and its wide circulation are similar to what has been observed in other developing regions, which reaffirms the importance of this species as the cause of a neglected, emerging and zoonotic parasitosis.
Collapse
Affiliation(s)
- Flávia Terumi Nakashima
- Department of Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Rua Professor Hernani Pires de Melo 101, Centro, Niterói, RJ 24210-130, Brazil.
| | - Ana Beatriz Monteiro Fonseca
- Department of Statistics, Institute of Mathematics and Statistics, Fluminense Federal University, Rua Professor Marcos Waldemar de Freitas Reis s/n, Blocos G e H, Campus do Gragoatá, São Domingos, Niterói, RJ 24210-201, Brazil
| | - Luiz Fernando de Oliveira Coelho
- Department of Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Rua Professor Hernani Pires de Melo 101, Centro, Niterói, RJ 24210-130, Brazil
| | - Alynne da Silva Barbosa
- Department of Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Rua Professor Hernani Pires de Melo 101, Centro, Niterói, RJ 24210-130, Brazil
| | - Otilio Machado Pereira Bastos
- Department of Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Rua Professor Hernani Pires de Melo 101, Centro, Niterói, RJ 24210-130, Brazil
| | - Claudia Maria Antunes Uchôa
- Department of Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Rua Professor Hernani Pires de Melo 101, Centro, Niterói, RJ 24210-130, Brazil.
| |
Collapse
|
13
|
Liao C, Wang T, Koehler AV, Hu M, Gasser RB. Cryptosporidium of birds in pet markets in Wuhan city, Hubei, China. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2022; 1:100025. [PMID: 35284902 PMCID: PMC8906122 DOI: 10.1016/j.crpvbd.2021.100025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 12/27/2022]
Abstract
Cryptosporidium is a group of protistan parasites of a range of vertebrates including mammals and birds. Stimulated by previous work that revealed “zoonotic” Cryptosporidium meleagridis subtypes (i.e. IIIbA26G1R1b and IIIbA22G1R1c) in diarrhoeic children and domestic chickens in Wuhan city and environs in Hubei Province, China, here we explored whether zoonotic C. meleagridis subtypes might also occur in pet birds in Wuhan city. From 11 bird markets in this city, we collected 322 faecal samples from 48 species of birds (representing six taxonomic orders), isolated genomic DNA and then conducted PCR-based sequencing of genetic markers in the small subunit (SSU) of the nuclear ribosomal RNA and the 60 kDa glycoprotein (gp60) genes of Cryptosporidium. Using SSU, Cryptosporidium was detected in 55 (17%) of the 322 samples. Cryptosporidium avium, C. baileyi, C. meleagridis, C. muris and C. proventriculi were characterised in 18%, 47%, 11%, 2% and 20% of the 55 samples, respectively, and a novel Cryptosporidium galli-like taxon in one sample. Using gp60, only one subtype (IIIeA17G2R1) of C. meleagridis was identified, which had not been detected in a previous study of diarrhoeic children in Wuhan. However, IIIe subtypes have been found in both humans and birds around the world. The relatively high prevalence and genetic diversity of Cryptosporidium recorded here in pet birds raise awareness about possible reservoirs of zoonotic variants of Cryptosporidium in birds in Wuhan, and potentially, other provinces in China. A total of 322 faecal samples from 48 species of pet birds were tested for Cryptosporidium. Relatively high prevalence and genetic diversity of Cryptosporidium were found. A novel Cryptosporidium galli-like genotype was recorded. A Cryptosporidium meleagridis subtype with zoonotic potential was detected.
Collapse
Affiliation(s)
- Cong Liao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Anson V Koehler
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
14
|
Feng X, Xin L, Yu F, Song X, Zhang J, Deng J, Qi M, Zhao W. Genetic characterization of Cryptosporidium spp. in Hotan Black Chickens in China reveals two novel subtypes of Cryptosporidium meleagridis. Parasite 2022; 29:50. [PMCID: PMC9645226 DOI: 10.1051/parasite/2022051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/06/2022] [Indexed: 11/11/2022] Open
Abstract
A total of 617 fecal specimens were collected on 18 Hotan Black chicken farms in Southern Xinjiang, China, and tested for the presence of Cryptosporidium spp. by PCR of the small subunit ribosomal RNA (SSU rRNA) gene. The overall infection rate by Cryptosporidium spp. was 11.5% (71/617), and ten of the 18 farms were positive. The infection rate by Cryptosporidium spp. was 14.5% (48/331) in the 30–60 d group, higher than chickens in the <30 d (12.0%, 15/125), 60–90 d (6.9%, 5/72), and >90 d (3.4%, 3/89) groups. Cryptosporidium meleagridis (n = 38) and C. baileyi (n = 33) were confirmed by sequencing analysis. A total of 25 of the 38 C. meleagridis-positive specimens were subtyped successfully at the gp60 gene, including one known subtype (IIIbA23G1R1, n = 1) and two novel subtypes, named IIIbA25G1R1 (n = 20) and IIIbA31G1R1 (n = 4). The results showed that infection by Cryptosporidium spp. in Hotan Black Chickens was common in this area and the distribution of C. meleagridis subtypes had regional characteristics.
Collapse
Affiliation(s)
- Xinwei Feng
- College of Animal Science and Technology, Tarim University Alar Xinjiang 843300 China
| | - Luyao Xin
- College of Animal Science and Technology, Tarim University Alar Xinjiang 843300 China
| | - Fuchang Yu
- College of Animal Science and Technology, Tarim University Alar Xinjiang 843300 China
| | - Xianming Song
- Xinjiang Agricultural Vocational Technical College Changji Xinjiang 831199 China
| | - Jianing Zhang
- College of Animal Science and Technology, Tarim University Alar Xinjiang 843300 China
| | - Jinhua Deng
- College of Animal Science and Technology, Tarim University Alar Xinjiang 843300 China
| | - Meng Qi
- College of Animal Science and Technology, Tarim University Alar Xinjiang 843300 China
- Corresponding authors: ;
| | - Wei Zhao
- Department of Parasitology, Wenzhou Medical University Wenzhou Zhejiang 325035 China
- Corresponding authors: ;
| |
Collapse
|
15
|
Lebbad M, Winiecka-Krusnell J, Stensvold CR, Beser J. High Diversity of Cryptosporidium Species and Subtypes Identified in Cryptosporidiosis Acquired in Sweden and Abroad. Pathogens 2021; 10:pathogens10050523. [PMID: 33926039 PMCID: PMC8147002 DOI: 10.3390/pathogens10050523] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 11/16/2022] Open
Abstract
The intestinal protozoan parasite Cryptosporidium is an important cause of diarrheal disease worldwide. The aim of this study was to expand the knowledge on the molecular epidemiology of human cryptosporidiosis in Sweden to better understand transmission patterns and potential zoonotic sources. Cryptosporidium-positive fecal samples were collected between January 2013 and December 2014 from 12 regional clinical microbiology laboratories in Sweden. Species and subtype determination was achieved using small subunit ribosomal RNA and 60 kDa glycoprotein gene analysis. Samples were available for 398 patients, of whom 250 (63%) and 138 (35%) had acquired the infection in Sweden and abroad, respectively. Species identification was successful for 95% (379/398) of the samples, revealing 12 species/genotypes: Cryptosporidium parvum (n = 299), C. hominis (n = 49), C. meleagridis (n = 8), C. cuniculus (n = 5), Cryptosporidium chipmunk genotype I (n = 5), C. felis (n = 4), C. erinacei (n = 2), C. ubiquitum (n = 2), and one each of C. suis, C. viatorum, C. ditrichi, and Cryptosporidium horse genotype. One patient was co-infected with C. parvum and C. hominis. Subtyping was successful for all species/genotypes, except for C. ditrichi, and revealed large diversity, with 29 subtype families (including 4 novel ones: C. parvum IIr, IIs, IIt, and Cryptosporidium horse genotype Vic) and 81 different subtypes. The most common subtype families were IIa (n = 164) and IId (n = 118) for C. parvum and Ib (n = 26) and Ia (n = 12) for C. hominis. Infections caused by the zoonotic C. parvum subtype families IIa and IId dominated both in patients infected in Sweden and abroad, while most C. hominis cases were travel-related. Infections caused by non-hominis and non-parvum species were quite common (8%) and equally represented in cases infected in Sweden and abroad.
Collapse
Affiliation(s)
- Marianne Lebbad
- Department of Microbiology, Public Health Agency of Sweden, 171 82 Solna, Sweden; (M.L.); (J.W.-K.)
| | | | - Christen Rune Stensvold
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, DK-2300 Copenhagen S, Denmark;
| | - Jessica Beser
- Department of Microbiology, Public Health Agency of Sweden, 171 82 Solna, Sweden; (M.L.); (J.W.-K.)
- Correspondence:
| |
Collapse
|
16
|
Braima K, Zahedi A, Egan S, Austen J, Xiao L, Feng Y, Witham B, Pingault N, Perera S, Oskam C, Reid S, Ryan U. Molecular analysis of cryptosporidiosis cases in Western Australia in 2019 and 2020 supports the occurrence of two swimming pool associated outbreaks and reveals the emergence of a rare C. hominis IbA12G3 subtype. INFECTION GENETICS AND EVOLUTION 2021; 92:104859. [PMID: 33848684 DOI: 10.1016/j.meegid.2021.104859] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/03/2021] [Accepted: 04/08/2021] [Indexed: 12/24/2022]
Abstract
Cryptosporidium is an important protozoan parasite and due to its resistance to chlorine is a major cause of swimming pool-associated gastroenteritis outbreaks. The present study combined contact tracing and molecular techniques to analyse cryptosporidiosis cases and outbreaks in Western Australia in 2019 and 2020. In the 2019 outbreak, subtyping at the 60 kDa glycoprotein (gp60) gene identified 89.0% (16/18) of samples were caused by the C. hominis IdA15G1 subtype. Amplicon next generation sequencing (NGS) at the gp60 locus identified five C. hominis IdA15G1 subtype samples that also had C. hominis IdA14 subtype DNA, while multi locus sequence typing (MLST) analysis on a subset (n = 14) of C. hominis samples identified three IdA15G1 samples with a 6 bp insertion at the end of the trinucleotide repeat region of the cp47 gene. In 2020, 88.0% (73/83) of samples typed were caused by the relatively rare C. hominis subtype IbA12G3. Four mixed infections were observed by NGS with three IdA15G1/ IdA14 mixtures and one C. parvum IIaA18G3R1 sample mixed with IIaA16G3R1. No genetic diversity using MLST was detected. Epidemiological and molecular data indicates that the outbreaks in 2019 and 2020 were each potentially from swimming pool point sources and a new C. hominis subtype IbA12G3 is emerging in Australia. The findings of the present study are important for understanding the introduction and transmission of rare Cryptosporidium subtypes to vulnerable populations.
Collapse
Affiliation(s)
- Kamil Braima
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia 6150, Australia.
| | - Alireza Zahedi
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia 6150, Australia
| | - Siobhon Egan
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia 6150, Australia
| | - Jill Austen
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia 6150, Australia
| | - Lihua Xiao
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yaoyu Feng
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Benjamin Witham
- OzFoodNet Communicable Disease Control Directorate, Perth, Western Australia, Australia
| | - Nevada Pingault
- OzFoodNet Communicable Disease Control Directorate, Perth, Western Australia, Australia
| | - Shalinie Perera
- Western Diagnostic Pathology, Perth, Western Australia 6154, Australia
| | - Charlotte Oskam
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia 6150, Australia
| | - Simon Reid
- School of Public Health, Faculty of Medicine, The University of Queensland, Herston, Queensland 4006, Australia
| | - Una Ryan
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia 6150, Australia
| |
Collapse
|
17
|
Jian Y, Zhang X, Li X, Schou C, Charalambidou I, Ma L, Karanis P. Occurrence of Cryptosporidium and Giardia in wild birds from Qinghai Lake on the Qinghai-Tibetan Plateau, China. Parasitol Res 2021; 120:615-628. [PMID: 33415392 DOI: 10.1007/s00436-020-06993-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/29/2020] [Indexed: 10/22/2022]
Abstract
Cryptosporidium and Giardia are important intestinal zoonotic pathogens that can infect various hosts and cause diarrhoeal diseases. There are few reports of the epidemiological prevalence and molecular characterization of Cryptosporidium and Giardia in wild birds around Qinghai Lake and in the surrounding areas on the Qinghai-Tibetan Plateau, Northwest China. Therefore, the aim of this study was to determine the Cryptosporidium spp. and Giardia duodenalis genotypes and their epidemiological prevalence in wild birds by PCR amplification. To our knowledge, this is the first report of a variety of Cryptosporidium spp. and G. duodenalis infections in wild birds from that area, with overall prevalence rates of 8.98% (61/679) and 3.39% (23/679), respectively. Furthermore, PCR sequencing confirmed the presence of Cryptosporidium baileyi (n = 3), Cryptosporidium parvum (n = 58), and G. duodenalis assemblage B (n = 19) and E (n = 4) in wild birds from the areas around Qinghai Lake. The results of the present study demonstrated the wide distribution of Cryptosporidium and Giardia among wild birds, which has potential public health significance. Moreover, the study findings also provided useful molecular epidemiological data for monitoring and investigating the two parasitic protozoa in wild animals and surrounding environments.
Collapse
Affiliation(s)
- Yingna Jian
- Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University, State Key Laboratory of Plateau Ecology and Agriculture Qinghai University, Center for Biomedicine and Infectious Diseases, Xining, 810016, People's Republic of China
| | - Xueyong Zhang
- Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University, State Key Laboratory of Plateau Ecology and Agriculture Qinghai University, Center for Biomedicine and Infectious Diseases, Xining, 810016, People's Republic of China
| | - Xiuping Li
- Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University, State Key Laboratory of Plateau Ecology and Agriculture Qinghai University, Center for Biomedicine and Infectious Diseases, Xining, 810016, People's Republic of China
| | - Chad Schou
- Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Iris Charalambidou
- Department of Life and Health Sciences, School of Sciences and Engineering, University of Nicosia, 2417, Nicosia, Cyprus
| | - Liqing Ma
- Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University, State Key Laboratory of Plateau Ecology and Agriculture Qinghai University, Center for Biomedicine and Infectious Diseases, Xining, 810016, People's Republic of China
| | - Panagiotis Karanis
- Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University, State Key Laboratory of Plateau Ecology and Agriculture Qinghai University, Center for Biomedicine and Infectious Diseases, Xining, 810016, People's Republic of China. .,Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany. .,Department of Basic and Clinical Sciences, Anatomy Centre, University of Nicosia Medical School, Nicosia, Cyprus.
| |
Collapse
|
18
|
Hamza AZH, Hameed KM. Prevalence of Cryptosporidiosis in Ostriches from Central and South Parts of Iraq. THE IRAQI JOURNAL OF VETERINARY MEDICINE 2020. [DOI: 10.30539/ijvm.v44i1.937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The prevalence of ostrich’s cryptosporidiosis was determined for the first time in central and south parts of Iraq to study the effects of age, sex, and months on the infection rate and to record the morphological characterization of Cryptosporidium spp in ostriches. A total of 200 ostriches fecal samples were examined by traditional methods for the detection of the parasite. The total infection rate was 11% (22/200), and the highest infection rate was 12.26% (13/106) in chicks ( 9 months), while the lowest infection rate was 9.57% (9/94) recorded in the adult (> 9 months). The study included seven provinces in the central and south parts of Iraq, Wasit, Baghdad, Babylon, Diyala, Karbala, Al-Najaf, and Al-Qadisiyah. The highest infection rate was reported in Al-Najaf (23.53%) compared with the lowest rate (0%) in Wasit province. March reported an infection rate of 50%, while the lowest rate (0%) was registered during summer months (June, July, and August) with a significant difference (P≤0.05) among months of the study. Morphologically, the study indicated the widespread of Cryptosporidium parasites in ostriches in both central and south areas of Iraq.
Collapse
|
19
|
Galvan-Diaz AL, Bedoya-Urrego K, Medina-Lozano A, Uran-Velasquez J, Alzate JF, Garcia-Montoya G. Common occurrence of Cryptosporidium hominis in children attending day-care centers in Medellin, Colombia. Parasitol Res 2020; 119:2935-2942. [PMID: 32594239 DOI: 10.1007/s00436-020-06782-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/18/2020] [Indexed: 11/28/2022]
Abstract
Cryptosporidium spp. are apicomplexan protozoa associated with chronic diarrhea in AIDS and other immunocompromised patients, and one of the commonest causes of childhood diarrhea and malnutrition, particularly in low-income settings. In Colombia, there are few molecular epidemiological studies on Cryptosporidium spp.; thereby, the transmission dynamics of this parasite in the country is poorly known. This study evaluated the diversity of Cryptosporidium at species, subtype family, and subtype level in children attending various day-care centers in Medellin, Colombia. Two hundred and ninety stool samples from children < 5 years of age were collected from April to November of 2015. All samples were processed by PCR and sequence analysis of the ssu RNA gene and the gp60 gene. An infection rate of 2.4% was observed, with only two Cryptosporidium species identified: C. hominis (6/7) and C. meleagridis (1/7). Cryptosporidium hominis isolates belonged to the subtypes IbA10G2, IaA13R6 and IaA13R7; IIIbA26G1R1 C. meleagridis subtype was also detected. There is a C. hominis predominance in the children evaluated, suggesting an important role of the anthroponotic transmission cycle in the day-care centers analyzed. Further investigation is required to determine infection sources and susceptible hosts in order to define appropriate management of cryptosporidiosis.
Collapse
Affiliation(s)
- Ana Luz Galvan-Diaz
- Grupo de Microbiología ambiental, Escuela de microbiología, Universidad de Antioquia, Ciudad universitaria, Bloque 5-410. Cl. 67 #53-108, Medellín, Antioquia, Colombia.
| | - Katherine Bedoya-Urrego
- Centro Nacional de Secuenciación Genómica-CNSG, Sede de Investigación Universitaria-SIU, Universidad de Antioquia, Cra 53#61-30 Torre 1 Lab S2-15, Medellín, Antioquia, Colombia
| | - Angelica Medina-Lozano
- Grupo de Parasitología, Facultad de Medicina, Corporación Académica para el Estudio de las Patologías Tropicales, Universidad de Antioquia, Cra. 51d #62-29, Medellín, Antioquia, Colombia
| | - Johanna Uran-Velasquez
- Centro Nacional de Secuenciación Genómica-CNSG, Sede de Investigación Universitaria-SIU, Universidad de Antioquia, Cra 53#61-30 Torre 1 Lab S2-15, Medellín, Antioquia, Colombia
| | - Juan F Alzate
- Centro Nacional de Secuenciación Genómica-CNSG, Sede de Investigación Universitaria-SIU, Universidad de Antioquia, Cra 53#61-30 Torre 1 Lab S2-15, Medellín, Antioquia, Colombia
| | - Gisela Garcia-Montoya
- Centro Nacional de Secuenciación Genómica-CNSG, Sede de Investigación Universitaria-SIU, Universidad de Antioquia, Cra 53#61-30 Torre 1 Lab S2-15, Medellín, Antioquia, Colombia
| |
Collapse
|
20
|
Shahbazi P, Aligolzadeh A, Khordadmehr M, Hashemzadeh Farhang H, Katiraee F. Molecular study and genotyping of Cryptosporidium baileyi and Cryptosporidium parvum from free-range and commercial broiler chickens in Guilan province, Iran. Comp Immunol Microbiol Infect Dis 2020; 69:101411. [PMID: 31951878 DOI: 10.1016/j.cimid.2019.101411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 11/18/2022]
Abstract
Cryptosporidiosis acutely impacts the digestive and/or respiratory tract of the birds in many species of various orders. More importantly, it is also well known as a significant zoonotic disease, which can lead to diarrhea in humans and livestock. Regarding increasing demand for free-range products and increasing the number of free-range poultry farms, the present paper evaluated histopathological and molecular detection of Cryptosporidium baileyi and Cryptosporidium parvum in free-range and commercial broiler chickens in the north part of Iran. For this purpose, 100 fecal and tissue samples of the chickens in Guilan province were collected. After microscopic examination using Ziehl-Neelsen staining, molecular analyses of the fecal samples were processed by Nested-PCR targeting the 18S rRNA gene followed by sequencing of the amplicons and phylogenetic analyses. Eventually, the tissue samples were studied for histological lesions. Findings demonstrated the presence of Cryptosporidium baileyi and Cryptosporidium parvum in 6 % and 2 % of fecal samples, respectively. This is the first identification of C.parvum in avian hosts in Iran, and for the first time, C.baileyi and C.parvum are shown in native free-range chickens in Iran. All of the PCR positive birds with clinical symptoms showed gross lesions of respiratory infections. There was no significant difference between infection rate in free-range and commercial broiler chickens; however, the infection rate was significantly higher in chickens <25 days old. To conclude, we present here a notable Cryptosporidium infection rate in the free-range chicks in Iran, which notify the role of this host as a reservoir and should be more noted due to the economic and zoonotic importance.
Collapse
Affiliation(s)
- Parisa Shahbazi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Armin Aligolzadeh
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Monireh Khordadmehr
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Hosein Hashemzadeh Farhang
- Department of Pathobiology, Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Farzad Katiraee
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
21
|
Prevalence and molecular characterization of Cryptosporidium species in poultry in Bangladesh. One Health 2020; 9:100122. [PMID: 32368610 PMCID: PMC7184206 DOI: 10.1016/j.onehlt.2020.100122] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/03/2020] [Accepted: 01/03/2020] [Indexed: 11/23/2022] Open
Abstract
Cryptosporidium is an opportunistic parasite that has been reported in >30 avian hosts worldwide, however, there is no information regarding Cryptosporidium spp. in poultry in Bangladesh. Accordingly, we investigated the prevalence of Cryptosporidium spp. in poultry at open live bird markets in Bangladesh. A total of 197 samples were randomly collected from poultry at open live bird markets in Bangladesh and screened for the detection of Cryptosporidium. Initial microscopic examination revealed Cryptosporidium spp. was observed in 19.8% (39/197) of the poultry specimens. Subsequent nested PCR targeting the 18S rRNA gene revealed that 15.7% (31/197) of the samples were Cryptosporidium positive. Of these 31 samples, 17 were Cryptosporidium baileyi (8.7%), 12 were Cryptosporidium meleagridis (6.0%), and 2 were Cryptosporidium parvum (1.0%). Nucleotide sequence analysis of the GP60 gene of the C. meleagridis revealed that two subtypes (IIIbA21G1R1 and IIIbA23G1R1), which were found in broiler, native and sonali chickens and a pigeon, matched those previously reported in humans and poultry. We identified two novel subtypes (IIIbA21G2R1 and IIIbA20G2R1) in sonali chickens, a broiler chicken and a layer chicken. We also amplified the GP60 gene of C. parvum and found two subtypes (IIaA11G2R1 and IIaA13G2R1) in a sonali and a broiler chicken that were previously reported in calf. These findings suggest that poultry can be a source of cryptosporidial infections for humans and animals in Bangladesh. This is the first molecular investigation of Cryptosporidium genotypes and subtypes in poultry at open live bird markets in Bangladesh. Cryptosporidium genotypes and subtypes in poultry in Bangladesh have been investigated firstly. Cryptosporidium baileyi, C. meleagridis and C. parvum are identified while C. baileyi is predominant species in poultry. Two novel subtypes (IIIbA21G2R1 and IIIbA20G2R1) of the C. meleagridis in chickens are detected. Cryptosporidium parasites are common among the live bird markets in Bangladesh.
Collapse
|
22
|
Liao C, Wang T, Koehler AV, Fan Y, Hu M, Gasser RB. Molecular investigation of Cryptosporidium in farmed chickens in Hubei Province, China, identifies 'zoonotic' subtypes of C. meleagridis. Parasit Vectors 2018; 11:484. [PMID: 30157928 PMCID: PMC6114272 DOI: 10.1186/s13071-018-3056-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/10/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Cryptosporidium is a key genus of parasitic protists that infect humans and other vertebrates (mammals and birds). Birds are typically infected with C. avium, C. baileyi, C. galli and/or C. meleagridis, the latter of which is recognised as being zoonotic. Stimulated by the previous finding of C. meleagridis subtypes IIIbA21G1R1, IIIbA22G1R1 and IIIbA26G1R1 in diarrhoeic children in Wuhan city and environs in Hubei Province, China, we performed a molecular epidemiological survey to explore whether these or similar subtypes might occur in farmed chickens in this province. METHODS PCR-coupled sequencing analyses of regions in the small subunit (SSU) of the nuclear ribosomal RNA and 60 kDa glycoprotein (gp60) genes were utilised to characterise Cryptosporidium in faecal samples from chickens (n = 471) from 14 farms from six distinct regions in Hubei Province. RESULTS Cryptosporidium baileyi (33/471; 7.0%) and C. meleagridis (15/471; 3.2%) were identified in chickens on eight farms in five of the six distinct geographical regions. No significant age-associated difference in the prevalence of C. baileyi was evident, whereas the prevalence of C. meleagridis was significantly higher in younger (≤ 4 months) than in older chickens (> 4 months). For C. meleagridis, two subtype families, IIIb and IIIe, were defined; some of the subtypes (i.e. IIIbA26G1R1b and IIIbA22G1R1c) characterised here matched those identified previously in diarrhoeic children in Wuhan. CONCLUSIONS This is the first molecular study reporting the genetic identity and prevalence of C. baileyi and C. meleagridis in chickens in Hubei. The findings suggest that C. meleagridis subtypes IIIbA26G1R1b and IIIbA22G1R1c are cross-transmissible between chickens and humans, raising awareness about the significance of birds as potential reservoirs of zoonotic variants of Cryptosporidium. Future studies might focus on investigating the prevalence of 'zoonotic' subtypes of Cryptosporidium meleagridis in various species of wild and domesticated birds, and on comparing them with those found in humans in China and other countries.
Collapse
Affiliation(s)
- Cong Liao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia.
| | - Anson V Koehler
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Yingying Fan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Robin B Gasser
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China. .,Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|