1
|
Hossain Khan MD, Ayyalasomayajula R, Cudic M, Wang R. Spectroscopic and calorimetric study of the interaction between Nile blue and double-stranded RNA. Biochem Biophys Rep 2025; 41:101899. [PMID: 39790993 PMCID: PMC11714696 DOI: 10.1016/j.bbrep.2024.101899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/12/2025] Open
Abstract
Nile blue has been widely used in histological staining, fluorescence labeling, and DNA probing, with its intercalation behavior into the DNA helix being well documented. Here, we present a comprehensive investigation to address a current knowledge gap regarding the binding properties of Nile blue to two types of double-stranded RNA (dsRNA): poly(A·U) and poly(I·C), using various biophysical techniques. Absorption and fluorescence spectroscopic studies suggest a significant binding interaction between Nile blue and the two designated dsRNAs, specifically indicating an intercalation binding mode with poly(A·U) and demonstrating a noticeably higher binding affinity compared to poly(I·C). The binding stoichiometry was further determined by Job's plot to be 0.47 for poly(A·U) and 1.0 for poly(I·C). The increased relative viscosity and changes in the circular dichroism (CD) ellipticity of dsRNA after interacting with Nile blue indicate the stacking of Nile blue dyes between the RNA duplexes. These changes suggest a conformational alteration of the dsRNAs and confirm the intercalation mode of binding. The thermal dynamic analysis demonstrates that both binding were favored by negative enthalpy and primarily driven by the hydrophobic effect.
Collapse
Affiliation(s)
- Md Dulal Hossain Khan
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL, 33431, USA
| | - Ramya Ayyalasomayajula
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL, 33431, USA
| | - Mare Cudic
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL, 33431, USA
| | - Renjie Wang
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL, 33431, USA
| |
Collapse
|
2
|
Mandal MK, Mohammad M, Yasmin N, Gazi HAR, Islam MM. Exploration of the role of Hibiscus esculentus (okra) mucilage for the removal of phenothiazinium dyes from water body: Spectroscopic, thermodynamic and molecular modeling study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117130. [PMID: 39366303 DOI: 10.1016/j.ecoenv.2024.117130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/15/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024]
Abstract
Environmental pollution poses a major problem now a day. Several dyes, in the form of industrial waste, pollute water body and may cause adverse effects to human health. In this paper ADME and toxicity of fives Phenothiazinium group of dyes Methylene blue (MB), Azure A (AA), Azure B (AB), Azure C (AC) and Toluidine Blue O (TBO) were predicted using Swiss ADME and Protox II tools. Results showed these dyes may herm for living organism due to their carcinogenic, mutagenic and hepatotoxic properties. Removal efficiency of these dyes using okra plant product were determined using spectroscopic, thermodynamic and molecular modeling study. It was revealed that these dyes adsorb on the surface of okra leaf mostly at pH 7.0 and the adsorption isotherms were found to fit in Langmuir and Freundlich isotherm model, while Temkin model fails to do this. Mucilage present in different parts of okra plant plays a significant role on removal of these dyes and is able to remove near about 71-92 % of dyes from water body by itself. As this process did not fit in any of above said adsorption isotherm model, it may be suggested that some other mechanism may happen. Further studies explore that these dyes bound to the hydrophobic pocket of mucilage with binding affinity in the order of 105 M-1 and the bindings were exothermic in nature with enthalpy change in the range of - 2.94 to - 4.28 kcal/mole. Molecular docking study validate all the experimental results obtained from spectroscopic and thermodynamic study and enlighten the role of structure of dyes on their binding affinity to mucilage. This paper will help to systematically understand the role of okra plant products on removal efficiency of Phenothiazinium group of dyes with their structural variations.
Collapse
Affiliation(s)
- Md Kalimuddin Mandal
- Department of Chemistry, Aliah University, New Town, Kolkata, West Bengal 700160, India
| | - Mukti Mohammad
- Department of Chemistry, Aliah University, New Town, Kolkata, West Bengal 700160, India
| | - Nasima Yasmin
- Department of Chemistry, Aliah University, New Town, Kolkata, West Bengal 700160, India.
| | - Harun Al Rasid Gazi
- Department of Chemistry, Aliah University, New Town, Kolkata, West Bengal 700160, India.
| | - Md Maidul Islam
- Department of Chemistry, Aliah University, New Town, Kolkata, West Bengal 700160, India.
| |
Collapse
|
3
|
Dutta S, Adhikary S, Bhattacharya S, Roy D, Chatterjee S, Chakraborty A, Banerjee D, Ganguly A, Nanda S, Rajak P. Contamination of textile dyes in aquatic environment: Adverse impacts on aquatic ecosystem and human health, and its management using bioremediation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120103. [PMID: 38280248 DOI: 10.1016/j.jenvman.2024.120103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/29/2024]
Abstract
Textile dyes are the burgeoning environmental contaminants across the world. They might be directly disposed of from textile industries into the aquatic bodies, which act as the direct source for the entire ecosystem, ultimately impacting the human beings. Hence, it is essential to dissect the potential adverse outcomes of textile dye exposure on aquatic plants, aquatic fauna, terrestrial entities, and humans. Analysis of appropriate literature has revealed that textile dye effluents could affect the aquatic biota by disrupting their growth and reproduction. Various aquatic organisms are targeted by textile dye effluents. In such organisms, these chemicals affect their development, behavior, and induce oxidative stress. General populations of humans are exposed to textile dyes via the food chain and drinking contaminated water. In humans, textile dyes are biotransformed into electrophilic intermediates and aromatic amines by the enzymes of the cytochrome family. Textile dyes and their biotransformed products form the DNA and protein adducts at sub-cellular moiety. Moreover, these compounds catalyze the production of free radicals and oxidative stress, and trigger the apoptotic cascades to produce lesions in multiple organs. In addition, textile dyes modulate epigenetic factors like DNA methyltransferase and histone deacetylase to promote carcinogenesis. Several bioremediation approaches involving algae, fungi, bacteria, biomembrane filtration techniques, etc., have been tested and some other hybrid systems are currently under investigation to treat textile dye effluents. However, many such approaches are at the trial stage and require further research to develop more efficient, cost-effective, and easy-to-handle techniques.
Collapse
Affiliation(s)
- Sohini Dutta
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Satadal Adhikary
- Post Graduate Department of Zoology, A.B.N. Seal College, Cooch Behar, West Bengal, India
| | | | - Dipsikha Roy
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Sovona Chatterjee
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Aritra Chakraborty
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Diyasha Banerjee
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Abhratanu Ganguly
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Sayantani Nanda
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Prem Rajak
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| |
Collapse
|
4
|
Rafaqat S, Ali N, Torres C, Rittmann B. Recent progress in treatment of dyes wastewater using microbial-electro-Fenton technology. RSC Adv 2022; 12:17104-17137. [PMID: 35755587 PMCID: PMC9178700 DOI: 10.1039/d2ra01831d] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/02/2022] [Indexed: 01/24/2023] Open
Abstract
Globally, textile dyeing and manufacturing are one of the largest industrial units releasing huge amount of wastewater (WW) with refractory compounds such as dyes and pigments. Currently, wastewater treatment has been viewed as an industrial opportunity for rejuvenating fresh water resources and it is highly required in water stressed countries. This comprehensive review highlights an overall concept and in-depth knowledge on integrated, cost-effective cross-disciplinary solutions for domestic and industrial (textile dyes) WW and for harnessing renewable energy. This basic concept entails parallel or sequential modes of treating two chemically different WW i.e., domestic and industrial in the same system. In this case, contemporary advancement in MFC/MEC (METs) based systems towards Microbial-Electro-Fenton Technology (MEFT) revealed a substantial emerging scope and opportunity. Principally the said technology is based upon previously established anaerobic digestion and electro-chemical (photo/UV/Fenton) processes in the disciplines of microbial biotechnology and electro-chemistry. It holds an added advantage to all previously establish technologies in terms of treatment and energy efficiency, minimal toxicity and sludge waste, and environmental sustainable. This review typically described different dyes and their ultimate fate in environment and recently developed hierarchy of MEFS. It revealed detail mechanisms and degradation rate of dyes typically in cathodic Fenton system under batch and continuous modes of different MEF reactors. Moreover, it described cost-effectiveness of the said technology in terms of energy budget (production and consumption), and the limitations related to reactor fabrication cost and design for future upgradation to large scale application.
Collapse
Affiliation(s)
- Shumaila Rafaqat
- Department of Microbiology, Quaid-i-Azam University Islamabad Pakistan
| | - Naeem Ali
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad Pakistan
| | - Cesar Torres
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University USA
| | - Bruce Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University USA
| |
Collapse
|
5
|
Du H, Huang S, Wang J. Environmental risks of polymer materials from disposable face masks linked to the COVID-19 pandemic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152980. [PMID: 35007580 PMCID: PMC8741336 DOI: 10.1016/j.scitotenv.2022.152980] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 04/14/2023]
Abstract
The indispensable role of plastic products in our daily life is highlighted by the COVID-19 pandemic again. Disposable face masks, made of polymer materials, as effective and cheap personal protective equipment (PPE), have been extensively used by the public to slow down the viral transmission. The repercussions of this have generated million tons of plastic waste being littered into the environment because of the improper disposal and mismanagement amid. And plastic waste can release microplastics (MPs) with the help of physical, chemical and biological processes, which is placing a huge MPs contamination burden on the ecosystem. In this work, the knowledge regarding to the combined effects of MPs and pollutants from the release of face masks and the impacts of wasted face masks and MPs on the environment (terrestrial and aquatic ecosystem) was systematically discussed. In view of these, some green technologies were put forward to reduce the amounts of discarded face masks in the environment, therefore minimizing MPs pollution at its source. Moreover, some recommendations for future research directions were proposed based on the remaining knowledge gaps. In a word, MPs pollution linked to face masks should be a focus worldwide.
Collapse
Affiliation(s)
- Hao Du
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Shushi Huang
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 528478, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China.
| |
Collapse
|
6
|
Oke N, Mohan S. Development of nanoporous textile sludge based adsorbent for the dye removal from industrial textile effluent. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126864. [PMID: 34416690 DOI: 10.1016/j.jhazmat.2021.126864] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
The development of a novel textile sludge based activated carbon (TSBAC) adsorbent and its performance for the treatment of textile dyeing effluent, have been explained in this paper. TSBAC was prepared by the thermal treatment of textile effluent treatment sludge followed by the chemical activation using phosphoric acid. Characterization of TSBAC resulted in enhanced specific surface area (123.65 m2/g) along with the presence of active surface functional groups including -OH, -COOH, -CO. TSBAC showed superior adsorption capacity for methylene blue (123.6 mg/g), reactive red 198 (101.4 mg/g), and reactive yellow 145 (96.8 mg/g) individually, and from the synthetic textile effluent (106 mg/g). The pseudo-second order model and Langmuir isotherm model were found to be fitted well with batch experimental data. The results of the continuous column studies showed that adsorption capacity for methylene blue, reactive red 198, reactive yellow 145 are 101.8 mg/g, 76.6 mg/g, and 75.1 mg/g respectively, and the synthetic textile effluent resulted in an adsorption capacity value of 79.1 mg/g. The reuse potential of TSBAC was proved by effective dye removal up to six reuse cycles. The leachability studies proved that the used adsorbent could be safely disposed of without any harmful effect to the environment.
Collapse
Affiliation(s)
- Ninad Oke
- Indian Institute of Technology Madras, Environmental and Water Resources Engineering Division, Department of Civil Engineering, Chennai, Tamil Nadu 600036, India.
| | - S Mohan
- Indian Institute of Technology Madras, Environmental and Water Resources Engineering Division, Department of Civil Engineering, Chennai, Tamil Nadu 600036, India.
| |
Collapse
|
7
|
Sharma B, Kumari N, Mathur S, Sharma V. A systematic review on iron-based nanoparticle-mediated clean-up of textile dyes: challenges and prospects of scale-up technologies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:312-331. [PMID: 34665422 DOI: 10.1007/s11356-021-16846-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
The projected increase of the global textile industry to USD1002.84 billion in 2027 indicates a simultaneous increase in water pollution due to textile dye-rich voluminous effluents highlighting the requirement of source clean-up. This review analyzes the colossal amount of literature on lab-scale nanoremediation technologies involving iron-based nanoparticles and the mechanistic aspects. However, not many studies are in place with regard to execution because there are several bottlenecks in the scale-up of the technology. This review attempts to identify the limitations of scale-up by focusing on each step of nanoremediation from synthesis of iron-based nanoparticles to their applications. The most prominent appears to be the low economic viability of physico-chemical synthesis of nanoparticles, lack of appropriate toxicity studies of iron-based nanoparticles, and dearth of studies on field applications. It is recommended that above studies should be made not only on lab scale but also on field samples preferably utilizing microbial products based green synthesized iron-based nanoparticles and conducting toxicity studies. Besides, immobilization of the nanoparticles on renewable material greatly enhances the sustainability and economic value of the process. Furthermore, since the chemical composition of dye-rich effluents varies among industries, effluent specific optimization of process parameters and kinetics thereof is also a major prerequisite for scale-up. The value of this review lies in the fact that it brings, for the first time, a comprehensive and critical systematization of various aspects needing attention in order to scale-up such effective nanoremediation processes.
Collapse
Affiliation(s)
- Baby Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1 Kant Kalwar, NH11C, RIICO Industrial Area, Jaipur, Rajasthan, 303007, India
| | - Nilima Kumari
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, 304022, India
| | - Shruti Mathur
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1 Kant Kalwar, NH11C, RIICO Industrial Area, Jaipur, Rajasthan, 303007, India
| | - Vinay Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1 Kant Kalwar, NH11C, RIICO Industrial Area, Jaipur, Rajasthan, 303007, India.
| |
Collapse
|
8
|
Javaid R, Qazi UY, Ikhlaq A, Zahid M, Alazmi A. Subcritical and supercritical water oxidation for dye decomposition. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 290:112605. [PMID: 33894487 DOI: 10.1016/j.jenvman.2021.112605] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/26/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
The total annual output of synthetic dyes exceeds 7 × 105 tons. About 1,000 tons of non-biodegradable synthetic dyes are released every year into the natural streams and water sources from textile wastes. The release of these colored wastewater exerts negative impact on aquatic ecology and human beings because of the poisonous and carcinogenic repercussions of dyes involved in coloration production. Therefore, with a growing interest in the environment, efficient technologies need to be developed to eliminate dyes from local and industrial wastewater. Supercritical water oxidation as a promising wastewater treatment technology has many advantages, such as a rapid reaction and pollution-free products. However, due to corrosion, salt precipitation and operational problems, supercritical water oxidation process did not gain expected industrial development. These technical difficulties can be overcome by application of non-corrosive subcritical water as a reaction medium. This work summarizes the negative impacts of dyes and role of subcritical and supercritical water and their efficiencies in dye oxidation processes.
Collapse
Affiliation(s)
- Rahat Javaid
- Renewable Energy Research Center, Fukushima Renewable Energy Institute, National Institute of Advanced Industrial Science and Technology, AIST, 2-2-9 Machiikedai, Koriyama, Fukushima, 963-0298, Japan.
| | - Umair Yaqub Qazi
- Department of Chemistry, College of Science, University of Hafr Al Batin, P.O Box 1803, Hafr Al Batin, 39524, Saudi Arabia; Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, PR China.
| | - Amir Ikhlaq
- Institute of Environmental Engineering and Research, University of Engineering and Technology, GT Road, 54890, Lahore, Punjab, Pakistan
| | - Muhammad Zahid
- Department of Chemistry, University of Agriculture Faisalabad, Pakistan
| | - Amira Alazmi
- Department of Chemistry, University Colleges at Nairiyah, University of Hafr Al Batin. P.O Box 1803 Hafr Al Batin 39524, Kingdom of Saudi Arabia
| |
Collapse
|
9
|
Kostjukova LO, Leontieva SV, Kostjukov VV. The vibronic absorption spectrum and electronic properties of Azure B in aqueous solution: TD-DFT/DFT study. J Mol Graph Model 2021; 107:107964. [PMID: 34147837 DOI: 10.1016/j.jmgm.2021.107964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 11/26/2022]
Abstract
The vibronic absorption spectrum of Azure B (AB) in an aqueous solution is calculated using the time-dependent density functional theory (TD-DFT). The results of calculations are analyzed using all hybrid functionals supported by Gaussian16, the 6-31++G(d,p) basis set, and the IEFPCM and SMD solvent models. The solvent model IEFPCM gave significantly underestimated values of λmax in comparison with the experiment. This is a manifestation of the TD-DFT "cyanine failure". However, the SMD model made it possible to obtain good agreement between the calculation results and experimental data. The best fit was achieved using the X3LYP functional. According to our calculations, the shoulder in the visible absorption spectrum of AB has a vibronic origin. However, the calculated shoulder is weaker than the experimental one. Explicit assignment of two water molecules, which form strong hydrogen bonds with a dye molecule, leads to a shift of the calculated absorption spectrum to longer wavelengths by approximately 17 nm but does not lead to an improvement in its shape. Comparative analysis of the calculated vibronic absorption spectra of Azure B with those obtained earlier for Azure A and methylene blue showed that the presence and intensity of the short-wavelength shoulder are determined by the location of the bands of higher vibronic transitions relative to the band of the 00 → 00 main transitions. Photoexcitation leads to an increase in the dipole moment of the dye molecule. An insignificant photoinduced electron transfer was found in the central ring of the chromophore of the dye molecule.
Collapse
Affiliation(s)
- Lyudmila O Kostjukova
- Physics Department, Nakhimov Black Sea Higher Naval School, Dybenko st.,1a, Sevastopol, Crimea, 299028, Ukraine
| | - Svetlana V Leontieva
- Physics Department, Nakhimov Black Sea Higher Naval School, Dybenko st.,1a, Sevastopol, Crimea, 299028, Ukraine
| | - Victor V Kostjukov
- Physics Department, Sevastopol State University, Universitetskaya st., 33, Sevastopol, Crimea, 299053, Ukraine.
| |
Collapse
|
10
|
Brader ML, Williams SJ, Banks JM, Hui WH, Zhou ZH, Jin L. Encapsulation state of messenger RNA inside lipid nanoparticles. Biophys J 2021; 120:2766-2770. [PMID: 33773963 PMCID: PMC8390897 DOI: 10.1016/j.bpj.2021.03.012] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/22/2021] [Accepted: 03/12/2021] [Indexed: 12/31/2022] Open
Abstract
Understanding the structure of messenger RNA (mRNA) lipid nanoparticles, and specifically the microenvironment of the mRNA molecules within these entities, is fundamental to advancing their biomedical potential. Here, we show that a permeating cationic dye, thionine, can serve as a cryogenic electron microscopy contrasting agent by binding selectively to encapsulated mRNA without disturbing lipid nanoparticle morphology. Cryo-electron microscopy images identify the mRNA location, revealing that mRNA may exist within solvent-filled cavities or may be substantially lipid associated.
Collapse
Affiliation(s)
| | | | | | - Wong H Hui
- Department of Microbiology, Immunology, and Molecular Genetics, Los Angeles, Los Angeles, California; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California
| | - Z Hong Zhou
- Department of Microbiology, Immunology, and Molecular Genetics, Los Angeles, Los Angeles, California; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California
| | - Lin Jin
- Moderna, Inc., Cambridge, Massachusetts
| |
Collapse
|
11
|
Paul P, Mati SS, Kumar GS. Insights on the interaction of phenothiazinium dyes methylene blue and new methylene blue with synthetic duplex RNAs through spectroscopy and modeling. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 204:111804. [PMID: 32007677 DOI: 10.1016/j.jphotobiol.2020.111804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 12/31/2022]
Abstract
The ubiquitous influence of double stranded RNAs in biological events makes them imperative to gather data based on specific binding procedure of small molecules to various RNA conformations. Particular interest may be attributed to situations wherein small molecules target RNAs altering their structures and causing functional modifications. The main focus of this study is to delve into the interactive pattern of two small molecule phenothiazinium dyes, methylene blue and new methylene blue, with three duplex RNA polynucleotides-poly(A).poly(U), poly(C).poly(G) and poly(I).poly(C) by spectroscopic and molecular modeling techniques. Analysis of data as per Scatchard and Benesi-Hildebrand methodologies revealed highest affinity of these dyes to poly(A).poly(U) and least to poly(I).poly(C). In addition to fluorescence quenching, viscometric studies also substantiated that the dyes follow different modes of binding to different RNA polynucleotides. Distortion in the RNA structures with induced optical activity in the otherwise optically inactive dye molecules was evidenced from circular dichroism results. Dye-induced RNA structural modification occurred from extended conformation to compact particles visualized by atomic force microscopy. Molecular docking results revealed different binding patterns of the dye molecules within the RNA duplexes. The novelty of the present work lies towards a new contribution of the phenothiazinium dyes in dysfunctioning double stranded RNAs, advancing our knowledge to their potential use as RNA targeted small molecules.
Collapse
Affiliation(s)
- Puja Paul
- Department of Chemistry, Dinabandhu Mahavidyalaya, Bongaon, West Bengal 743235, India; CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Soumya Sundar Mati
- Government GD College, Keshiary, Paschim Medinipur, West Bengal 721135, India
| | | |
Collapse
|
12
|
Lellis B, Fávaro-Polonio CZ, Pamphile JA, Polonio JC. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biori.2019.09.001] [Citation(s) in RCA: 773] [Impact Index Per Article: 128.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Comparison of dye (oxazine and thiazine) materials as a photosensitizer for use in photogalvanic cells based on molecular interaction with sodium dodecyl sulphate by spectral study. JOURNAL OF SAUDI CHEMICAL SOCIETY 2019. [DOI: 10.1016/j.jscs.2018.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Wang XL, Sun R, Zhu WJ, Sha XL, Ge JF. Reversible Absorption and Emission Responses of Nile Blue and Azure A Derivatives in Extreme Acidic and Basic Conditions. J Fluoresc 2017; 27:819-827. [PMID: 28168517 DOI: 10.1007/s10895-016-2017-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/29/2016] [Indexed: 11/29/2022]
Abstract
Oxazinium derivatives have recently played an important role in bioanalysis attributing to the distinguished properties, thus a detailed study of the structure-property relationship is especially significant. Herein, pH-sensitive optical properties of Nile Blue (1a), N-monoalkyl-Nile Blue (1b) and Azure A (1c) have been carried out in extreme acid and base conditions. Dyes 1a and 1c showed colorimetric changes by the protonation of nitrogen atom in strong acidic condition (pH < 2.0), and dyes 1a - c exhibited colorimetric changes by equilibrium between amino and imide groups in very strong basic case (pH > 7.6). Besides, their fluorescent properties were closed to ON - OFF and OFF - ON emissions at 640-820 nm under strong acidic and basic conditions. Moreover, the absorption and emission properties were reversible, and there were no remarkable optical intensity changes of dyes 1a - c under subacidic and neutral solutions (pH = 3.0-7.0). The (TD) DFT calculations were used to optimize the most stable structures of their corresponding protonated and deprotonated forms, and their absorption and emission properties were also explained. Their fluorescent properties nearly ON-OFF and OFF - ON in strong acidic and basic conditions at near-infrared region will give the possible application in pH detection for extreme conditions. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Xiu-Li Wang
- College of Chemistry, Chemical Engineering and Material Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Soochow University, Suzhou, 215123, People's Republic of China
| | - Ru Sun
- College of Chemistry, Chemical Engineering and Material Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Soochow University, Suzhou, 215123, People's Republic of China.
| | - Wei-Jin Zhu
- College of Chemistry, Chemical Engineering and Material Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Soochow University, Suzhou, 215123, People's Republic of China
| | - Xin-Long Sha
- College of Chemistry, Chemical Engineering and Material Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Soochow University, Suzhou, 215123, People's Republic of China
| | - Jian-Feng Ge
- College of Chemistry, Chemical Engineering and Material Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Soochow University, Suzhou, 215123, People's Republic of China.
| |
Collapse
|
15
|
Arumugam SS, Subramanian N, Malaichamy I. New insights into the dimerization and site-specific cooperative interaction of Azure B with model transport proteins by spectroscopic and computational studies. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 164:212-225. [DOI: 10.1016/j.jphotobiol.2016.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 09/05/2016] [Accepted: 09/08/2016] [Indexed: 12/16/2022]
|