1
|
Chou AA, Lin CH, Chang YC, Chang HW, Lin YC, Pi CC, Kan YM, Chuang HF, Chen HW. Antiviral activity of Vigna radiata extract against feline coronavirus in vitro. Vet Q 2024; 44:1-13. [PMID: 38712855 PMCID: PMC11078076 DOI: 10.1080/01652176.2024.2349665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/25/2024] [Indexed: 05/08/2024] Open
Abstract
Feline infectious peritonitis (FIP) is a fatal illness caused by a mutated feline coronavirus (FCoV). This disease is characterized by its complexity, resulting from systemic infection, antibody-dependent enhancement (ADE), and challenges in accessing effective therapeutics. Extract derived from Vigna radiata (L.) R. Wilczek (VRE) exhibits various pharmacological effects, including antiviral activity. This study aimed to investigate the antiviral potential of VRE against FCoV, addressing the urgent need to advance the treatment of FIP. We explored the anti-FCoV activity, antiviral mechanism, and combinational application of VRE by means of in vitro antiviral assays. Our findings reveal that VRE effectively inhibited the cytopathic effect induced by FCoV, reduced viral proliferation, and downregulated spike protein expression. Moreover, VRE blocked FCoV in the early and late infection stages and was effective under in vitro ADE infection. Notably, when combined with VRE, the polymerase inhibitor GS-441524 or protease inhibitor GC376 suppressed FCoV more effectively than monotherapy. In conclusion, this study characterizes the antiviral property of VRE against FCoV in vitro, and VRE possesses therapeutic potential for FCoV treatment.
Collapse
Affiliation(s)
- Ai-Ai Chou
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Chung-Hui Lin
- National Taiwan University Veterinary Hospital, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Veterinary Clinical Sciences, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
- TACS-alliance Research Center, Taipei, Taiwan
| | - Yen-Chen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Hui-Wen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Chen Lin
- King’s Ground Biotech Co., Ltd., Pingtung, Taiwan
| | - Chia-Chen Pi
- King’s Ground Biotech Co., Ltd., Pingtung, Taiwan
| | - Yao-Ming Kan
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Hao-Fen Chuang
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Hui-Wen Chen
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
- Animal Resource Center, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
2
|
Sase O, Iwami T, Sasaki T, Sano T. GS-441524 and molnupiravir are similarly effective for the treatment of cats with feline infectious peritonitis. Front Vet Sci 2024; 11:1422408. [PMID: 39091389 PMCID: PMC11291256 DOI: 10.3389/fvets.2024.1422408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024] Open
Abstract
Although not registered for feline infectious peritonitis (FIP) in Japan, nucleoside analogs have shown efficacy and we have been offering them to owners of cats with FIP at our clinic since January 2020. The aim of this study was to investigate outcomes in cats with FIP who received GS-441524 or molnupiravir. Diagnosis of FIP was based on clinical signs, laboratory test results, and the presence of feline coronavirus RNA in blood or effusion aspirate. After providing verbal and written information, owners of cats with a presumptive diagnosis of FIP with a were offered antiviral treatment with commercially sourced GS-441524 from June 2020, and either GS-441524 or compounded molnupiravir from January 2022. Dosing was 12.5-25 mg/kg/day for GS-441524 and 20-40 mg/kg/day for molnupiravir, depending on the presence of effusion and neurological and/or ocular signs, and continued for 84 days. Overall, 118 cats with FIP (effusive in 76) received treatment, 59 with GS-4421524 and 59 with molnupiravir. Twenty cats died, 12/59 (20.3%) in the GS-441524 group and 8/59 (13.6%) in the molnupiravir group (p = 0.326), with most deaths within the first 10 days of starting treatment. Among survivors, neurological and ocular signs resolved in all but one cat, who had persistent seizures. Of the cats completing treatment, 48/48 in the GS-441524 group and 51/52 in the molnupiravir group achieved remission. Laboratory parameters normalized within 6 to 7 weeks of starting drug administration. Adverse events, such as primarily hepatic function abnormalities, were transient and resolved without specific intervention. Our data indicate that GS-441524 and molnupiravir show similar effects and safety in cats with FIP.
Collapse
Affiliation(s)
| | | | | | - Tadashi Sano
- Obihiro University of Agriculture and Veterinary Medicine, Department of Clinical Veterinary Science, Hokkaido, Japan
| |
Collapse
|
3
|
Katayama M, Uemura Y, Katori D. Effect of Nucleic Acid Analog Administration on Fluctuations in the Albumin-to-Globulin Ratio in Cats with Feline Infectious Peritonitis. Animals (Basel) 2024; 14:1322. [PMID: 38731326 PMCID: PMC11083710 DOI: 10.3390/ani14091322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND feline infectious peritonitis (FIP) is a fatal disease in cats classified as either effusive ('wet'), non-effusive ('dry'), or a mixture of both forms ('mixed'). The anti-FIP therapeutic effects of Mutian and molnupiravir, two drugs with a nucleic acid analog as an active ingredient, have been confirmed recently. METHODS Of the cats with FIP, we observed a total of 122 and 56 cases that achieved remission after the administration of Mutian and molnupiravir as routine treatments, respectively. Changes in clinical indicators suggested to be correlated with FIP remission (weight, hematocrit, and albumin-to-globulin ratio) before and after the administration of each drug and during follow-up observation were statistically compared for each FIP type. RESULTS In all three FIP types, the administration of either Mutian or molnupiravir resulted in statistically significant increases in these indicators. Furthermore, the effect of Mutian on improving the albumin-to-globulin ratio was not observed at all in wet FIP, as compared with that of molnupiravir, but statistically significant in mixed and dry (p < 0.02 and p < 0.003, respectively). The differences in albumin-to-globulin ratio were all due to those of circulating globulin levels. CONCLUSIONS These results indicate that slight inflammatory responses might be elicited continuously by a residual virus that persisted through molnupiravir treatments.
Collapse
Affiliation(s)
- Masato Katayama
- Bloom Animal Hospital, Kajiyama 1-10-32, Tsurumi, Yokohama City 230-0072, Japan;
| | - Yukina Uemura
- Bloom Animal Hospital, Kajiyama 1-10-32, Tsurumi, Yokohama City 230-0072, Japan;
| | - Daichi Katori
- Katori Animal Hospital, Migawa-cho 2563-16, Mito City 310-0913, Japan;
| |
Collapse
|
4
|
Krentz D, Bergmann M, Felten S, Hartmann K. [Options for treatment of feline infectious peritonitis - previously and today]. TIERARZTLICHE PRAXIS. AUSGABE K, KLEINTIERE/HEIMTIERE 2023; 51:351-360.. [PMID: 37956666 DOI: 10.1055/a-2147-3999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Feline infectious peritonitis (FIP) is one of the most common infectious diseases in cats that is fatal when untreated. So far, there is no legally available effective treatment in Germany. Treatment options include only symptomatic treatment (e. g. glucocorticoids, propentofylline), immunomodulatory approaches (e. g. interferons, polyprenyl immunostimulant), and antiviral chemotherapy with protease inhibitors (e. g. GC376) or nucleoside analogues (e. g. GS-441524, remdesivir). Symptomatic treatment does not cure FIP but may lead to a short-term improvement of clinical signs in a subset of cats. Immunomodulatory treatment has also not shown to be very promising. In contrary, the antiviral compounds GS-441524 and GC376 exhibited significant efficacy in several studies and their use saved the lives of many cats suffering from FIP. However, both agents are currently not licensed and thus cannot be legally administered by veterinarians in Germany. Legally, cats may only be legally treated with GS-441524 in a few countries (e.g. Great Britain and Australia). In other countries, GS-441524 is imported by cat owners via the black market and administered on their own. This article provides an overview of the available treatment options and an outlook on the legal use of effective antiviral drugs.
Collapse
Affiliation(s)
- Daniela Krentz
- Medizinische Kleintierklinik der Ludwig-Maximilians-Universität München
| | - Michèle Bergmann
- Medizinische Kleintierklinik der Ludwig-Maximilians-Universität München
| | - Sandra Felten
- Medizinische Kleintierklinik der Ludwig-Maximilians-Universität München
| | - Katrin Hartmann
- Medizinische Kleintierklinik der Ludwig-Maximilians-Universität München
| |
Collapse
|
5
|
Tasker S, Addie DD, Egberink H, Hofmann-Lehmann R, Hosie MJ, Truyen U, Belák S, Boucraut-Baralon C, Frymus T, Lloret A, Marsilio F, Pennisi MG, Thiry E, Möstl K, Hartmann K. Feline Infectious Peritonitis: European Advisory Board on Cat Diseases Guidelines. Viruses 2023; 15:1847. [PMID: 37766254 PMCID: PMC10535984 DOI: 10.3390/v15091847] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Feline coronavirus (FCoV) is a ubiquitous RNA virus of cats, which is transmitted faeco-orally. In these guidelines, the European Advisory Board on Cat Diseases (ABCD) presents a comprehensive review of feline infectious peritonitis (FIP). FCoV is primarily an enteric virus and most infections do not cause clinical signs, or result in only enteritis, but a small proportion of FCoV-infected cats develop FIP. The pathology in FIP comprises a perivascular phlebitis that can affect any organ. Cats under two years old are most frequently affected by FIP. Most cats present with fever, anorexia, and weight loss; many have effusions, and some have ocular and/or neurological signs. Making a diagnosis is complex and ABCD FIP Diagnostic Approach Tools are available to aid veterinarians. Sampling an effusion, when present, for cytology, biochemistry, and FCoV RNA or FCoV antigen detection is very useful diagnostically. In the absence of an effusion, fine-needle aspirates from affected organs for cytology and FCoV RNA or FCoV antigen detection are helpful. Definitive diagnosis usually requires histopathology with FCoV antigen detection. Antiviral treatments now enable recovery in many cases from this previously fatal disease; nucleoside analogues (e.g., oral GS-441524) are very effective, although they are not available in all countries.
Collapse
Affiliation(s)
- Séverine Tasker
- Bristol Veterinary School, University of Bristol, Bristol BS40 5DU, UK
- Linnaeus Veterinary Limited, Shirley, Solihull B90 4BN, UK
| | - Diane D. Addie
- Independent Researcher, 64000 Pyrénées Aquitaine, France;
| | - Herman Egberink
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, University of Utrecht, 3584 CL Utrecht, The Netherlands;
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
| | - Margaret J. Hosie
- MRC-University of Glasgow Centre for Virus Research, Garscube Estate, Glasgow G61 1QH, UK;
| | - Uwe Truyen
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, 04103 Leipzig, Germany;
| | - Sándor Belák
- Department of Biomedical Sciences and Veterinary Public Health (BVF), Swedish University of Agricultural Sciences (SLU), P.O. Box 7036, 750 07 Uppsala, Sweden;
| | | | - Tadeusz Frymus
- Department of Small Animal Diseases with Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-787 Warsaw, Poland;
| | - Albert Lloret
- Fundació Hospital Clínic Veterinari, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain;
| | - Fulvio Marsilio
- Faculty of Veterinary Medicine, Università Degli Studi di Teramo, 64100 Teramo, Italy;
| | - Maria Grazia Pennisi
- Dipartimento di Scienze Veterinarie, Università di Messina, 98168 Messina, Italy;
| | - Etienne Thiry
- Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, FARAH Research Centre, Faculty of Veterinary Medicine, Liège University, B-4000 Liège, Belgium;
| | - Karin Möstl
- Institute of Virology, Department for Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Katrin Hartmann
- LMU Small Animal Clinic, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany;
| |
Collapse
|
6
|
Zwicklbauer K, Krentz D, Bergmann M, Felten S, Dorsch R, Fischer A, Hofmann-Lehmann R, Meli ML, Spiri AM, Alberer M, Kolberg L, Matiasek K, Zablotski Y, von Both U, Hartmann K. Long-term follow-up of cats in complete remission after treatment of feline infectious peritonitis with oral GS-441524. J Feline Med Surg 2023; 25:1098612X231183250. [PMID: 37548535 PMCID: PMC10811998 DOI: 10.1177/1098612x231183250] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
OBJECTIVES Feline infectious peritonitis (FIP), a common disease in cats caused by feline coronavirus (FCoV), is usually fatal once clinical signs appear. Successful treatment of FIP with oral GS-441524 for 84 days was demonstrated recently by this research group. The aim of this study was to evaluate the long-term outcome in these cats. METHODS A total of 18 successfully treated cats were followed for up to 1 year after treatment initiation (9 months after completion of the antiviral treatment). Follow-up examinations were performed at 12-week intervals, including physical examination, haematology, serum biochemistry, abdominal and thoracic ultrasound, FCoV ribonucleic acid (RNA) loads in blood and faeces by reverse transciptase-quantitative PCR and anti-FCoV antibody titres by indirect immunofluorescence assay. RESULTS Follow-up data were available from 18 cats in week 24, from 15 cats in week 36 and from 14 cats in week 48 (after the start of treatment), respectively. Laboratory parameters remained stable after the end of the treatment, with undetectable blood viral loads (in all but one cat on one occasion). Recurrence of faecal FCoV shedding was detected in five cats. In four cats, an intermediate short-term rise in anti-FCoV antibody titres was detected. In total, 12 cats showed abdominal lymphadenomegaly during the follow-up period; four of them continuously during the treatment and follow-up period. Two cats developed mild neurological signs, compatible with feline hyperaesthesia syndrome, in weeks 36 and 48, respectively; however, FCoV RNA remained undetectable in blood and faeces, and no increase in anti-FCoV antibody titres was observed in these two cats, and the signs resolved. CONCLUSIONS AND RELEVANCE Treatment with GS-441524 proved to be effective against FIP in both the short term as well as the long term, with no confirmed relapse during the 1-year follow-up period. Whether delayed neurological signs could be a long-term adverse effect of the treatment or associated with a 'long FIP syndrome' needs to be further evaluated.
Collapse
Affiliation(s)
- Katharina Zwicklbauer
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - Daniela Krentz
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - Michèle Bergmann
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - Sandra Felten
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - Roswitha Dorsch
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - Andrea Fischer
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Marina L Meli
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Andrea M Spiri
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Martin Alberer
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Laura Kolberg
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Kaspar Matiasek
- Section of Clinical and Comparative Neuropathology, Institute of Veterinary Pathology, Centre for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - Yury Zablotski
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - Ulrich von Both
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Katrin Hartmann
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| |
Collapse
|
7
|
Addie DD, Bellini F, Covell-Ritchie J, Crowe B, Curran S, Fosbery M, Hills S, Johnson E, Johnson C, Lloyd S, Jarrett O. Stopping Feline Coronavirus Shedding Prevented Feline Infectious Peritonitis. Viruses 2023; 15:v15040818. [PMID: 37112799 PMCID: PMC10146023 DOI: 10.3390/v15040818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/10/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
After an incubation period of weeks to months, up to 14% of cats infected with feline coronavirus (FCoV) develop feline infectious peritonitis (FIP): a potentially lethal pyogranulomatous perivasculitis. The aim of this study was to find out if stopping FCoV faecal shedding with antivirals prevents FIP. Guardians of cats from which FCoV had been eliminated at least 6 months earlier were contacted to find out the outcome of their cats; 27 households were identified containing 147 cats. Thirteen cats were treated for FIP, 109 cats shed FCoV and 25 did not; a 4-7-day course of oral GS-441524 antiviral stopped faecal FCoV shedding. Follow-up was from 6 months to 3.5 years; 11 of 147 cats died, but none developed FIP. A previous field study of 820 FCoV-exposed cats was used as a retrospective control group; 37 of 820 cats developed FIP. The difference was statistically highly significant (p = 0.0062). Cats from eight households recovered from chronic FCoV enteropathy. Conclusions: the early treatment of FCoV-infected cats with oral antivirals prevented FIP. Nevertheless, should FCoV be re-introduced into a household, then FIP can result. Further work is required to establish the role of FCoV in the aetiology of feline inflammatory bowel disease.
Collapse
Affiliation(s)
| | | | | | - Ben Crowe
- Independent Researcher, Ben Crowe, Uxbridge, UK
| | - Sheryl Curran
- Independent Researcher, Sheryl Curran, Baker Street Ragdolls, Liverpool, UK
| | | | - Stuart Hills
- Stuart Hills, Ark Veterinary Centre, Lockerbie, UK
| | - Eric Johnson
- Independent Researcher, Eric Johnson, Firestone, CO, USA
| | - Carrie Johnson
- Independent Researcher, Carrie Johnson, Firestone, CO, USA
| | | | | |
Collapse
|
8
|
Gao YY, Wang Q, Liang XY, Zhang S, Bao D, Zhao H, Li SB, Wang K, Hu GX, Gao FS. An updated review of feline coronavirus: mind the two biotypes. Virus Res 2023; 326:199059. [PMID: 36731629 DOI: 10.1016/j.virusres.2023.199059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023]
Abstract
Feline coronavirus (FCoV) includes two biotypes: feline infectious peritonitis virus (FIPV) and feline enteric coronavirus (FECV). Although both biotypes can infect cats, their pathogenicities differ. The FIPV biotype is more virulent than the FECV biotype and can cause peritonitis or even death in cats, while most FECV biotypes do not cause lesions. Even pathogenic strains of the FECV biotype can cause only mild enteritis because of their very low virulence. This article reviews recent progress in FCoV research with regard to FCoV etiological characteristics; epidemiology; clinical symptoms and pathological changes; pathogenesis; and current diagnosis, prevention and treatment methods. It is hoped that this review will provide a reference for further research on FCoV and other coronaviruses.
Collapse
Affiliation(s)
- Yong-Yu Gao
- Department of Preventive Veterinary Medicine, College of Animal Medicine, Jilin Agricultural University, Xincheng Street 2888, Changchun, Jilin 130118, China
| | - Qian Wang
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Xiang-Yu Liang
- Department of Preventive Veterinary Medicine, College of Animal Medicine, Jilin Agricultural University, Xincheng Street 2888, Changchun, Jilin 130118, China
| | - Shuang Zhang
- Department of Preventive Veterinary Medicine, College of Animal Medicine, Jilin Agricultural University, Xincheng Street 2888, Changchun, Jilin 130118, China
| | - Di Bao
- Department of Preventive Veterinary Medicine, College of Animal Medicine, Jilin Agricultural University, Xincheng Street 2888, Changchun, Jilin 130118, China
| | - Han Zhao
- Department of Preventive Veterinary Medicine, College of Animal Medicine, Jilin Agricultural University, Xincheng Street 2888, Changchun, Jilin 130118, China
| | - Shao-Bai Li
- Department of Preventive Veterinary Medicine, College of Animal Medicine, Jilin Agricultural University, Xincheng Street 2888, Changchun, Jilin 130118, China
| | - Kai Wang
- Department of Preventive Veterinary Medicine, College of Animal Medicine, Jilin Agricultural University, Xincheng Street 2888, Changchun, Jilin 130118, China.
| | - Gui-Xue Hu
- Department of Preventive Veterinary Medicine, College of Animal Medicine, Jilin Agricultural University, Xincheng Street 2888, Changchun, Jilin 130118, China.
| | - Feng-Shan Gao
- Department of Bioengineering, College of Life and Health, Dalian University, Xuefu Street 10, Dalian, Liaoning 116622, China; The Dalian Gene and Protein Engineering for Drug Screening Key Laboratory, Dalian 116622, China.
| |
Collapse
|
9
|
Prognostic Prediction for Therapeutic Effects of Mutian on 324 Client-Owned Cats with Feline Infectious Peritonitis Based on Clinical Laboratory Indicators and Physical Signs. Vet Sci 2023; 10:vetsci10020136. [PMID: 36851440 PMCID: PMC9964428 DOI: 10.3390/vetsci10020136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Feline infectious peritonitis (FIP) is a fatal disease classified as either effusive, non-effusive ('dry'), or a mixture ('mixed') of the forms of FIP, with mixed showing signs of both effusive and dry. To determine whether the therapeutic effect of Mutian on dry and mixed FIP can be predicted using clinical indicators before starting treatment, we entered 161 cats with mixed FIP and 163 cats with dry FIP into this study. Physical assessments, the reverse transcriptase-PCR detection of viral genes, and clinical laboratory tests (hematocrit, albumin/globulin ratio, serum amyloid A, α1-acid glycoprotein, and total bilirubin) were performed before Mutian was administered. These indicators were compared between the FIP groups that survived after receiving Mutian for 84 days and those that died before the completion of treatment. Significant differences in body temperature, appetite, and activity scores were confirmed between the surviving and non-surviving groups. The therapeutic effect was insufficient when total bilirubin levels increased in cats with the mixed form. In both of the FIP types, therapeutic effects were difficult to obtain when neurological clinical signs were observed. The therapeutic effects of Mutian on the cats with dry and mixed FIP can be predicted based on pre-treatment body temperature, appetite scores, and activity scores, as well as the presence of neurological signs.
Collapse
|
10
|
Meli ML, Spiri AM, Zwicklbauer K, Krentz D, Felten S, Bergmann M, Dorsch R, Matiasek K, Alberer M, Kolberg L, von Both U, Hartmann K, Hofmann-Lehmann R. Fecal Feline Coronavirus RNA Shedding and Spike Gene Mutations in Cats with Feline Infectious Peritonitis Treated with GS-441524. Viruses 2022; 14:1069. [PMID: 35632813 PMCID: PMC9147249 DOI: 10.3390/v14051069] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/08/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
As previously demonstrated by our research group, the oral multicomponent drug Xraphconn® containing GS-441524 was effective at curing otherwise fatal feline infectious peritonitis (FIP) in 18 feline coronavirus (FCoV)-infected cats. The aims of the current study were to investigate, using samples from the same animals as in the previous study, (1) the effect of treatment on fecal viral RNA shedding; (2) the presence of spike gene mutations in different body compartments of these cats; and (3) viral RNA shedding, presence of spike gene mutations, and anti-FCoV antibody titers in samples of 12 companion cats cohabitating with the treated cats. Eleven of the eighteen treated FIP cats (61%) were shedding FCoV RNA in feces within the first three days after treatment initiation, but all of them tested negative by day 6. In one of these cats, fecal shedding reoccurred on day 83. Two cats initially negative in feces were transiently positive 1-4 weeks into the study. The remaining five cats never shed FCoV. Viral RNA loads in feces decreased with time comparable with those in blood and effusion. Specific spike gene mutations linked to systemic FCoV spread were consistently found in blood and effusion from treated FIP cats, but not in feces from treated or companion cats. A new mutation that led to a not yet described amino acid change was identified, indicating that further mutations may be involved in the development of FIP. Eight of the twelve companion cats shed FCoV in feces. All but one of the twelve companion cats had anti-FCoV antibodies. Oral treatment with GS-441524 effectively decreased viral RNA loads in feces, blood, and effusion in cats with FIP. Nonetheless, re-shedding can most likely occur if cats are re-exposed to FCoV by their companion cats.
Collapse
Affiliation(s)
- Marina L. Meli
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (A.M.S.); (R.H.-L.)
| | - Andrea M. Spiri
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (A.M.S.); (R.H.-L.)
| | - Katharina Zwicklbauer
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, D-80539 Munich, Germany; (K.Z.); (D.K.); (S.F.); (M.B.); (R.D.); (K.H.)
| | - Daniela Krentz
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, D-80539 Munich, Germany; (K.Z.); (D.K.); (S.F.); (M.B.); (R.D.); (K.H.)
| | - Sandra Felten
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, D-80539 Munich, Germany; (K.Z.); (D.K.); (S.F.); (M.B.); (R.D.); (K.H.)
| | - Michèle Bergmann
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, D-80539 Munich, Germany; (K.Z.); (D.K.); (S.F.); (M.B.); (R.D.); (K.H.)
| | - Roswitha Dorsch
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, D-80539 Munich, Germany; (K.Z.); (D.K.); (S.F.); (M.B.); (R.D.); (K.H.)
| | - Kaspar Matiasek
- Section of Clinical & Comparative Neuropathology, Institute of Veterinary Pathology, Centre for Clinical Veterinary Medicine, LMU Munich, D-80539 Munich, Germany;
| | - Martin Alberer
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, University Hospital, LMU-Munich, D-80337 Munich, Germany; (M.A.); (L.K.); (U.v.B.)
| | - Laura Kolberg
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, University Hospital, LMU-Munich, D-80337 Munich, Germany; (M.A.); (L.K.); (U.v.B.)
| | - Ulrich von Both
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, University Hospital, LMU-Munich, D-80337 Munich, Germany; (M.A.); (L.K.); (U.v.B.)
- German Center for Infection Research (DZIF), Partner Site Munich, D-80337 Munich, Germany
| | - Katrin Hartmann
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, D-80539 Munich, Germany; (K.Z.); (D.K.); (S.F.); (M.B.); (R.D.); (K.H.)
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (A.M.S.); (R.H.-L.)
| |
Collapse
|
11
|
Addie DD, Silveira C, Aston C, Brauckmann P, Covell-Ritchie J, Felstead C, Fosbery M, Gibbins C, Macaulay K, McMurrough J, Pattison E, Robertson E. Alpha-1 Acid Glycoprotein Reduction Differentiated Recovery from Remission in a Small Cohort of Cats Treated for Feline Infectious Peritonitis. Viruses 2022; 14:v14040744. [PMID: 35458474 PMCID: PMC9027977 DOI: 10.3390/v14040744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 12/16/2022] Open
Abstract
Feline infectious peritonitis (FIP) is a systemic immune-mediated inflammatory perivasculitis that occurs in a minority of cats infected with feline coronavirus (FCoV). Various therapies have been employed to treat this condition, which was previously usually fatal, though no parameters for differentiating FIP recovery from remission have been defined to enable clinicians to decide when it is safe to discontinue treatment. This retrospective observational study shows that a consistent reduction of the acute phase protein alpha-1 acid glycoprotein (AGP) to within normal limits (WNL, i.e., 500 μg/mL or below), as opposed to duration of survival, distinguishes recovery from remission. Forty-two cats were diagnosed with FIP: 75% (12/16) of effusive and 54% (14/26) of non-effusive FIP cases recovered. Presenting with the effusive or non-effusive form did not affect whether or not a cat fully recovered (p = 0.2). AGP consistently reduced to WNL in 26 recovered cats but remained elevated in 16 cats in remission, dipping to normal once in two of the latter. Anaemia was present in 77% (23/30) of the cats and resolved more quickly than AGP in six recovered cats. The presence of anaemia did not affect the cat’s chances of recovery (p = 0.1). Lymphopenia was observed in 43% (16/37) of the cats and reversed in nine recovered cats but did not reverse in seven lymphopenic cats in the remission group. Fewer recovered cats (9/24: 37%) than remission cats (7/13: 54%) were lymphopenic, but the difference was not statistically different (p = 0.5). Hyperglobulinaemia was slower than AGP to return to WNL in the recovered cats. FCoV antibody titre was high in all 42 cats at the outset. It decreased significantly in 7 recovered cats but too slowly to be a useful parameter to determine discontinuation of antiviral treatments. Conclusion: a sustained return to normal levels of AGP was the most rapid and consistent indicator for differentiating recovery from remission following treatment for FIP. This study provides a useful model for differentiating recovery from chronic coronavirus disease using acute phase protein monitoring.
Collapse
Affiliation(s)
- Diane D. Addie
- Independent Researcher, 64470 Etchebar, France
- Correspondence:
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Therapeutic Effects of Mutian ® Xraphconn on 141 Client-Owned Cats with Feline Infectious Peritonitis Predicted by Total Bilirubin Levels. Vet Sci 2021; 8:vetsci8120328. [PMID: 34941855 PMCID: PMC8705141 DOI: 10.3390/vetsci8120328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 11/21/2022] Open
Abstract
Feline infectious peritonitis (FIP) is a fatal disease caused by feline coronavirus or its variant, referred to as the FIP virus. Recently, favorable treatment outcomes of the anti-viral drug Mutian® Xraphconn (Mutian X) were noted in cats with FIP. Thus, the therapeutic efficacy of Mutian X in cats with FIP must be explored, although the predictors of therapeutic success remain unknown. In the present study, we administered Mutian X to 141 pet cats with effusive FIP following initial veterinarian examinations. Of these, 116 cats survived but the remaining 25 died during treatment. Pre-treatment signalment, viral gene expression, and representative laboratory parameters for routine FIP diagnosis (i.e., hematocrit, albumin-to-globulin ratio, total bilirubin, serum amyloid-A, and α1-acid glycoprotein) were statistically compared between the survivor and non-survivor groups. The majority of these parameters, including hematocrit, albumin-to-globulin ratio, serum amyloid-A, α1-acid glycoprotein, and viral gene expression, were comparable between the two groups. Interestingly, however, total bilirubin levels in the survivor group were significantly lower than those in the non-survivor group (p < 0.0001). Furthermore, in almost all surviving cats with effusive FIP (96.6%, 28/29), the pre-treatment total bilirubin levels were below 0.5 mg/dL; however, the survival rate decreased drastically (14.3%, 1/7) when the pre-treatment total bilirubin levels exceeded 4.0 mg/dL. Thus, circulating total bilirubin levels may act as a prognostic risk factor for severe FIP and may serve as the predictor of the therapeutic efficacy of Mutian X against this fatal disease.
Collapse
|
13
|
Krentz D, Zenger K, Alberer M, Felten S, Bergmann M, Dorsch R, Matiasek K, Kolberg L, Hofmann-Lehmann R, Meli ML, Spiri AM, Horak J, Weber S, Holicki CM, Groschup MH, Zablotski Y, Lescrinier E, Koletzko B, von Both U, Hartmann K. Curing Cats with Feline Infectious Peritonitis with an Oral Multi-Component Drug Containing GS-441524. Viruses 2021; 13:v13112228. [PMID: 34835034 PMCID: PMC8621566 DOI: 10.3390/v13112228] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 12/26/2022] Open
Abstract
Feline infectious peritonitis (FIP) caused by feline coronavirus (FCoV) is a common dis-ease in cats, fatal if untreated, and no effective treatment is currently legally available. The aim of this study was to evaluate efficacy and toxicity of the multi-component drug Xraphconn® in vitro and as oral treatment in cats with spontaneous FIP by examining survival rate, development of clinical and laboratory parameters, viral loads, anti-FCoV antibodies, and adverse effects. Mass spectrometry and nuclear magnetic resonance identified GS-441524 as an active component of Xraphconn®. Eighteen cats with FIP were prospectively followed up while being treated orally for 84 days. Values of key parameters on each examination day were compared to values before treatment initiation using linear mixed-effect models. Xraphconn® displayed high virucidal activity in cell culture. All cats recovered with dramatic improvement of clinical and laboratory parameters and massive reduction in viral loads within the first few days of treatment without serious adverse effects. Oral treatment with Xraphconn® containing GS-441524 was highly effective for FIP without causing serious adverse effects. This drug is an excellent option for the oral treatment of FIP and should be trialed as potential effective treatment option for other severe coronavirus-associated diseases across species.
Collapse
Affiliation(s)
- Daniela Krentz
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany; (K.Z.); (S.F.); (M.B.); (R.D.); (Y.Z.); (K.H.)
- Correspondence:
| | - Katharina Zenger
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany; (K.Z.); (S.F.); (M.B.); (R.D.); (Y.Z.); (K.H.)
| | - Martin Alberer
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, 80337 Munich, Germany; (M.A.); (L.K.); (U.v.B.)
| | - Sandra Felten
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany; (K.Z.); (S.F.); (M.B.); (R.D.); (Y.Z.); (K.H.)
| | - Michèle Bergmann
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany; (K.Z.); (S.F.); (M.B.); (R.D.); (Y.Z.); (K.H.)
| | - Roswitha Dorsch
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany; (K.Z.); (S.F.); (M.B.); (R.D.); (Y.Z.); (K.H.)
| | - Kaspar Matiasek
- Section of Clinical and Comparative Neuropathology, Institute of Veterinary Pathology, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany;
| | - Laura Kolberg
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, 80337 Munich, Germany; (M.A.); (L.K.); (U.v.B.)
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (R.H.-L.); (M.L.M.); (A.M.S.)
| | - Marina L. Meli
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (R.H.-L.); (M.L.M.); (A.M.S.)
| | - Andrea M. Spiri
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (R.H.-L.); (M.L.M.); (A.M.S.)
| | - Jeannie Horak
- Department Paediatrics, Division Metabolic and Nutritional Medicine, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, 80337 Munich, Germany; (J.H.); (B.K.)
| | - Saskia Weber
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, 17493 Greifswald, Germany; (S.W.); (C.M.H.); (M.H.G.)
| | - Cora M. Holicki
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, 17493 Greifswald, Germany; (S.W.); (C.M.H.); (M.H.G.)
| | - Martin H. Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, 17493 Greifswald, Germany; (S.W.); (C.M.H.); (M.H.G.)
- German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Riems, Greifswald-Insel Riems, 17493 Greifswald, Germany
| | - Yury Zablotski
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany; (K.Z.); (S.F.); (M.B.); (R.D.); (Y.Z.); (K.H.)
| | - Eveline Lescrinier
- Medicinal Chemistry, KU Leuven, Rega Institute for Medical Research, 3000 Leuven, Belgium;
| | - Berthold Koletzko
- Department Paediatrics, Division Metabolic and Nutritional Medicine, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, 80337 Munich, Germany; (J.H.); (B.K.)
| | - Ulrich von Both
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, 80337 Munich, Germany; (M.A.); (L.K.); (U.v.B.)
- German Center for Infection Research (DZIF), Partner Site Munich, 80337 Munich, Germany
| | - Katrin Hartmann
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany; (K.Z.); (S.F.); (M.B.); (R.D.); (Y.Z.); (K.H.)
| |
Collapse
|
14
|
Delaplace M, Huet H, Gambino A, Le Poder S. Feline Coronavirus Antivirals: A Review. Pathogens 2021; 10:1150. [PMID: 34578182 PMCID: PMC8469112 DOI: 10.3390/pathogens10091150] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 11/17/2022] Open
Abstract
Feline coronaviruses (FCoV) are common viral pathogens of cats. They usually induce asymptomatic infections but some FCoV strains, named Feline Infectious Peritonitis Viruses (FIPV) lead to a systematic fatal disease, the feline infectious peritonitis (FIP). While no treatments are approved as of yet, numerous studies have been explored with the hope to develop therapeutic compounds. In recent years, two novel molecules (GS-441524 and GC376) have raised hopes given the encouraging results, but some concerns about the use of these molecules persist, such as the fear of the emergence of viral escape mutants or the difficult tissue distribution of these antivirals in certain affected organs. This review will summarize current findings and leads in the development of antiviral therapy against FCoV both in vitro and in vivo, with the description of their mechanisms of action when known. It highlights the molecules, which could have a broader effect on different coronaviruses. In the context of the SARS-CoV-2 pandemic, the development of antivirals is an urgent need and FIP could be a valuable model to help this research area.
Collapse
Affiliation(s)
| | | | | | - Sophie Le Poder
- 1UMR 1161 Virologie, INRAE-ENVA-ANSES, École Nationale Vétérinaire d’Alfort, Maisons-Alfort, 94704 Paris, France; (M.D.); (H.H.); (A.G.)
| |
Collapse
|
15
|
Chan OSK, Bradley KCF, Grioni A, Lau SKP, Li WT, Magouras I, Naing T, Padula A, To EMW, Tun HM, Tutt C, Woo PCY, Bloch R, Mauroo NF. Veterinary Experiences can Inform One Health Strategies for Animal Coronaviruses. ECOHEALTH 2021; 18:301-314. [PMID: 34542794 PMCID: PMC8450722 DOI: 10.1007/s10393-021-01545-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 05/24/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Olivia S K Chan
- LKS Faculty of Medicine, School of Public Health, Patrick Manson Building, The University of Hong Kong, Pokfulam, Hong Kong.
| | - Katriona C F Bradley
- Tai Wai Small Animal and Exotic Hospital, G/F, Lap Wo Building, 69-75 Chik Shun St, Tai Wai, NT, Hong Kong
| | - Alessandro Grioni
- Fauna Conservation Department, Kadoorie Farm and Botanic Garden, Lam Kam Road, Tai Po, NT, Hong Kong
| | - Susanna K P Lau
- Department of Microbiology, The University of Hong Kong, Room 26, 19/F, Block T, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, Hong Kong
| | - Wen-Ta Li
- Department of Pathology, Pangolin International Biomedical Consultant Ltd., Keelung, Taiwan
| | - Ioannis Magouras
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Tint Naing
- Soares Avenue Paws and Claws Clinic, G/F No 29 - 33 Soares Avenue, Kowloon, Hong Kong
| | - Andrew Padula
- Australian Venom Research Unit, Department of Pharmacology, Faculty of Medicine, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Esther M W To
- Agriculture, Fisheries and Conservation Department, The Government of Hong Kong Special Administrative Region, Room 509, Cheung Sha Wan Government Offices, 303 Cheung Sha Wan Road, Sham Shui Po, Kowloon, Hong Kong
| | - Hein Min Tun
- LKS Faculty of Medicine, School of Public Health, Patrick Manson Building, The University of Hong Kong, Pokfulam, Hong Kong
| | - Cedric Tutt
- Cape Animal Dentistry Service, 78 Rosmead Avenue, Kenilworth, Cape Town, 7708, South Africa
| | - Patrick C Y Woo
- Department of Microbiology, The University of Hong Kong, Room 26, 19/F, Block T, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, Hong Kong
| | - Rebecca Bloch
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nathalie F Mauroo
- Hong Kong Wildlife Health Foundation, GPO Box 12585, Hong Kong, Hong Kong
| |
Collapse
|
16
|
Rossi G, Galosi L, Gavazza A, Cerquetella M, Mangiaterra S. Therapeutic approaches to coronavirus infection according to "One Health" concept. Res Vet Sci 2021; 136:81-88. [PMID: 33588098 PMCID: PMC7871813 DOI: 10.1016/j.rvsc.2021.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 12/16/2022]
Abstract
Coronaviridae constantly infect human and animals causing respiratory, gastroenteric or systemic diseases. Over time, these viruses have shown a marked ability to mutate, jumping over the human-animal barrier, thus becoming from enzootic to zoonotic. In the last years, numerous therapeutic protocols have been developed, mainly for severe acute respiratory syndromes in humans. The aim of this review is to summarize drugs or other approaches used in coronavirus infections focusing on different roles of these molecules or bacterial products on viral adhesion and replication or in modulating the host's immune system. Within the "One Health" concept, the study of viral pathogenic role and possible therapeutic approaches in both humans and animals is essential to protect public health.
Collapse
Affiliation(s)
- Giacomo Rossi
- Corresponding author at: School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95 – 62024, Matelica (MC), Italy
| | | | | | | | | |
Collapse
|
17
|
Takano T, Satoh K, Doki T. Possible Antiviral Activity of 5-Aminolevulinic Acid in Feline Infectious Peritonitis Virus (Feline Coronavirus) Infection. Front Vet Sci 2021; 8:647189. [PMID: 33644160 PMCID: PMC7903937 DOI: 10.3389/fvets.2021.647189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/20/2021] [Indexed: 11/13/2022] Open
Abstract
Feline infectious peritonitis (FIP) is a life-threatening infectious disease of cats caused by virulent feline coronavirus (FIP virus: FIPV). For the treatment of FIP, several effective antivirals were recently reported, but many of these are not available for practical use. 5-amino levulinic acid (5-ALA) is a low-molecular-weight amino acid synthesized in plant and animal cells. 5-ALA can be synthesized in a large amount, and it is widely applied in the medical and agricultural fields. We hypothesized that 5-ALA inhibits FIPV infection. Therefore, we evaluated its antiviral activity against FIPV in felis catus whole fetus-4 cells and feline primary macrophages. FIPV infection was significantly inhibited by 250 μM 5-ALA. Our study suggested that 5-ALA is applicable for the treatment and prevention of FIPV infection.
Collapse
Affiliation(s)
- Tomomi Takano
- Laboratory of Veterinary Infectious Disease, Department of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Kumi Satoh
- Laboratory of Veterinary Infectious Disease, Department of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Tomoyoshi Doki
- Laboratory of Veterinary Infectious Disease, Department of Veterinary Medicine, Kitasato University, Towada, Japan
| |
Collapse
|
18
|
Izes AM, Yu J, Norris JM, Govendir M. Current status on treatment options for feline infectious peritonitis and SARS-CoV-2 positive cats. Vet Q 2020; 40:322-330. [PMID: 33138721 PMCID: PMC7671703 DOI: 10.1080/01652176.2020.1845917] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Feline infectious peritonitis (FIP) is a viral-induced, immune-mediated disease of cats caused by virulent biotypes of feline coronaviruses (FCoV), known as the feline infectious peritonitis virus (FIPV). Historically, three major pharmacological approaches have been employed to treat FIP: (1) immunomodulators to stimulate the patient’s immune system non-specifically to reduce the clinical effects of the virus through a robust immune response, (2) immunosuppressive agents to dampen clinical signs temporarily, and (3) re-purposed human antiviral drugs, all of which have been unsuccessful to date in providing reliable efficacious treatment options for FIPV. Recently, antiviral studies investigating the broad-spectrum coronavirus protease inhibitor, GC376, and the adenosine nucleoside analogue GS-441524, have resulted in increased survival rates and clinical cure in many patients. However, prescriber access to these antiviral therapies is currently problematic as they have not yet obtained registration for veterinary use. Consequently, FIP remains challenging to treat. The purpose of this review is to provide an update on the current status of therapeutics for FIP. Additionally, due to interest in coronaviruses resulting from the current human pandemic, this review provides information on domesticated cats identified as SARS-CoV-2 positive.
Collapse
Affiliation(s)
- Aaron M Izes
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, Australia
| | - Jane Yu
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, Australia
| | - Jacqueline M Norris
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, Australia
| | - Merran Govendir
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
19
|
Bubenikova J, Vrabelova J, Stejskalova K, Futas J, Plasil M, Cerna P, Oppelt J, Lobova D, Molinkova D, Horin P. Candidate Gene Markers Associated with Fecal Shedding of the Feline Enteric Coronavirus (FECV). Pathogens 2020; 9:pathogens9110958. [PMID: 33213082 PMCID: PMC7698596 DOI: 10.3390/pathogens9110958] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022] Open
Abstract
The Feline coronavirus (FCoV) can cause a fatal disease, the Feline Infectious Peritonitis. Persistent shedders represent the most important source of infection. The role of the host in FCoV fecal shedding is unknown. The objective of this study was to develop gene markers and to test their associations with FCoV shedding patterns. Fecal samples were taken from 57 cats of 12 breeds on the day 0 and after 2, 4 and 12 months. Variation from persistent and/or high-intensity shedding to no shedding was observed. Thirteen immunity-related genes were selected as functional and positional/functional candidates. Positional candidates were selected in a candidate region detected by a GWAS analysis. Tens to hundreds of single nucleotide polymorphisms (SNPs) per gene were identified using next generation sequencing. Associations with different phenotypes were assessed by chi-square and Fisher’s exact tests. SNPs of one functional and one positional candidate (NCR1 and SLX4IP, respectively) and haplotypes of four genes (SNX5, NCR2, SLX4IP, NCR1) were associated with FCoV shedding at pcorected < 0.01. Highly significant associations were observed for extreme phenotypes (persistent/high-intensity shedders and non-shedders) suggesting that there are two major phenotypes associated with different genotypes, highly susceptible cats permanently shedding high amounts of viral particles and resistant non-shedders.
Collapse
Affiliation(s)
- Jana Bubenikova
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, 61242 Brno, Czech Republic; (J.B.); (K.S.); (J.F.); (M.P.)
| | - Jana Vrabelova
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, 61242 Brno, Czech Republic; (J.V.); (P.C.); (D.L.); (D.M.)
| | - Karla Stejskalova
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, 61242 Brno, Czech Republic; (J.B.); (K.S.); (J.F.); (M.P.)
- CEITEC VFU, RG Animal Immunogenomics, University of Veterinary and Pharmaceutical Sciences Brno, 61242 Brno, Czech Republic;
| | - Jan Futas
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, 61242 Brno, Czech Republic; (J.B.); (K.S.); (J.F.); (M.P.)
- CEITEC VFU, RG Animal Immunogenomics, University of Veterinary and Pharmaceutical Sciences Brno, 61242 Brno, Czech Republic;
| | - Martin Plasil
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, 61242 Brno, Czech Republic; (J.B.); (K.S.); (J.F.); (M.P.)
- CEITEC VFU, RG Animal Immunogenomics, University of Veterinary and Pharmaceutical Sciences Brno, 61242 Brno, Czech Republic;
| | - Petra Cerna
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, 61242 Brno, Czech Republic; (J.V.); (P.C.); (D.L.); (D.M.)
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523-1678, USA
| | - Jan Oppelt
- CEITEC VFU, RG Animal Immunogenomics, University of Veterinary and Pharmaceutical Sciences Brno, 61242 Brno, Czech Republic;
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6100, USA
| | - Dana Lobova
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, 61242 Brno, Czech Republic; (J.V.); (P.C.); (D.L.); (D.M.)
| | - Dobromila Molinkova
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, 61242 Brno, Czech Republic; (J.V.); (P.C.); (D.L.); (D.M.)
| | - Petr Horin
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, 61242 Brno, Czech Republic; (J.B.); (K.S.); (J.F.); (M.P.)
- CEITEC VFU, RG Animal Immunogenomics, University of Veterinary and Pharmaceutical Sciences Brno, 61242 Brno, Czech Republic;
- Correspondence:
| |
Collapse
|
20
|
Rapid Resolution of Non-Effusive Feline Infectious Peritonitis Uveitis with an Oral Adenosine Nucleoside Analogue and Feline Interferon Omega. Viruses 2020; 12:v12111216. [PMID: 33121021 PMCID: PMC7693373 DOI: 10.3390/v12111216] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 02/02/2023] Open
Abstract
This is the first report of a successful treatment of a non-effusive feline infectious peritonitis (FIP) uveitis case using an oral adenosine nucleoside analogue drug and feline interferon omega, and alpha-1 acid glycoprotein (AGP) as an indicator of recovery. A 2-year-old male neutered Norwegian Forest Cat presented with uveitis, keratic precipitates, mesenteric lymphadenopathy and weight loss. The cat was hypergammaglobulinaemic and had a non-regenerative anaemia. Feline coronavirus (FCoV) RNA was detected in a mesenteric lymph node fine-needle aspirate by a reverse-transcriptase polymerase chain reaction—non-effusive FIP was diagnosed. Prednisolone acetate eye drops were administered three times daily for 2 weeks. Oral adenosine nucleoside analogue (Mutian) treatment started. Within 50 days of Mutian treatment, the cat had gained over one kilogram in weight, his globulin level reduced from 77 to 51 g/L and his haematocrit increased from 22 to 35%; his uveitis resolved and his sight improved. Serum AGP level reduced from 3100 to 400 μg/mL (within normal limits). Symmetric dimethylarginine (SDMA) was above normal at 28 μg/dL, reducing to 14 μg/dL on the cessation of treatment; whether the SDMA increase was due to FIP lesions in the kidney or Mutian is unknown. Mutian treatment stopped and low-dose oral recombinant feline interferon omega begun—the cat’s recovery continued.
Collapse
|
21
|
Paltrinieri S, Giordano A, Stranieri A, Lauzi S. Feline infectious peritonitis (FIP) and coronavirus disease 19 (COVID-19): Are they similar? Transbound Emerg Dis 2020; 68:1786-1799. [PMID: 32985113 PMCID: PMC7537058 DOI: 10.1111/tbed.13856] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/19/2020] [Accepted: 09/19/2020] [Indexed: 01/08/2023]
Abstract
SARS‐CoV‐2 has radically changed our lives causing hundreds of thousands of victims worldwide and influencing our lifestyle and habits. Feline infectious peritonitis (FIP) is a disease of felids caused by the feline coronaviruses (FCoV). FIP has been considered irremediably deadly until the last few years. Being one of the numerous coronaviruses that are well known in veterinary medicine, information on FCoV could be of interest and might give suggestions on pathogenic aspects of SARS‐CoV‐2 that are still unclear. The authors of this paper describe the most important aspects of FIP and COVID‐19 and the similarities and differences between these important diseases. SARS‐CoV‐2 and FCoV are taxonomically distant viruses, and recombination events with other coronaviruses have been reported for FCoV and have been suggested for SARS‐CoV‐2. SARS‐CoV‐2 and FCoV differ in terms of some pathogenic, clinical and pathological features. However, some of the pathogenic and immunopathogenic events that are well known in cats FIP seem to be present also in people with COVID‐19. Moreover, preventive measures currently recommended to prevent SARS‐CoV‐2 spreading have been shown to allow eradication of FIP in feline households. Finally, one of the most promising therapeutic compounds against FIP, GS‐441524, is the active form of Remdesivir, which is being used as one therapeutic option for COVID‐19.
Collapse
Affiliation(s)
- Saverio Paltrinieri
- Department of Veterinary Medicine, University of Milan, Lodi, Italy.,Veterinary Teaching Hospital, University of Milan, Lodi, Italy
| | - Alessia Giordano
- Department of Veterinary Medicine, University of Milan, Lodi, Italy.,Veterinary Teaching Hospital, University of Milan, Lodi, Italy
| | - Angelica Stranieri
- Department of Veterinary Medicine, University of Milan, Lodi, Italy.,Veterinary Teaching Hospital, University of Milan, Lodi, Italy
| | - Stefania Lauzi
- Department of Veterinary Medicine, University of Milan, Lodi, Italy.,Veterinary Teaching Hospital, University of Milan, Lodi, Italy
| |
Collapse
|
22
|
Pearson M, LaVoy A, Chan LLY, Dean GA. High-throughput viral microneutralization method for feline coronavirus using image cytometry. J Virol Methods 2020; 286:113979. [PMID: 32979406 PMCID: PMC7510446 DOI: 10.1016/j.jviromet.2020.113979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/12/2020] [Accepted: 09/19/2020] [Indexed: 01/24/2023]
Abstract
There are no approved antiviral drugs or recommended vaccines for feline coronavirus infection. Plate-based image cytometry is used for high-throughput viral microneutralization assays. Image cytometry is faster and more sensitive than traditional plaque reduction neutralization tests. Cell seeding density, plate surface coating, virus concentration and incubation time, fluorescent labeling, and buffers were optimized. Cross-neutralization between FCoV type I and II viruses was not observed.
Feline coronaviruses (FCoV) are members of the alphacoronavirus genus that are further characterized by serotype (types I and II) based on the antigenicity of the spike (S) protein and by pathotype based on the associated clinical conditions. Feline enteric coronaviruses (FECV) are associated with the vast majority of infections and are typically asymptomatic. Within individual animals, FECV can mutate and cause a severe and usually fatal disease called feline infectious peritonitis (FIP), the leading infectious cause of death in domestic cat populations. There are no approved antiviral drugs or recommended vaccines to treat or prevent FCoV infection. The plaque reduction neutralization test (PRNT) traditionally employed to assess immune responses and to screen therapeutic and vaccine candidates is time-consuming, low-throughput, and typically requires 2–3 days for the formation and manual counting of cytolytic plaques. Host cells are capable of carrying heavy viral burden in the absence of visible cytolytic effects, thereby reducing the sensitivity of the assay. In addition, operator-to-operator variation can generate uncertainty in the results and digital records are not automatically created. To address these challenges we developed a novel high-throughput viral microneutralization assay, with quantification of virus-infected cells performed in a plate-based image cytometer. Host cell seeding density, microplate surface coating, virus concentration and incubation time, wash buffer and fluorescent labeling were optimized. Subsequently, this FCoV viral neutralization assay was used to explore immune correlates of protection using plasma from naturally FECV-infected cats. We demonstrate that the high-throughput viral neutralization assay using the Celigo Image Cytometer provides a robust and efficient method for the rapid screening of therapeutic antibodies, antiviral compounds, and vaccines. This method can be applied to various viral infectious diseases to accelerate vaccine and antiviral drug discovery and development.
Collapse
Affiliation(s)
- Morgan Pearson
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, 80523, United States
| | - Alora LaVoy
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, 80523, United States
| | - Leo Li-Ying Chan
- Department of Advanced Technology R&D, Nexcelom Bioscience LLC, Lawrence, MA, 01843, United States.
| | - Gregg A Dean
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, 80523, United States
| |
Collapse
|
23
|
|
24
|
Correlation of Feline Coronavirus Shedding in Feces with Coronavirus Antibody Titer. Pathogens 2020; 9:pathogens9080598. [PMID: 32707796 PMCID: PMC7459802 DOI: 10.3390/pathogens9080598] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Feline coronavirus (FCoV) infection is ubiquitous in multi-cat households. Responsible for the continuous presence are cats that are chronically shedding a high load of FCoV. The aim of the study was to determine a possible correlation between FCoV antibody titer and frequency and load of fecal FCoV shedding in cats from catteries. METHODS Four fecal samples from each of 82 cats originating from 19 German catteries were examined for FCoV viral loads by quantitative reverse transcriptase polymerase chain reaction (RT-qPCR). Additionally, antibody titers were determined by an immunofluorescence assay. RESULTS Cats with antibodies were more likely to be FCoV shedders than non-shedders, and there was a weak positive correlation between antibody titer and mean fecal virus load (Spearman r = 0.2984; p = 0.0072). Antibody titers were significantly higher if cats shed FCoV more frequently throughout the study period (p = 0.0063). When analyzing only FCoV shedders, cats that were RT-qPCR-positive in all four samples had significantly higher antibody titers (p = 0.0014) and significantly higher mean fecal virus loads (p = 0.0475) than cats that were RT-qPCR-positive in only one, two, or three samples. CONCLUSIONS The cats' antibody titers correlate with the likelihood and frequency of FCoV shedding and fecal virus load. Chronic shedders have higher antibody titers and shed more virus. This knowledge is important for the management of FCoV infections in multi-cat environments, but the results indicate that antibody measurement cannot replace fecal RT-qPCR.
Collapse
|
25
|
Villena J, Kitazawa H. The Modulation of Mucosal Antiviral Immunity by Immunobiotics: Could They Offer Any Benefit in the SARS-CoV-2 Pandemic? Front Physiol 2020; 11:699. [PMID: 32670091 PMCID: PMC7326040 DOI: 10.3389/fphys.2020.00699] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/28/2020] [Indexed: 01/08/2023] Open
Abstract
Viral respiratory infections are of major importance because of their capacity to cause of a high degree of morbidity and mortality in high-risk populations, and to rapidly spread between countries. Perhaps the best example of this global threat is the infectious disease caused by the new SARS-CoV-2 virus, which has infected more than 4 million people worldwide, causing the death of 287,000 persons according to the WHO's situation report on May 13, 2020. The availability of therapeutic tools that would be used massively to prevent or mitigate the detrimental effects of emerging respiratory viruses on human health is therefore mandatory. In this regard, research from the last decade has reported the impact of the intestinal microbiota on the respiratory immunity. It was conclusively demonstrated how the variations in the intestinal microbiota affect the responses of respiratory epithelial cells and antigen presenting cells against respiratory virus attack. Moreover, the selection of specific microbial strains (immunobiotics) with the ability to modulate immunity in distal mucosal sites made possible the generation of nutritional interventions to strengthen respiratory antiviral defenses. In this article, the most important characteristics of the limited information available regarding the immune response against SARS-CoV-2 virus are revised briefly. In addition, this review summarizes the knowledge on the cellular and molecular mechanisms involved in the improvement of respiratory antiviral defenses by beneficial immunobiotic microorganisms such as Lactobacillus rhamnosus CRL1505. The ability of beneficial microorganisms to enhance type I interferons and antiviral factors in the respiratory tract, stimulate Th1 response and antibodies production, and regulate inflammation and coagulation activation during the course of viral infections reducing tissue damage and preserving lung functionally, clearly indicate the potential of immunobiotics to favorably influence the immune response against SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán, Argentina
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
26
|
Gönültaş S, Karabağlı M, Baştuğ Y, Çilesiz NC, Kadıoğlu A. COVID-19 and animals: What do we know? Turk J Urol 2020; 46:tud.2020.140520. [PMID: 32420863 PMCID: PMC7360157 DOI: 10.5152/tud.2020.140520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 05/14/2020] [Indexed: 11/22/2022]
Abstract
Coronaviruses, which were generally considered harmless to humans before 2003, have appeared again with a pandemic threatening the world since December 2019 after the epidemics of SARS and MERS. It is known that transmission from person to person is the most important way to spread. However, due to the widespread host diversity, a detailed examination of the role of animals in this pandemic is essential to effectively fight against the outbreak. Although coronavirus infections in pets are known to be predominantly related to the gastrointestinal tract, it has been observed that there are human-to-animal transmissions in this outbreak and some animals have similar symptoms to humans. Although animal-to-animal transmission has been shown to be possible, there is no evidence of animal-to-human transmission.
Collapse
Affiliation(s)
- Serkan Gönültaş
- Department of Urology, Gaziosmanpaşa Training and Research Hospital, İstanbul, Turkey
| | - Murat Karabağlı
- Department of Surgery, İstanbul University-Cerrahpaşa, Faculty of Veterinary, İstanbul, Turkey
| | - Yavuz Baştuğ
- Department of Urology, Haydarpaşa Training and Research Hospital, İstanbul, Turkey
| | | | - Ateş Kadıoğlu
- Department of Urology, İstanbul, University, İstanbul School of Medicine, İstanbul, Turkey
| |
Collapse
|
27
|
Decaro N, Martella V, Saif LJ, Buonavoglia C. COVID-19 from veterinary medicine and one health perspectives: What animal coronaviruses have taught us. Res Vet Sci 2020; 131:21-23. [PMID: 32278960 PMCID: PMC7138383 DOI: 10.1016/j.rvsc.2020.04.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Nicola Decaro
- Department of Veterinary Medicine, University of Bari Aldo Moro, Strada Prov. per Casamassima Km 3, 70010 Valenzano (BA), Italy.
| | - Vito Martella
- Department of Veterinary Medicine, University of Bari Aldo Moro, Strada Prov. per Casamassima Km 3, 70010 Valenzano (BA), Italy.
| | - Linda J Saif
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, 1680 Madison Ave, Wooster, OH 44691, USA; Food Animal Health Research Program, Ohio Agricultural Research and Development Center, CFAES, Department of Veterinary Preventive Medicine, The Ohio State, 1680 Madison Ave, Wooster, OH 44691, USA.
| | - Canio Buonavoglia
- Department of Veterinary Medicine, University of Bari Aldo Moro, Strada Prov. per Casamassima Km 3, 70010 Valenzano (BA), Italy.
| |
Collapse
|