1
|
Zheng Y, Song Z, Huang M, Li C, Nong C, Jiang T, Li Z, Yi Z. Elucidating thyroid hormone transport proteins disruption by nitrophenols through computational and spectroscopic analysis. Biophys Chem 2025; 320-321:107415. [PMID: 39987709 DOI: 10.1016/j.bpc.2025.107415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/04/2025] [Accepted: 02/14/2025] [Indexed: 02/25/2025]
Abstract
Thyroxine (T4), as a type of thyroid hormone (TH), is a key hormone in regulating human metabolism, growth and development, central nervous system functions, and energy balance. It relies on TH transport proteins to reach cells and exert its biological actions. However, the binding of nitrophenol pollutants to TH transport proteins prevents the delivery of thyroid hormones to cells, thereby inhibiting the effects of the hormones. This study combines spectroscopic experiments and computational simulations to explore the mechanism of nitrophenols' interference with TH transport proteins. Detailed information on the quenching mechanism, binding parameters, interaction forces, binding models, and conformational changes of nitrophenols (PNP), chlorinated nitrophenols (CNP), and brominated nitrophenols (BNP) with TH transport proteins is obtained through spectroscopic experiments. Nitrophenols are found to form hydrogen bonds with residues Lys15, Arg378, and Arg381, respectively, thereby displacing T4 at the binding site in the TH transport proteins. With an increasing number of halogen atoms, the affinity of halogenated nitrophenols for TH transport proteins intensifies. Computational simulations are used to further understand the binding modes and binding sites, providing molecular-level insights into the binding of NPs in the cavity of TH transport proteins. Theoretical evidence from molecular docking and molecular dynamics (MD) simulations supports the experimental findings.
Collapse
Affiliation(s)
- Yanhong Zheng
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Zeyu Song
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Muwei Huang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Cancan Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Chunke Nong
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Tinghao Jiang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Zhanji Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Zhongsheng Yi
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China..
| |
Collapse
|
2
|
Aghanejad A, Kheiriabad S, Ghaffari M, Namvar Aghdash S, Ghafouri N, Ezzati Nazhad Dolatabadi J, Andishmand H, Hamblin MR. Targeted co-delivery nanosystem based on methotrexate, curcumin, and PAMAM dendrimer for improvement of the therapeutic efficacy in cervical cancer. Sci Rep 2025; 15:1813. [PMID: 39805840 PMCID: PMC11730290 DOI: 10.1038/s41598-024-82074-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025] Open
Abstract
The simultaneous administration of multiple drugs within identical nanocarriers to cancer cells or tissues can result in the effective action of drugs at reduced concentrations. In this investigation, PAMAM dendrimers (G4-PAMAM) were employed to link with methotrexate (MTX) using DCC/NHS chemistry and followed by the entrapment of curcumin (Cur) within it. The establishment of covalent bonds between MTX and the PAMAM dendrimer led to PAMAM-MTX interaction, verified and described through FT-IR. Various techniques were employed to evaluate the structural properties of the prepared Cur-PAMAM-MTX NC. The Cur-PAMAM-MTX NC, after preparation, exhibited a particle size of 249 nm, with an encapsulation efficiency (EE) of ~ 81% for Cur. The cumulative in vitro release of Cur-loaded NC indicated a controlled release influenced by time and pH. The cell study results revealed that Cur-PAMAM-MTX NC exhibited significantly higher cytotoxicity than free MTX, Cur, and other formulations tested in vitro. The synergistic effect of co-delivery of MTX and Cur by PAMAM significantly increased cytotoxicity. Besides, the significant ROS level rising has been shown in the treated cells with MTX-PAMAM-Cur. Considering these findings, the co-delivery NC shows promise for additional in vitro investigations and possesses the capacity to function as an effective framework for the combined delivery of MTX and Cur in cervical cancer chemotherapy.
Collapse
Affiliation(s)
- Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shiva Kheiriabad
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Maryam Ghaffari
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Simin Namvar Aghdash
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Neda Ghafouri
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hashem Andishmand
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
- Department of Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| |
Collapse
|
3
|
Ashin ZF, Sadeghi-Mohammadi S, Vaezi Z, Najafi F, AdibAmini S, Sadeghizadeh M, Naderi-Manesh H. Synergistic effect of curcumin and tamoxifen loaded in pH-responsive gemini surfactant nanoparticles on breast cancer cells. BMC Complement Med Ther 2024; 24:337. [PMID: 39304876 DOI: 10.1186/s12906-024-04631-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 09/03/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Drug combination therapy is preferred over monotherapy in clinical research to improve therapeutic effects. Developing a new nanodelivery system for cancer drugs can reduce side effects and provide several advantages, including matched pharmacokinetics and potential synergistic activity. This study aimed to examine and determine the efficiency of the gemini surfactants (GSs) as a pH-sensitive polymeric carrier and cell-penetrating agent in cancer cells to achieve dual drug delivery and synergistic effects of curcumin (Cur) combined with tamoxifen citrate (TMX) in the treatment of MCF-7 and MDA-MB-231 human BC cell lines. METHODS The synthesized NPs were self-assembled using a modified nanoprecipitation method. The functional groups and crystalline form of the nanoformulation were examined by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and dynamic light scattering (DLS) used to assess zeta potential and particle size, and the morphological analysis determined by transmission electron microscopy (TEM). The anticancer effect was evaluated through an in vitro cytotoxicity MTT assay, flow cytometry analysis, and apoptosis analysis performed for mechanism investigation. RESULTS The tailored NPs were developed with a size of 252.3 ± 24.6 nm and zeta potential of 18.2 ± 4.4 mV capable of crossing the membrane of cancer cells. The drug loading and release efficacy assessment showed that the loading of TMX and Cur were 93.84% ± 1.95% and 90.18% ± 0.56%, respectively. In addition, the drug release was more controlled and slower than the free state. Polymeric nanocarriers improved controlled drug release 72.19 ± 2.72% of Tmx and 55.50 ± 2.86% of Cur were released from the Tmx-Cur-Gs NPs after 72 h at pH = 5.5. This confirms the positive effect of polymeric nanocarriers on the controlled drug release mechanism. moreover, the toxicity test showed that combination-drug delivery was much more greater than single-drug delivery in MCF-7 and MDA-MB-231 cell lines. Cellular imaging showed excellent internalization of TMX-Cur-GS NPs in both MCF-7 and MDA-MB-231 cells and synergistic anticancer effects, with combination indices of 0.561 and 0.353, respectively. CONCLUSION The combined drug delivery system had a greater toxic effect on cell lines than single-drug delivery. The synergistic effect of TMX and Cur with decreasing inhibitory concentrations could be a more promising system for BC-targeted therapy using GS NPs.
Collapse
Affiliation(s)
- Zeinab Fotouhi Ashin
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Sanam Sadeghi-Mohammadi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Zahra Vaezi
- Department of Bioactive Compounds, Faculty of Interdisciplinary Sciences and Technologies, Tarbiat Modares University, Tehran, Iran
| | - Farhood Najafi
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran
| | | | - Majid Sadeghizadeh
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Hossein Naderi-Manesh
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
- Department of Bioactive Compounds, Faculty of Interdisciplinary Sciences and Technologies, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
4
|
D. S. A, Julietraja K, Jaganathan B, Alsinai A. Curcumin-Conjugated PAMAM Dendrimers of Two Generations: Comparative Analysis of Physiochemical Properties Using Adriatic Topological Indices. ACS OMEGA 2024; 9:14558-14579. [PMID: 38559925 PMCID: PMC10976413 DOI: 10.1021/acsomega.4c00686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024]
Abstract
Curcumin (C21H20O6) is a polyphenol found in the plant Curcuma longa. Even though it possesses many pharmacological effects, owing to its limited intestinal absorption, solubility, and oral bioavailability, it is more often used as a health supplement than as a lead chemical. The poly(amido)amine (PAMAM) dendrimer (nanostructure) is utilized to enhance the stability and targeted delivery of drugs. Recently, curcumin was conjugated with the PAMAM dendrimer and analyzed for its photostability. Further investigation into the physiochemical characteristics of different generations can facilitate curcumins' targeted delivery for many diseases, including cancer. However, many of these conjugates' physiochemical properties are not available in databases since they have not been explored theoretically or experimentally. In this article, QSAR/QSPR (quantitative structure-activity relationship/quantitative structure-property relationship) analysis of physiochemical properties was carried out for component structures, which produced encouraging results. Hence, 16 discrete adriatic topological indices and their associated entropy measures were evaluated to theoretically predict a few physiochemical properties of the conjugated structure. The predictions will aid the chemist in drug designing.
Collapse
Affiliation(s)
- Anuradha D. S.
- Department
of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Chennai 632014, India
| | - Konsalraj Julietraja
- Department
of Mathematics, School of Engineering, Presidency
University, Bengaluru 560064, India
| | - B. Jaganathan
- Department
of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Chennai 632014, India
| | - Ammar Alsinai
- Department
of Mathematics, Ibb University, Ibb 3000, Yemen
| |
Collapse
|
5
|
PAMAM dendrimers of generation 4.5 loaded with curcumin interfere with α-synuclein aggregation. OPENNANO 2023. [DOI: 10.1016/j.onano.2023.100140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
6
|
Natural and Engineered Nanomaterials for the Identification of Heavy Metal Ions—A Review. NANOMATERIALS 2022; 12:nano12152665. [PMID: 35957095 PMCID: PMC9370674 DOI: 10.3390/nano12152665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022]
Abstract
In recent years, there has been much interest in developing advanced and innovative approaches for sensing applications in various fields, including agriculture and environmental remediation. The development of novel sensors for detecting heavy metals using nanomaterials has emerged as a rapidly developing research area due to its high availability and sustainability. This review emphasized the naturally derived and engineered nanomaterials that have the potential to be applied as sensing reagents to interact with metal ions or as reducing and stabilizing agents to synthesize metallic nanoparticles for the detection of heavy metal ions. This review also focused on the recent advancement of nanotechnology-based detection methods using naturally derived and engineered materials, with a summary of their sensitivity and selectivity towards heavy metals. This review paper covers the pros and cons of sensing applications with recent research published from 2015 to 2022.
Collapse
|
7
|
Tagde P, Tagde P, Islam F, Tagde S, Shah M, Hussain ZD, Rahman MH, Najda A, Alanazi IS, Germoush MO, Mohamed HRH, Algandaby MM, Nasrullah MZ, Kot N, Abdel-Daim MM. The Multifaceted Role of Curcumin in Advanced Nanocurcumin Form in the Treatment and Management of Chronic Disorders. Molecules 2021; 26:7109. [PMID: 34885693 PMCID: PMC8659038 DOI: 10.3390/molecules26237109] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 12/25/2022] Open
Abstract
Curcumin is the primary polyphenol in turmeric's curcuminoid class. It has a wide range of therapeutic applications, such as anti-inflammatory, antioxidant, antidiabetic, hepatoprotective, antibacterial, and anticancer effects against various cancers, but has poor solubility and low bioavailability. Objective: To improve curcumin's bioavailability, plasma concentration, and cellular permeability processes. The nanocurcumin approach over curcumin has been proven appropriate for encapsulating or loading curcumin (nanocurcumin) to increase its therapeutic potential. Conclusion: Though incorporating curcumin into nanocurcumin form may be a viable method for overcoming its intrinsic limitations, and there are reasonable concerns regarding its toxicological safety once it enters biological pathways. This review article mainly highlights the therapeutic benefits of nanocurcumin over curcumin.
Collapse
Affiliation(s)
- Priti Tagde
- Amity Institute of Pharmacy, Amity University, Noida 201303, India
- PRISAL Foundation (Pharmaceutical Royal International Society), Bhopa l462026, India;
| | - Pooja Tagde
- Practice of Medicine Department, Government Homeopathy College, Bhopa l462016, India;
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh;
| | - Sandeep Tagde
- PRISAL Foundation (Pharmaceutical Royal International Society), Bhopa l462026, India;
| | - Muddaser Shah
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | | | - Md. Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
- Department of Global Medical Science, Graduate School, Yonsei University, Wonju 26426, Korea
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland;
| | - Ibtesam S. Alanazi
- Department of Biology, Faculty of Sciences, University of Hafr Al Batin, Hafr Al Batin 39524, Saudi Arabia;
| | - Mousa O. Germoush
- Biology Department, College of Science, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia;
| | - Hanan R. H. Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Mardi M. Algandaby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohammed Z. Nasrullah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Natalia Kot
- Department of Landscape Architecture, University of Life Science in Lublin, 28 Gleboka Street, 20-612 Lublin, Poland;
| | - Mohamed M. Abdel-Daim
- Pharmacy Program, Department of Pharmaceutical Sciences, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
8
|
Fernandes G, Pandey A, Kulkarni S, Mutalik SP, Nikam AN, Seetharam RN, Kulkarni SS, Mutalik S. Supramolecular dendrimers based novel platforms for effective oral delivery of therapeutic moieties. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
9
|
DFT computational investigation of the reaction behavior of polyamidoamine dendrimer as nanocarrier for delivery of melphalan anticancer drug. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
Using a Modified Polyamidoamine Fluorescent Dendrimer for Capturing Environment Polluting Metal Ions Zn2+, Cd2+, and Hg2+: Synthesis and Characterizations. CRYSTALS 2021. [DOI: 10.3390/cryst11020092] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
One of the most pressing global concerns is how to provide a clean environment for future generations given the exacerbation of urban, agricultural, industrial, and economic activities due to the escalating size of the global population. A polyamidoamine (PAMAM) dendrimer peripherally modified with 4-N,N′-dimethylethylenediamine-1,8-naphthalmide as a chromophore was synthesized and utilized to capture hazardous heavy metal ions. This modified fluorescent dendrimer (FCD) was complexed with Group 12 metal ions (Zn2+, Cd2+, and Hg2+) at a 2:1 (metal: FCD) ratio. Electronic absorption, fluorescence emission, Infra-red (IR), and nuclear magnetic resonance (1H NMR) spectroscopies, conductivity, CHN elemental, thermogravimetry, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) analyses were used to characterize the resulting metal complexes. These assays revealed that the synthesized complexes were yellow-colored, thermally stable, nanoscale-sized, and composed of [M2FCD]·4Cl2. Considerable spectral shifts were observed in the emission and absorption spectra of the FCD molecule after binding the Zn2+ ions, which can be used to differentiate the Zn2+ complex from the other two complexes. This work provides basic data to facilitate the detection, quantification, and removal of environmentally hazardous heavy metal ions through complexation with a fluorescent dendrimer.
Collapse
|
11
|
Karthikeyan C, Varaprasad K, Akbari-Fakhrabadi A, Hameed ASH, Sadiku R. Biomolecule chitosan, curcumin and ZnO-based antibacterial nanomaterial, via a one-pot process. Carbohydr Polym 2020; 249:116825. [DOI: 10.1016/j.carbpol.2020.116825] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/10/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022]
|
12
|
Tripathi PK, Gupta S, Rai S, Shrivatava A, Tripathi S, Singh S, Khopade AJ, Kesharwani P. Curcumin loaded poly (amidoamine) dendrimer-plamitic acid core-shell nanoparticles as anti-stress therapeutics. Drug Dev Ind Pharm 2020; 46:412-426. [PMID: 32011185 DOI: 10.1080/03639045.2020.1724132] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Despite poor bioavailability of the drug and in vivo stability, curcumin has been reported for many pharmacological activities. Considering the potential of dendrimers as a drug delivery system, current research work is focused on the formulation and characterization of G4 PAMAM dendrimer-Palmitic acid core-shell nanoparticle-containing curcumin as antistress therapeutics to maximize the bioavailability of curcumin. Various formulations were prepared using different concentrations of palmitic acid and an optimized ratio of dendrimer and curcumin. All formulations were investigated for evaluation of physicochemical parameters, encapsulation efficiency, and in vitro release. Particle size, PDI, zeta-potential, and encapsulation efficiency of final formulation was found to be 257.9 ± 0.365 nm, 0.10 ± 0.004, 3.59 ± 0.167 mV, and 80.87%, respectively. In vitro release studies have shown that 53.62 ± 2.431% of the drug was released after 24 h. In vivo studies pharmacokinetic parameters, drug distribution, pharmacological, and toxicological were also estimated using swiss albino mice. The findings have shown the selected formulation is better than plain curcumin formulation.
Collapse
Affiliation(s)
- Pushpendra Kumar Tripathi
- Department of Pharmacy, RITM, Dr APJ Abdual Kalam Technical University, Lucknow, Uttar Pradesh, India
| | - Shraddha Gupta
- Department of Pharmacy, RITM, Dr APJ Abdual Kalam Technical University, Lucknow, Uttar Pradesh, India
| | - Suruchi Rai
- Department of Pharmacy, RITM, Dr APJ Abdual Kalam Technical University, Lucknow, Uttar Pradesh, India
| | - Ankur Shrivatava
- Department of Pharmacy, RITM, Dr APJ Abdual Kalam Technical University, Lucknow, Uttar Pradesh, India
| | - Shalini Tripathi
- Department of Pharmacy, RITM, Dr APJ Abdual Kalam Technical University, Lucknow, Uttar Pradesh, India
| | - Sima Singh
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Ajay J Khopade
- Sun Pharma Advanced Research Company Limited, Mumbai, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
13
|
Ghaffari M, Dehghan G, Baradaran B, Zarebkohan A, Mansoori B, Soleymani J, Ezzati Nazhad Dolatabadi J, Hamblin MR. Co-delivery of curcumin and Bcl-2 siRNA by PAMAM dendrimers for enhancement of the therapeutic efficacy in HeLa cancer cells. Colloids Surf B Biointerfaces 2019; 188:110762. [PMID: 31911391 DOI: 10.1016/j.colsurfb.2019.110762] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 12/24/2019] [Accepted: 12/25/2019] [Indexed: 12/25/2022]
Abstract
Co-delivery of therapeutic agents and small interfering RNA (siRNA) can be achieved by a suitable nanovehicle. In this work, the solubility and bioavailability of curcumin (Cur) were enhanced by entrapment in a polyamidoamine (PAMAM) dendrimer, and a polyplex was formed by grafting Bcl-2 siRNA onto the surface amine groups to produce PAMAM-Cur/Bcl-2 siRNA nanoparticles (NPs). The synthesized polyplex NPs had a particle size of ∼180 nm, and high Cur loading content of ∼82 wt%. Moreover, the PAMAM-Cur/Bcl-2 siRNA NPs showed more effective cellular uptake, and higher inhibition of tumor cell proliferation compared to PAMAM-Cur nanoformulation and free Cur, due to the combined effect of co-delivery of Cur and Bcl-2 siRNA. The newly described PAMAM-Cur/Bcl-2 siRNA polyplex NPs could be a promising co-delivery nanovehicle.
Collapse
Affiliation(s)
- Maryam Ghaffari
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Science, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA; Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| |
Collapse
|
14
|
Rafiee Z, Nejatian M, Daeihamed M, Jafari SM. Application of different nanocarriers for encapsulation of curcumin. Crit Rev Food Sci Nutr 2018; 59:3468-3497. [DOI: 10.1080/10408398.2018.1495174] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Zahra Rafiee
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| | - Mohammad Nejatian
- Department of Food Science and Technology, Tarbiat Modares University, Tehran, Iran
| | - Marjan Daeihamed
- Department of Pharmaceutics, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| |
Collapse
|
15
|
All-atomistic molecular dynamics (AA-MD) studies and pharmacokinetic performance of PAMAM-dendrimer-furosemide delivery systems. Int J Pharm 2018; 547:545-555. [DOI: 10.1016/j.ijpharm.2018.06.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/09/2018] [Accepted: 06/12/2018] [Indexed: 12/23/2022]
|
16
|
Complexation of nicotinic acid with first generation poly(amidoamine) dendrimers: A microscopic view from density functional theory. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.06.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
17
|
Landeros JM, Belmont-Bernal F, Pérez-González AT, Pérez-Padrón MI, Guevara-Salazar P, González-Herrera IG, Guadarrama P. A two-step synthetic strategy to obtain a water-soluble derivative of curcumin with improved antioxidant capacity and in vitro cytotoxicity in C6 glioma cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:351-362. [DOI: 10.1016/j.msec.2016.10.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 09/21/2016] [Accepted: 10/13/2016] [Indexed: 01/08/2023]
|
18
|
Jones DE, Lund AM, Ghandehari H, Facelli JC. Molecular dynamics simulations in drug delivery research: Calcium chelation of G3.5 PAMAM dendrimers. COGENT CHEMISTRY 2016; 2:1229830. [PMID: 29177183 PMCID: PMC5699217 DOI: 10.1080/23312009.2016.1229830] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/24/2016] [Indexed: 11/18/2022]
Abstract
Poly(amido amine) (PAMAM) dendrimers have been considered as possible delivery systems for anticancer drugs. One potential advantage of these carriers would be their use in oral formulations, which will require absorption in the intestinal lumen. This may require the opening of tight junctions which may be enabled by reducing the Ca2+ concentration in the intestinal lumen, which has been shown as an absorption mechanism for EDTA (ethylenediaminetetraacetic acid). Using molecular dynamics simulations, we show that the G3.5 PAMAM dendrimers are able to chelate Ca2+ at similar proportions to EDTA, providing support to the hypothesis that oral formulations of PAMAM dendrimers could use this high chelating efficiency as a potential mechanism for permeating the tight junctions of the intestines if other formulation barriers could be overcome.
Collapse
Affiliation(s)
- David E. Jones
- Department of Biomedical Informatics, University of Utah, 421 Wakara, Salt Lake City, UT 84108, USA
| | - Albert M. Lund
- Department of Biomedical Informatics, University of Utah, 421 Wakara, Salt Lake City, UT 84108, USA
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Hamidreza Ghandehari
- Departments of Bioengineering and Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT 84112, USA
| | - Julio C. Facelli
- Department of Biomedical Informatics, University of Utah, 421 Wakara, Salt Lake City, UT 84108, USA
| |
Collapse
|
19
|
Zhao Y, Zhao J, Li R, Han M, Zhu C, Wang M, Guo Y, Wang X. A series of codendrimers from polyamidoamine (PAMAM) and oligoethylene glycols (OEG) dendrons as drug carriers: the effect of OEG dendron decoration degree. RSC Adv 2015; 5:85547-85555. [DOI: 10.1039/c5ra12177a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
To evaluate the effect of OEG dendron decoration degree and find a suitable carrier, a series of codendrimers are prepared and utilized to transport methotrexate.
Collapse
Affiliation(s)
- Yanna Zhao
- Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing 100193
- P. R. China
| | - Jing Zhao
- The College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P. R. China
| | - Ran Li
- Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing 100193
- P. R. China
| | - Meihua Han
- Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing 100193
- P. R. China
| | - Chunyan Zhu
- Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing 100193
- P. R. China
| | - Mincan Wang
- The College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P. R. China
| | - Yifei Guo
- Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing 100193
- P. R. China
| | - Xiangtao Wang
- Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing 100193
- P. R. China
| |
Collapse
|
20
|
Martinho N, Florindo H, Silva L, Brocchini S, Zloh M, Barata T. Molecular Modeling to Study Dendrimers for Biomedical Applications. Molecules 2014; 19:20424-20467. [PMID: 25493631 PMCID: PMC6270869 DOI: 10.3390/molecules191220424] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/12/2014] [Accepted: 11/17/2014] [Indexed: 02/06/2023] Open
Abstract
Molecular modeling techniques provide a powerful tool to study the properties of molecules and their interactions at the molecular level. The use of computational techniques to predict interaction patterns and molecular properties can inform the design of drug delivery systems and therapeutic agents. Dendrimers are hyperbranched macromolecular structures that comprise repetitive building blocks and have defined architecture and functionality. Their unique structural features can be exploited to design novel carriers for both therapeutic and diagnostic agents. Many studies have been performed to iteratively optimise the properties of dendrimers in solution as well as their interaction with drugs, nucleic acids, proteins and lipid membranes. Key features including dendrimer size and surface have been revealed that can be modified to increase their performance as drug carriers. Computational studies have supported experimental work by providing valuable insights about dendrimer structure and possible molecular interactions at the molecular level. The progress in computational simulation techniques and models provides a basis to improve our ability to better predict and understand the biological activities and interactions of dendrimers. This review will focus on the use of molecular modeling tools for the study and design of dendrimers, with particular emphasis on the efforts that have been made to improve the efficacy of this class of molecules in biomedical applications.
Collapse
Affiliation(s)
- Nuno Martinho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, Lisbon 1649-003, Portugal
| | - Helena Florindo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, Lisbon 1649-003, Portugal
| | - Liana Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, Lisbon 1649-003, Portugal
| | - Steve Brocchini
- Department of Pharmaceutics, The School of Pharmacy, University of London, 29/39 Brunswick Square, London WC1N 1AX, UK
| | - Mire Zloh
- Department of Pharmacy, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK.
| | - Teresa Barata
- Department of Pharmaceutics, The School of Pharmacy, University of London, 29/39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
21
|
Nanotechnology-applied curcumin for different diseases therapy. BIOMED RESEARCH INTERNATIONAL 2014; 2014:394264. [PMID: 24995293 PMCID: PMC4066676 DOI: 10.1155/2014/394264] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/21/2014] [Accepted: 04/25/2014] [Indexed: 02/08/2023]
Abstract
Curcumin is a lipophilic molecule with an active ingredient in the herbal remedy and dietary spice turmeric. It is used by different folks for treatment of many diseases. Recent studies have discussed poor bioavailability of curcumin because of poor absorption, rapid metabolism, and rapid systemic elimination. Nanotechnology is an emerging field that is potentially changing the way we can treat diseases through drug delivery with curcumin. The recent investigations established several approaches to improve the bioavailability, to increase the plasma concentration, and to enhance the cellular permeability processes of curcumin. Several types of nanoparticles have been found to be suitable for the encapsulation or loading of curcumin to improve its therapeutic effects in different diseases. Nanoparticles such as liposomes, polymeric nanoparticles, micelles, nanogels, niosomes, cyclodextrins, dendrimers, silvers, and solid lipids are emerging as one of the useful alternatives that have been shown to deliver therapeutic concentrations of curcumin. This review shows that curcumin's therapeutic effects may increase to some extent in the presence of nanotechnology. The presented board of evidence focuses on the valuable special effects of curcumin on different diseases and candidates it for future clinical studies in the realm of these diseases.
Collapse
|
22
|
Jain V, Bharatam PV. Pharmacoinformatic approaches to understand complexation of dendrimeric nanoparticles with drugs. NANOSCALE 2014; 6:2476-2501. [PMID: 24441940 DOI: 10.1039/c3nr05400d] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Nanoparticle based drug delivery systems are gaining popularity due to their wide spectrum advantages over traditional drug delivery systems; among them, dendrimeric nano-vectors are the most widely explored carriers for pharmaceutical and biomedical applications. The precise mechanism of encapsulation of drug molecules inside the dendritic matrix, delivery of drugs into specific cells, interactions of nano-formulation with biological targets and proteins, etc. present a substantial challenge to the scientific understanding of the subject. Computational methods complement experimental techniques in the design and optimization of drug delivery systems, thus minimizing the investment in drug design and development. Significant progress in computer simulations could facilitate an understanding of the precise mechanism of encapsulation of bioactive molecules and their delivery. This review summarizes the pharmacoinformatic studies spanning from quantum chemical calculations to coarse-grained simulations, aimed at providing better insight into dendrimer-drug interactions and the physicochemical parameters influencing the binding and release mechanism of drugs.
Collapse
Affiliation(s)
- Vaibhav Jain
- Department of Medicinal Chemistry, Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160 062, India.
| | | |
Collapse
|
23
|
Peng J, Qi X, Chen Y, Ma N, Zhang Z, Xing J, Zhu X, Li Z, Wu Z. Octreotide-conjugated PAMAM for targeted delivery to somatostatin receptors over-expressed tumor cells. J Drug Target 2014; 22:428-38. [DOI: 10.3109/1061186x.2013.879386] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|