1
|
Pamlényi K, Regdon G, Jójárt-Laczkovich O, Nemes D, Bácskay I, Kristó K. Formulation and characterization of pramipexole containing buccal films for using in Parkinson's disease. Eur J Pharm Sci 2023:106491. [PMID: 37301240 DOI: 10.1016/j.ejps.2023.106491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/15/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
Parkinson's disease (PD) is neurodegenerative chronic illness which affects primarily the elderly over 45 years of age. The symptoms can be various, both non-motor and motor symptoms can appear. The biggest problem in the treatment of the disease is the difficulty in swallowing for the patients. However, buccal patches can solve this problem because the patients do not have to swallow the dosage form, and during application, the API can absorb from the area of the buccal mucosa quickly without causing a foreign body sensation. In our present study, we focused on the development of buccal polymer films with pramipexole dihydrochloride (PR). Films with different compositions were formulated and their mechanical properties and chemical interactions were investigated. The biocompatibility of the film compositions was examined on the TR146 buccal cell line. The permeation of PR was also monitored across the TR146 human cell line. It can be stated that the plasticizer can enhance the thickness and the breaking hardness of the films, while not decreasing their mucoadhesivity significantly. All formulations proved to have cell viability higher than 87%. Finally, we found the best composition (3% SA+1% GLY-PR-Sample1) which can be applied on the buccal mucosa in the treatment of PD.
Collapse
Affiliation(s)
- Krisztián Pamlényi
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös u. 6., H-6720 Szeged, Hungary
| | - Géza Regdon
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös u. 6., H-6720 Szeged, Hungary.
| | - Orsolya Jójárt-Laczkovich
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös u. 6., H-6720 Szeged, Hungary
| | - Dániel Nemes
- Department of Pharmaceutical Technology, University of Debrecen, Nagyerdei krt. 98., H-4032 Debrecen, Hungary
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, University of Debrecen, Nagyerdei krt. 98., H-4032 Debrecen, Hungary
| | - Katalin Kristó
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös u. 6., H-6720 Szeged, Hungary
| |
Collapse
|
2
|
Si NT, Nhung NTA, Bui TQ, Nguyen MT, Nhat PV. Gold nanoclusters as prospective carriers and detectors of pramipexole. RSC Adv 2021; 11:16619-16632. [PMID: 35479146 PMCID: PMC9031969 DOI: 10.1039/d1ra02172a] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
Pramipexole (PPX) is known in the treatment of Parkinson's disease and restless legs syndrome. We carried out a theoretical investigation on pramipexole-Au cluster interactions for the applications of drug delivery and detection. Three Au N clusters with sizes N = 6, 8 and 20 were used as reactant models to simulate the metallic nanostructured surfaces. Quantum chemical computations were performed in both gas phase and aqueous environments using density functional theory (DFT) with the PBE functional and the cc-pVDZ-PP/cc-pVTZ basis set. The PPX drug is mainly adsorbed on gold clusters via its nitrogen atom of the thiazole ring with binding energies of ca. -22 to -28 kcal mol-1 in vacuum and ca. -18 to -24 kcal mol-1 in aqueous solution. In addition to such Au-N covalent bonding, the metal-drug interactions are further stabilized by electrostatic effects, namely hydrogen-bond NH⋯Au contributions. Surface-enhanced Raman scattering (SERS) of PPX adsorbed on the Au surfaces and its desorption process were also examined. In comparison to Au8, both Au6 and Au20 clusters undergo a shorter recovery time and a larger change of energy gap, being possibly conducive to electrical conversion, thus signaling for detection of the drug. A chemical enhancement mechanism for SERS procedure was again established in view of the formation of nonconventional hydrogen interactions Au⋯H-N. The binding of PPX to a gold cluster is expected to be reversible and triggered by the presence of cysteine residues in protein matrices or lower-shifted alteration of environment pH. These findings would encourage either further theoretical probes to reach more accurate views on the efficiency of pramipexole-Au interactions, or experimental attempts to build appropriate gold nanostructures for practical trials, harnessing their potentiality for applications.
Collapse
Affiliation(s)
- Nguyen Thanh Si
- Computational Chemistry Research Group, Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University Ho Chi Minh City Vietnam
| | | | - Thanh Q Bui
- Department of Chemistry, University of Sciences, Hue University Hue Vietnam
| | - Minh Tho Nguyen
- Institute for Computational Science and Technology (ICST) Ho Chi Minh City Vietnam
| | - Pham Vu Nhat
- Department of Chemistry, Can Tho University Can Tho Vietnam
| |
Collapse
|
3
|
Priscilla J, Dhas DA, Hubert Joe I, Balachandran S. Spectroscopic, electron localization function, chemical reactivity and antihypertensive activity study on hordenine alkaloid by density functional theory approach. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
4
|
Self-inflating floating nanofiber membranes for controlled drug delivery. Int J Pharm 2020; 579:119164. [DOI: 10.1016/j.ijpharm.2020.119164] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/10/2020] [Accepted: 02/17/2020] [Indexed: 12/19/2022]
|
5
|
Li Y, Wang D, Lu S, Zeng L, Wang Y, Song W, Liu J. Pramipexole nanocrystals for transdermal permeation: Characterization and its enhancement micro-mechanism. Eur J Pharm Sci 2018; 124:80-88. [PMID: 30076954 DOI: 10.1016/j.ejps.2018.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/27/2018] [Accepted: 08/01/2018] [Indexed: 11/29/2022]
Abstract
The purpose of the study was to improve transdermal delivery of pramipexole via nanocrystals and investigate the enhancement micro-mechanism. Pramipexole nanocrystals were prepared using wet media milling method and incorporated into carbomer gel. In vitro permeation studies through rabbit ear skin indicated that the cumulative permeation amount of pramipexole from nanocrystals in 24 h was 2.75 times more than that from coarse suspension. Investigations of selective follicular closing technique indicated that approximately 33.88% of the total permeation from nanocrystals was contributed to the follicular pathway, which was confirmed by scanning electron microscopy images. In vitro permeation and in vivo pharmacokinetic studies indicated that pramipexole from nanocrystal gel showed a higher permeation profile than that from coarse suspension gel. Overall, nanocrystals could improve transdermal delivery of pramipexole through transepidermal and transfollicular pathways by the nanosized particles.
Collapse
Affiliation(s)
- Ying Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, PR China
| | - Danqing Wang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, PR China
| | - Shan Lu
- College of pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, PR China
| | - Lijuan Zeng
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yu Wang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wenting Song
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Jianping Liu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
6
|
Noori Tahneh A, Bagheri Novir S, Balali E. Density functional theory study of structural and electronic properties of trans and cis structures of thiothixene as a nano-drug. J Mol Model 2017; 23:356. [PMID: 29177682 DOI: 10.1007/s00894-017-3522-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/06/2017] [Indexed: 11/30/2022]
Abstract
The geometrical structure, electronic and optical properties, electronic absorption spectra, vibrational frequencies, natural charge distribution, MEP analysis and thermodynamic properties of the trans and cis structures of the drug thiothixene were investigated using density functional theory (DFT) and time-dependent DFT (TDDFT) methods with the B3LYP hybrid functional and 6-311 + G(d,p) basis set. The results of the calculations demonstrate that the cis structure of thiothixene has appropriate quantum properties that can act as an active medicine. The relative energies of trans and cis structures of thiothixene shows that the cis structure is more stable than the trans structure, with a small energy difference. TDDFT calculations show that the cis structure of thiothixene has the best absorption properties. The calculated NLO properties show that the NLO properties of the cis structure of thiothixene are higher than the trans structure, and the fact that the chemical hardness of the cis structure is lower than that of the trans structure that indicates that the reactivity and charge transfer of the cis isomer of thiothixene is higher than that of trans thiothixene. The molecular electrostatic potential (MEP) maps of both structures of thiothixene demonstrate that the oxygen atoms of the molecule are appropriate areas for electrophilic reactions. The vibrational frequencies of the two conformations of thiothixene demonstrate that both structures of thiothixene have almost similar modes of vibrations. The calculated thermodynamic parameters show that these quantities increase with enhancing temperature due to the enhancement of molecular vibrational intensities with temperature. Graphical abstract Trans/Cis isomerization of thiothixene drug.
Collapse
Affiliation(s)
- Akram Noori Tahneh
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Samaneh Bagheri Novir
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran.
| | - Ebrahim Balali
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
7
|
Dadkhah S, Bagheri Novir S, Balali E. Computational investigation of structural and electronic properties of cis and trans structures of fluvoxamine as a nano-drug. COMPUT THEOR CHEM 2017. [DOI: 10.1016/j.comptc.2017.02.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Quantum chemical calculations and analysis of FTIR, FT–Raman and UV–Vis spectra of temozolomide molecule. J Mol Struct 2015. [DOI: 10.1016/j.molstruc.2015.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
9
|
Sadeghzade Z, Beyramabadi SA, Morsali A. A DFT investigation of structure, spectroscopic properties and tautomerism of the anticonvulsant drug Lyrica. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 138:637-642. [PMID: 25541402 DOI: 10.1016/j.saa.2014.11.069] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 11/10/2014] [Accepted: 11/20/2014] [Indexed: 06/04/2023]
Abstract
The Lyrica (Pregabalin) is a novel anticonvulsant and neuropathic pain drug, which could exist as four possible conformers. Herein, employing density functional theory (DFT), and handling the solvent effects with the PCM model, the structural parameters, energetic behavior, natural bond orbital analysis (NBO), as well as tautomerism mechanization of the Lyrica are investigated. The L1 (-OH form) is the most stable conformer of the Lyrica, which can be tautomerized to the L5 (-NH form) tautomer. The tautomerism reaction includes an intramolecular-proton transfer, which affects considerably the structural parameters and atomic charges of the L1. The DFT-computed NMR chemical shifts and IR vibrational frequencies are good in agreement with the experimental values, confirming suitability of the optimized geometry for the Lyrica.
Collapse
Affiliation(s)
- Zohre Sadeghzade
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - S Ali Beyramabadi
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | - Ali Morsali
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
10
|
Swarnalatha N, Gunasekaran S, Muthu S, Nagarajan M. Molecular structure analysis and spectroscopic characterization of 9-methoxy-2H-furo[3,2-g]chromen-2-one with experimental (FT-IR and FT-Raman) techniques and quantum chemical calculations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 137:721-729. [PMID: 25262140 DOI: 10.1016/j.saa.2014.08.125] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 08/18/2014] [Accepted: 08/24/2014] [Indexed: 06/03/2023]
Abstract
Experimental and theoretical investigations on the molecular structure, electronic and vibrational characteristics of 9-methoxy-2H-furo[3,2-g]chromen-2-one (9M2HFC) were presented. The vibrational frequencies were obtained by DFT/B3LYP calculations employing 6-311++G(d,p) basis set, were compared with experimental FT-IR and FT-Raman spectral data. The FT-IR spectrum (4000-400 cm(-1)) and FT-Raman spectrum (4000-100 cm(-1)) in solid phase were recorded for 9M2HFC. The geometry of the title compound was fully optimized. Quantum chemical calculations of the equilibrium geometry, the complete vibrational assignments of wavenumbers using potential energy distribution (PED) calculated with scaled quantum mechanics infrared intensities, Raman activities of the title molecule was reported. HOMO-LUMO energies, molecular electrostatic potential, Mulliken population analysis on atomic charges, natural bond orbital (NBO) analysis, non linear optical behavior in terms of first order hyperpolarizability, and thermodynamic properties of the title molecule were carried out. Finally, simulated FT-IR and FT-Raman spectra showed good agreement with the observed spectra.
Collapse
Affiliation(s)
- N Swarnalatha
- Department of Physics, SCSVMV University, Enathur, Kanchipuram, Tamil Nadu, India.
| | - S Gunasekaran
- St. Peter's University, Avadi, Chennai, Tamil Nadu, India
| | - S Muthu
- Department of Physics, Sri Venkateswara College of Engineering, Sriperumbudur, Tamil Nadu, India
| | - M Nagarajan
- Department of Physics, Arulmigu PalaniAndavar College of Arts and Culture, Palani, India
| |
Collapse
|