1
|
Wang D, Chen H, Han H, Yang W, Sun Q, Cao C, Ning K, Huang Z, Wu T. Interaction of biochar with extracellular polymers of resistant bacteria restrains Pb(II) adsorption onto their composite: Macro and micro scale investigations. BIORESOURCE TECHNOLOGY 2024; 414:131602. [PMID: 39393646 DOI: 10.1016/j.biortech.2024.131602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Pb(II) sequestration in extracellular polymers-biochar composites (EPS-BC) was explored using macroscopic models and microscopic technology. The results showed that the actual adsorption capacity of EPS-BC was 52.2% lower than the calculated capacity based on adsorption onto pure components due to the interaction of polysaccharide and amide group in extracellular polymers with biochar, which masked the reactive sites related to Pb(II) in EPS-BC. The bond of Pb-O (40.8%) and Pb-OOC (31.5%) mainly contributed to Pb(II) speciation on the EPS-BC surfaces. Furthermore, each Pb atom coordinated with 6O atoms in the first shell and with 0.5C atoms in the second shell, indicating that the carboxyl group in composite was complexed with Pb(II) as a monodentate inner-sphere structure. The findings provide an in-depth understanding of the adsorption mechanism of heavy metals by extracellular polymers coupled with biochar at molecular scale, guiding bioremediation with respect to heavy metal contamination.
Collapse
Affiliation(s)
- Di Wang
- College of Xingzhi, Zhejiang Normal University, Jinhua 321000, China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321000, China
| | - Hansong Chen
- College of Xingzhi, Zhejiang Normal University, Jinhua 321000, China.
| | - Hui Han
- College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Wenwen Yang
- College of Xingzhi, Zhejiang Normal University, Jinhua 321000, China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321000, China
| | - Qi Sun
- College of Xingzhi, Zhejiang Normal University, Jinhua 321000, China
| | - Churong Cao
- College of Xingzhi, Zhejiang Normal University, Jinhua 321000, China
| | - Kai Ning
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510630, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuochun Huang
- College of Xingzhi, Zhejiang Normal University, Jinhua 321000, China
| | - Ting Wu
- College of Xingzhi, Zhejiang Normal University, Jinhua 321000, China
| |
Collapse
|
2
|
Hu C, Yang Z, Chen Y, Tang J, Zeng L, Peng C, Chen L, Wang J. Unlocking soil revival: the role of sulfate-reducing bacteria in mitigating heavy metal contamination. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:417. [PMID: 39240407 DOI: 10.1007/s10653-024-02190-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/23/2024] [Indexed: 09/07/2024]
Abstract
Soil contamination with heavy metals from industrial and mining activities poses significant environmental and public health risks, necessitating effective remediation strategies. This review examines the utilization of sulfate-reducing bacteria (SRB) for bioremediation of heavy metal-contaminated soils. Specifically, it focuses on SRB metabolic pathways for heavy metal immobilization, interactions with other microorganisms, and integration with complementary remediation techniques such as soil amendments and phytoremediation. We explore the mechanisms of SRB action, their synergistic relationships within soil ecosystems, and the effectiveness of combined remediation approaches. Our findings indicate that SRB can effectively immobilize heavy metals by converting sulfate to sulfide, forming stable metal sulfides, thereby reducing the bioavailability and toxicity of heavy metals. Nevertheless, challenges persist, including the need to optimize environmental conditions for SRB activity, address their sensitivity to acidic conditions and high heavy metal concentrations, and mitigate the risk of secondary pollution from excessive carbon sources. This study underscores the necessity for innovative and sustainable SRB-based bioremediation strategies that integrate multiple techniques to address the complex issue of heavy metal soil contamination. Such advancements are crucial for promoting green mining practices and environmental restoration.
Collapse
Affiliation(s)
- Cheng Hu
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, Sichuan, China
| | - Zhendong Yang
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, Sichuan, China.
- Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion and Utilization Technology, Chengdu, 610106, Sichuan, China.
| | - Yijing Chen
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, Sichuan, China
| | - Jiayi Tang
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, Sichuan, China
| | - Li Zeng
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, Sichuan, China
- Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion and Utilization Technology, Chengdu, 610106, Sichuan, China
| | - Cong Peng
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, Sichuan, China
| | - Liudong Chen
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, Sichuan, China
| | - Jing Wang
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, Sichuan, China
- Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion and Utilization Technology, Chengdu, 610106, Sichuan, China
| |
Collapse
|
3
|
Sun S, Wang Y, He B, Chen J, Leng F, Luo W. Comparative transcriptomics revealed the mechanism of Stenotrophomonas rhizophila JC1 response and biosorption to Pb 2. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:231. [PMID: 38849682 DOI: 10.1007/s10653-024-02019-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/29/2024] [Indexed: 06/09/2024]
Abstract
Nowadays, there is limited research focusing on the biosorption of Pb2+ through microbial process, particularly at the level of gene expression. To overcome this knowledge gap, we studied the adsorption capacity of Stenotrophomonas rhizophila JC1 to Pb2+, and investigated the physiological mechanism by means of SEM, EDS, FTIR, membrane permeability detection, and investigated the molecular mechanism through comparative transcriptomics. The results showed that after 16 h of cultivation, the biosorption capacity of JC1 for 100 mg/L of Pb2+ reached at 79.8%. The main mechanism of JC1 adsorb Pb2+ is via intracellular accumulation, accounting for more than 90% of the total adsorption. At the physiological level, Pb2+ can precipitate with anion functional groups (e.g., -OH, -NH) on the bacterial cell wall or undergo replacement reaction with cell component elements (e.g., Si, Ca) to adsorb Pb2+ outside of the cell wall, thus accomplishing extracellular adsorption of Pb2+ by strains. Furthermore, the cell membrane acts as a "switch" that inhibits the entry of metal ions into the cell from the plasma membrane. At the molecular level, the gene pbt specificity is responsible for the adsorption of Pb2+ by JC1. In addition, phosphate permease is a major member of the ABC transporter family involved in Pb2+, and czcA/cusA or Co2+/Mg2+ efflux protein plays an important role in the efflux of Pb2+ in JC1. Further, cellular macromolecule biosynthesis, inorganic cation transmembrane transport, citrate cycle (TCA) and carbon metabolism pathways all play crucial roles in the response of strain JC1 to Pb2+ stress.
Collapse
Affiliation(s)
- Shangchen Sun
- Yellow River Basin Ecotope Integration of Industry and Education Research Institute, Lanzhou Resources & Environment Voc-Tech University, Lanzhou, 730030, China
| | - Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou, 730050, China.
| | - Bihong He
- Yellow River Basin Ecotope Integration of Industry and Education Research Institute, Lanzhou Resources & Environment Voc-Tech University, Lanzhou, 730030, China
| | - Jixiang Chen
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Feifan Leng
- School of Life Science and Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou, 730050, China
| | - Wen Luo
- School of Life Science and Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou, 730050, China
| |
Collapse
|
4
|
Kumari S, Das S. Functional amyloid fibrils of biofilm-forming marine bacterium Pseudomonas aeruginosa PFL-P1 interact spontaneously with pyrene and augment the biodegradation. Int J Biol Macromol 2024; 266:131266. [PMID: 38556224 DOI: 10.1016/j.ijbiomac.2024.131266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/13/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
Bacteria thrive in biofilms embedding in the three-dimensional extracellular polymeric substances (EPS). Functional Amyloid in Pseudomonas (Fap), a protein in EPS, efficiently sequesters polycyclic aromatic hydrocarbons (PAHs). Present study reports the characterization of Fap fibrils from Pseudomonas aeruginosa PFL-P1 and describes the interaction with pyrene to assess the impact on pyrene degradation. Overexpression of fap in E. coli BL21(DE3) cells significantly enhances biofilm formation (p < 0.0001) and amyloid production (p = 0.0002), particularly with pyrene. Defibrillated Fap analysis reveals FapC monomers and increased fibrillation with pyrene. Circular Dichroism (CD), Fourier Transform Infrared Spectroscopy (FTIR), and X-ray Diffraction (XRD) unveil characteristic amyloid peaks and structural changes in Fap fibrils upon pyrene exposure. 3D-EEM analysis identifies a protein-like fluorophore in Fap fibrils, exhibiting pyrene-induced fluorescence quenching. Binding constants range from 5.23 to 7.78 M-1, with ΔG of -5.10 kJ mol-1 at 298 K, indicating spontaneous and exothermic interaction driven by hydrophobic forces. Exogenous Fap fibrils substantially increased the biofilm growth and pyrene degradation by P. aeruginosa PFL-P1 from 46 % to 64 % within 7 days (p = 0.0236). GC-MS identifies diverse metabolites, implying phthalic acid pathway in pyrene degradation. This study deepens insights into structural dynamics of Fap fibrils when exposed to pyrene, offering potential application in environmental bioremediation.
Collapse
Affiliation(s)
- Swetambari Kumari
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
5
|
Priyadarshanee M, Das S. Spectra metrology for interaction of heavy metals with extracellular polymeric substances (EPS) of Pseudomonas aeruginosa OMCS-1 reveals static quenching and complexation dynamics of EPS with heavy metals. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133617. [PMID: 38306836 DOI: 10.1016/j.jhazmat.2024.133617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/08/2024] [Accepted: 01/23/2024] [Indexed: 02/04/2024]
Abstract
The adsorption behavior and interaction mechanisms of extracellular polymeric substances (EPS) of Pseudomonas aeruginosa OMCS-1 towards chromium (Cr), lead (Pb), and cadmium (Cd) were investigated. EPS-covered (EPS-C) cells exhibited significantly higher (p < 0.0001; two-way ANOVA) removal of Cr (85.58 ± 0.39%), Pb (81.98 ± 1.02%), and Cd (73.88 ± 1%) than EPS-removed (EPS-R) cells. Interactions between EPS-heavy metals were spontaneous (ΔG<0). EPS-Cr(VI) and EPS-Pb(II) binding were exothermic (ΔH<0), while EPS-Cd(II) binding was endothermic (ΔH>0) process. EPS bonded to Pb(II) via inner-sphere complexation by displacement of surrounding water molecules, while EPS-Cr(VI) and EPS-Cd(II) binding occurred through outer-sphere complexation via electrostatic interactions. Increased zeta potential of Cr (29.75%), Pb (41.46%), and Cd (46.83%) treated EPS and unchanged crystallinity (CIXRD=0.13), inferred EPS-metal binding via both electrostatic interactions and complexation mechanism. EPS-metal interaction was predominantly promoted through hydroxyl, amide, carboxyl, and phosphate groups. Metal adsorption deviated EPS protein secondary structures. Strong static quenching mechanism between tryptophan protein-like substances in EPS and heavy metals was evidenced. EPS sequestered heavy metals via complexation with C-O, C-OH, CO/O-C-O, and NH/NH2 groups and ion exchange with -COOH group. This study unveils the fate of Cr, Pb, and Cd on EPS surface and provides insight into the interactions among EPS and metal ions for metal sequestration.
Collapse
Affiliation(s)
- Monika Priyadarshanee
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India.
| |
Collapse
|
6
|
Battulga B, Atarashi-Andoh M, Koarashi J, Oyuntsetseg B, Kawahigashi M. Plastic-associated metal(loid)s in the urban river environments of Mongolia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 261:115100. [PMID: 37285671 DOI: 10.1016/j.ecoenv.2023.115100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/16/2023] [Accepted: 06/01/2023] [Indexed: 06/09/2023]
Abstract
The widespread distribution of plastic debris in riverine environment is one of the major concerns of environmental pollution because of its potential impact on the aquatic ecosystem. In this study, we investigated the accumulation of metal(loid)s on polystyrene foam (PSF) plastics collected from the floodplain of the Tuul River of Mongolia. The metal(loid)s sorbed on plastics were extracted from the collected PSF via sonication after peroxide oxidation. The size-dependent association of metal(loid)s with plastics indicates that PSFs act as vectors for pollutants in the urban river environment. The mean concentrations of metal(loid)s (i.e., B, Cr, Cu, Na, and Pb) indicate a higher accumulation of the metal(loid)s on meso-sized PSFs compared with macro- and micro-sized PSFs. In addition, the images from scanning electron microscopy (SEM) indicated not only the degraded surface of plastics showing fractures, holes, and pits but also the adhered mineral particles and microorganisms on the PSFs. The interaction of metal(loid)s with plastics was probably facilitated by the physical and chemical properties of altered surface of plastics through photodegradation, followed by an increase in surface area by size reduction and/or biofilm development in the aquatic environment. The enrichment ratio (ER) of metals on PSF samples suggested the continuous accumulation of heavy metals on plastics. Our results demonstrate that the widespread plastic debris could be a carrier of hazardous chemicals in the environment. Considering that the negative impacts of plastic debris on environmental health are major concerns to be addressed, the fate and behavior of the plastics especially their interaction with pollutants in aquatic environments should be further studied.
Collapse
Affiliation(s)
- Batdulam Battulga
- Department of Geography, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan; Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan.
| | - Mariko Atarashi-Andoh
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
| | - Jun Koarashi
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
| | - Bolormaa Oyuntsetseg
- Department of Chemistry, School of Arts and Sciences, National University of Mongolia, Ulaanbaatar 14201, Mongolia
| | - Masayuki Kawahigashi
- Department of Geography, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
7
|
Priyadarshanee M, Das S. Bacterial extracellular polymeric substances: Biosynthesis and interaction with environmental pollutants. CHEMOSPHERE 2023; 332:138876. [PMID: 37164199 DOI: 10.1016/j.chemosphere.2023.138876] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/12/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
Extracellular polymeric substances (EPS) are highly hydrated matrices produced by bacteria, containing various polymers such as polysaccharides, proteins, lipids, and DNA. Extracellular polymer concentrations, ions, and functional groups provide physical stability to the EPS. Constituents of EPS form the three-dimensional architecture and help acquire nutrition for the bacteria. Structural and functional diversity of the extracellular polymer depends on the specific glycosyltransferases, polymerase and transporter proteins. These enzymes are encoded by specific genes present in operons such as crd, alg, wca, and gum reported in Agrobacterium, Pseudomonas, Enterobacteriaceae, and Xanthomonas. The operons regulate the biosynthesis of extracellular polymers such as curdlan, alginate, colonic acid, and xanthan, respectively. Various functional groups in the EPS, such as carbonyl, hydroxyl, phosphoryl, and amide, provide the sorption site for interaction with environmental pollutants. Hydrophobic interactions and coordinate bonds mainly dominate the binding of EPS with environmental pollutants. EPS binds, emulsifies, and solubilizes the organic compounds, enhancing the degradation process. EPS binds with heavy metals through complexation, surface adsorption, precipitation, and ion exchange mechanisms. The biodegradability efficiency and nontoxicity properties of EPS make it an excellent biopolymer for decontaminating environmental pollutants. This review summarizes an overview of the biosynthetic mechanisms and interaction of the bacterial extracellular polymer with environmental pollutants. Interaction mechanisms of pollutants with EPS and EPS-mediated bioremediation will help develop removal applications. Moreover, understanding the genes responsible for EPS production, and implementation of new genetic methodology can be helpful for the enhanced biosynthesis of EPS to control pollution by sequestrating more environmental pollutants.
Collapse
Affiliation(s)
- Monika Priyadarshanee
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India.
| |
Collapse
|
8
|
Febria FA, Zulkhairiah F, Walpajri F, Putra A, Syukriani L. Biofilm-Forming Heavy Metal Resistance Bacteria From Bungus Ocean Fisheries Port (PPS) West Sumatra as a Waters Bioremediation Agent. Pak J Biol Sci 2023; 26:168-176. [PMID: 37779331 DOI: 10.3923/pjbs.2023.168.176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
<b>Background and Objective:</b> Heavy metals are one of the most worrisome pollutants due to their toxicity. Prolonged exposure to heavy metals and their accumulation and biomagnification properties adversely affect aquatic biota and human health. The ability of microorganisms to bioremediate heavy metals into non-toxic forms is one solution. The research aims of the study were to find biofilm-forming heavy metal-resistant bacteria isolated from the waters of the Bungus Samudra Fishery Port (PPS), Padang City. <b>Materials and Methods:</b> This study used a marine agar medium modified with the addition of K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>, Pb(NO<sub>3</sub>)<sub>2</sub> and CdSO<sub>4</sub>•H<sub>2</sub>O, Marine Broth medium and Congo Red Agar medium. The research methods include, the isolation of bacteria, isolate resistance test to heavy metals, testing the ability of isolates to form biofilms and determine the ability of isolates to reduce heavy metals. Furthermore, molecular identification of bacterial isolates was carried out to determine the type of species. <b>Results:</b> Five heavy metal-resistant bacterial isolates were found that were able to form biofilms, namely isolates B3Cd, B5Cr, B7Pb, B6Pb and B3Pb. The five isolates were able to reduce heavy metal content by 38.67-61.191%. Identification of the best bacterial isolates on each heavy metal tested, namely B3Cd, B5Cr and B7Pb, respectively, showed the type of <i>Acinetobacter schindleri</i>, <i>Acinetobacter</i> sp. and <i>Bacillus</i> sp. <b>Conclusion:</b> These three selected potential isolates can be used as bioremediation agents in metal-polluted waters in the future.
Collapse
|
9
|
Tuck B, Salgar-Chaparro SJ, Watkin E, Somers A, Forsyth M, Machuca LL. Extracellular DNA: A Critical Aspect of Marine Biofilms. Microorganisms 2022; 10:microorganisms10071285. [PMID: 35889003 PMCID: PMC9320517 DOI: 10.3390/microorganisms10071285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 02/05/2023] Open
Abstract
Multispecies biofilms represent a pervasive threat to marine-based industry, resulting in USD billions in annual losses through biofouling and microbiologically influenced corrosion (MIC). Biocides, the primary line of defence against marine biofilms, now face efficacy and toxicity challenges as chemical tolerance by microorganisms increases. A lack of fundamental understanding of species and EPS composition in marine biofilms remains a bottleneck for the development of effective, target-specific biocides with lower environmental impact. In the present study, marine biofilms are developed on steel with three bacterial isolates to evaluate the composition of the EPSs (extracellular polymeric substances) and population dynamics. Confocal laser scanning microscopy, scanning electron microscopy, and fluorimetry revealed that extracellular DNA (eDNA) was a critical structural component of the biofilms. Parallel population analysis indicated that all three strains were active members of the biofilm community. However, eDNA composition did not correlate with strain abundance or activity. The results of the EPS composition analysis and population analysis reveal that biofilms in marine conditions can be stable, well-defined communities, with enabling populations that shape the EPSs. Under marine conditions, eDNA is a critical EPS component of the biofilm and represents a promising target for the enhancement of biocide specificity against these populations.
Collapse
Affiliation(s)
- Benjamin Tuck
- Curtin Corrosion Centre, WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Kent Street, Bentley, WA 6102, Australia; (B.T.); (S.J.S.-C.)
| | - Silvia J. Salgar-Chaparro
- Curtin Corrosion Centre, WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Kent Street, Bentley, WA 6102, Australia; (B.T.); (S.J.S.-C.)
| | - Elizabeth Watkin
- Curtin Medical School, Curtin University, Kent Street, Bentley, WA 6102, Australia;
| | - Anthony Somers
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3217, Australia; (A.S.); (M.F.)
| | - Maria Forsyth
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3217, Australia; (A.S.); (M.F.)
| | - Laura L. Machuca
- Curtin Corrosion Centre, WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Kent Street, Bentley, WA 6102, Australia; (B.T.); (S.J.S.-C.)
- Correspondence:
| |
Collapse
|
10
|
Li Y, Zhang Z, Liu X, Che S, Shi N, Chen Y, Yan M. Adsorption behavior and mechanism of Lead (Pb 2+) by sulfate polysaccharide from Enteromorpha prolifera. Int J Biol Macromol 2022; 207:760-770. [PMID: 35351544 DOI: 10.1016/j.ijbiomac.2022.03.133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/15/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022]
Abstract
Lead (Pb2+) pollution poses severe healthy and ecological risks to humans. In this work, sulfate polysaccharide from Enteromorpha prolifera (SPE) was utilized for Pb2+ adsorption from simulated intestinal fluid. In order to evaluate its adsorption behaviors comprehensively, batch adsorption of Pb2+ was investigated under different conditions. Results showed that SPE presents high adsorption ability for Pb2+ through chemical adsorption process and the maximum adsorption capacity for Pb2+ was 278.5 mg/g. And SPE exhibited higher removal efficiency (≥60%) for trace Pb2+ (<10 mg/L) compared to that of other adsorbents based on polysaccharide. Besides, its adsorption can be described by Langmuir isotherm and pseudo-second-order kinetic models. Further, XRD, FTIR, and XPS were used to characterize the possible interaction of Pb2+ with SPE, and the results showed that carboxyl and hydroxyl groups in SPE play more important role than that of sulfate group. Our work represents the first assessment of Pb2+ adsorption properties of SPE. This investigation highlights the potential application of SPE to protect the body from hazard of food-derived heavy metals.
Collapse
Affiliation(s)
- Yinping Li
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Zhuanyuan Zhang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xiaoyan Liu
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Shuai Che
- Key laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Naiwen Shi
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yiming Chen
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Mingyan Yan
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
11
|
Mahto KU, Das S. Bacterial biofilm and extracellular polymeric substances in the moving bed biofilm reactor for wastewater treatment: A review. BIORESOURCE TECHNOLOGY 2022; 345:126476. [PMID: 34864174 DOI: 10.1016/j.biortech.2021.126476] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/27/2021] [Accepted: 11/28/2021] [Indexed: 06/13/2023]
Abstract
Among the several biofilm-based bioreactors, moving bed biofilm reactors (MBBR) have been extensively used for wastewater treatment due to low operational costs, technical feasibility, and stability. Biofilm forming strains, e.g., Stenotrophomonas maltophila DQ01, achieved 94.21% simultaneous nitrification and denitrification (SND) and 94.43% removal of total nitrogen (TN) at a cycle time of 7 h, and a biofilm consortium consisting of Chryseobacteriumsp. andRhodobactersp. achieved 86.8% removal of total organic carbon (TOC) at hydraulic retention time (HRT) of 24 h using lab-scale MBBR. Modifications in the surface properties of the biocarrier materials achieved 99.5 ± 1.1% chemical oxygen demand (COD) and 93.6 ± 2.3% NH4+-N removal, significantly higher than the conventional commercial carrier. This review article summarizes the application of MBBR technology for wastewater treatment. The importance of bacterial biofilm and extracellular polymeric substances (EPS), anammox-n-DAMO coupled processes, and carrier surface modifications in MBBR technology have also been discussed.
Collapse
Affiliation(s)
- Kumari Uma Mahto
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India.
| |
Collapse
|
12
|
Mahto KU, Kumari S, Das S. Unraveling the complex regulatory networks in biofilm formation in bacteria and relevance of biofilms in environmental remediation. Crit Rev Biochem Mol Biol 2021; 57:305-332. [PMID: 34937434 DOI: 10.1080/10409238.2021.2015747] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biofilms are assemblages of bacteria embedded within a matrix of extracellular polymeric substances (EPS) attached to a substratum. The process of biofilm formation is a complex phenomenon regulated by the intracellular and intercellular signaling systems. Various secondary messenger molecules such as cyclic dimeric guanosine 3',5'-monophosphate (c-di-GMP), cyclic adenosine 3',5'-monophosphate (cAMP), and cyclic dimeric adenosine 3',5'-monophosphate (c-di-AMP) are involved in complex signaling networks to regulate biofilm development in several bacteria. Moreover, the cell to cell communication system known as Quorum Sensing (QS) also regulates biofilm formation via diverse mechanisms in various bacterial species. Bacteria often switch to the biofilm lifestyle in the presence of toxic pollutants to improve their survivability. Bacteria within a biofilm possess several advantages with regard to the degradation of harmful pollutants, such as increased protection within the biofilm to resist the toxic pollutants, synthesis of extracellular polymeric substances (EPS) that helps in the sequestration of pollutants, elevated catabolic gene expression within the biofilm microenvironment, higher cell density possessing a large pool of genetic resources, adhesion ability to a wide range of substrata, and metabolic heterogeneity. Therefore, a comprehensive account of the various factors regulating biofilm development would provide valuable insights to modulate biofilm formation for improved bioremediation practices. This review summarizes the complex regulatory networks that influence biofilm development in bacteria, with a major focus on the applications of bacterial biofilms for environmental restoration.
Collapse
Affiliation(s)
- Kumari Uma Mahto
- Department of Life Science, Laboratory of Environmental Microbiology and Ecology (LEnME), National Institute of Technology, Odisha, India
| | - Swetambari Kumari
- Department of Life Science, Laboratory of Environmental Microbiology and Ecology (LEnME), National Institute of Technology, Odisha, India
| | - Surajit Das
- Department of Life Science, Laboratory of Environmental Microbiology and Ecology (LEnME), National Institute of Technology, Odisha, India
| |
Collapse
|
13
|
Lin H, Chen G, Zhao H, Cao Y. Variable metal resistance of P. putida CZ1 biofilms in different environments suggests its remediation application scope. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 298:113458. [PMID: 34358938 DOI: 10.1016/j.jenvman.2021.113458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/15/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Pseudomonas putida is potentially used in the bioremediation of heavy metals (HMs). Its response to different HMs in different environments is still not fully understood. This study investigated resistance against 12 kinds of metals by P. putida CZ1 planktonic cells and its biofilm in LB and mineral medium (MM). P. putida CZ1 biofilms have high resistance and accumulation capacity for Cu2+, Zn2+, Pb2+, Fe3+, Mn2+, Al3+ and Ni2+, but less resistance to Co2+, Cd2+, Cr2O72-, Ag+ and Hg2+. Biofilms were 2-8 times more resistant to Cu2+ and Zn2+ than planktonic cells. There was a strong correlation between the P content and the accumulation of Cu2+, Zn2+, Fe3+, Mn2+, Pb2+, Ni2+and Al3+ respectively. Confocal laser scanning microscopy (CLSM) combined with live/dead staining study found that cells in the biofilms can keep viable after 36 h under MIC of Cu2+ or Zn2+ both in LB and MM. When the metal concentration increased, cells can be killed gradually. For Cu2+, Zn2+, Fe3+, Mn2+, Pb2+ and Ni2+, higher resistance was found in MM (2-4 times higher) than in LB and higher accumulation of these metals were also found in MM. P. putida CZ1 biofilm cultured in MM with citric acid as carbon source had stronger resistance and accumulation ability to Cu2+, Zn2+, Pb2+, Fe3+, Mn2+, and Ni2+. This suggested that P. putida CZ1 had greater remediation potential for these metals in organic acid rich environments.
Collapse
Affiliation(s)
- Huirong Lin
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China.
| | - Guangcun Chen
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Hongmei Zhao
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Yuanqing Cao
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510080, PR China
| |
Collapse
|
14
|
Kumar V, Pandita S, Singh Sidhu GP, Sharma A, Khanna K, Kaur P, Bali AS, Setia R. Copper bioavailability, uptake, toxicity and tolerance in plants: A comprehensive review. CHEMOSPHERE 2021; 262:127810. [PMID: 32763578 DOI: 10.1016/j.chemosphere.2020.127810] [Citation(s) in RCA: 197] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 05/04/2023]
Abstract
Copper (Cu) is an essential element for humans and plants when present in lesser amount, while in excessive amounts it exerts detrimental effects. There subsists a narrow difference amid the indispensable, positive and detrimental concentration of Cu in living system, which substantially alters with Cu speciation, and form of living organisms. Consequently, it is vital to monitor its bioavailability, speciation, exposure levels and routes in the living organisms. The ingestion of Cu-laced food crops is the key source of this heavy metal toxicity in humans. Hence, it is necessary to appraise the biogeochemical behaviour of Cu in soil-plant system with esteem to their quantity and speciation. On the basis of existing research, this appraisal traces a probable connexion midst: Cu levels, sources, chemistry, speciation and bioavailability in the soil. Besides, the functions of protein transporters in soil-plant Cu transport, and the detrimental effect of Cu on morphological, physiological and nutrient uptake in plants has also been discussed in the current manuscript. Mechanisms related to detoxification strategies like antioxidative response and generation of glutathione and phytochelatins to combat Cu-induced toxicity in plants is discussed as well. We also delimits the Cu accretion in food crops and allied health perils from soils encompassing less or high Cu quantity. Finally, an overview of various techniques involved in the reclamation and restoration of Cu-contaminated soils has been provided.
Collapse
Affiliation(s)
- Vinod Kumar
- Department of Botany, Government Degree College, Ramban, Jammu, 182144, India.
| | - Shevita Pandita
- Department of Botany, University of Jammu, Jammu and Kashmir, India
| | - Gagan Preet Singh Sidhu
- Centre for Applied Biology in Environment Sciences, Kurukshetra University, Kurukshetra, 136119, India
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
| | - Kanika Khanna
- Independent Researcher, House No.282, Lane no. 3, Friends Colony, Opposite DAV College, Jalandhar, 144008, Punjab, India
| | - Parminder Kaur
- Independent Researcher, House No. 472, Ward No. 8, Dhariwal, Gurdaspur, 143519, Punjab, India
| | - Aditi Shreeya Bali
- Department of Botany, Dyal Singh College, Karnal, Haryana, 132001, India
| | - Raj Setia
- Punjab Remote Sensing Centre, Ludhiana, India
| |
Collapse
|
15
|
Lin H, Wang C, Zhao H, Chen G, Chen X. A subcellular level study of copper speciation reveals the synergistic mechanism of microbial cells and EPS involved in copper binding in bacterial biofilms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114485. [PMID: 32298938 DOI: 10.1016/j.envpol.2020.114485] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
The synergistic cooperation of microbial cells and their extracellular polymeric substances (EPS) in biofilms is critical for the biofilm's resistance to heavy metals and the migration and transformation of heavy metals. However, the effects of different components of biofilms have not been fully understood. In this study, the spatial distribution and speciation of copper in the colloidal EPS, capsular EPS, cell walls and membranes, and intracellular fraction of unsaturated Pseudomonas putida (P. putida) CZ1 biofilms were fully determined at the subcellular level. It was found that 60-67% of copper was located in the extracellular fraction of biofilms, with 44.7-42.3% in the capsular EPS. In addition, there was 15.5-20.1% and 17.2-21.2% of copper found in the cell walls and membranes or the intracellular fraction, respectively. Moreover, an X-ray absorption fine structure spectra analysis revealed that copper was primarily bound by carboxyl-, phosphate-, and hydrosulfide-like ligands within the extracellular polymeric matrix, cell walls and membranes, and intracellular fraction, respectively. In addition, macromolecule quantification, fourier-transform infrared spectroscopy spectra and sulfur K-edge x-ray absorption near edge structure analysis further showed the carboxyl-rich acidic polysaccharides in EPS, phospholipids in cell walls and cell membranes, and thiol-rich intracellular proteins were involved in binding of copper in the different components of biofilm. The full understanding of the distribution and chemical species of heavy metals in biofilms not only promotes a deep understanding of the interaction mechanisms between biofilms and heavy metals, but also contributes to the development of effective biofilm-based heavy metal pollution remediation technologies.
Collapse
Affiliation(s)
- Huirong Lin
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Chengyun Wang
- The First Affiliated Hospital of Xiamen University, Xiamen, 361003, PR China
| | - Hongmei Zhao
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, PR China; Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, PR China
| | - Guancun Chen
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, PR China; Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, PR China.
| | - Xincai Chen
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, PR China
| |
Collapse
|
16
|
Xu S, Xing Y, Liu S, Luo X, Chen W, Huang Q. Co-effect of minerals and Cd(II) promoted the formation of bacterial biofilm and consequently enhanced the sorption of Cd(II). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113774. [PMID: 31874434 DOI: 10.1016/j.envpol.2019.113774] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/08/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
Heavy metal pollution is very common in soils. Soils are complex systems including minerals, bacteria, and various other substances. In Cd(II) contaminated soil, the combined effects of clay minerals and heavy metals on bacterial biofilm and Cd(II) adsorption are unappreciated. Our study showed that the combination of clay minerals (goethite, kaolinite, and montmorillonite) and heavy metals promoted Serratia marcescens S14 biofilm development significantly more than clay minerals or Cd(II) alone. The amount of biofilm after binary treatment with clay minerals and Cd(II) was 2.3-7.3 times than that in control. Mineral-induced cell death and the expression of the fimA, bsmA, and eps were key players in biofilm formation. Binary treatment with montmorillonite and Cd(II) significantly enhanced biofilm development and consequently increased the adsorption of Cd(II). Cd(II) removal is the result of co-adsorption of bacteria and minerals. Bacterial biofilm played an important role in Cd(II) adsorption. FTIR spectroscopy showed the components of biofilm were not affected by minerals and revealed the functional groups -OH, -NH, -CH2, -SH, -COO participated in Cd(II) immobilization. Our findings are of fundamental significance for understanding how minerals and Cd(II) affect biofilms and thereby enhance Cd(II) adsorption and predicting the mobility and fate of heavy metals in heavy metal-contaminated soil.
Collapse
Affiliation(s)
- Shaozu Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yonghui Xing
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Song Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuesong Luo
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
17
|
Smułek W, Zdarta A, Pacholak A, Runka T, Kaczorek E. Increased biological removal of 1-chloronaphthalene as a result of exposure: A study of bacterial adaptation strategies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 185:109707. [PMID: 31561078 DOI: 10.1016/j.ecoenv.2019.109707] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 09/12/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
Effective biodegradation of hydrophobic pollutants, such as 1-chloronaphthalene, is strictly associated with the adaptation of environmental bacteria to their assimilation. This study explores the relation between the modifications of cell properties of bacteria belonging to Pseudomonas and Serratia genera resulting from a 12-month exposure to 1-chloronaphthalene, and their biodegradation efficiency. In the presented study, both bacterial strains exhibited higher (70%) degradation of this compound after exposure compared to unexposed (55%) systems. This adaptation can be associated with increased ratio of polysaccharides in the outer layers of bacterial cells, which was confirmed using infrared spectroscopy analysis. Additionally, the analysis of Raman spectra indicated conformational changes of extracellular carbohydrates from α- to β-anomeric structure. Moreover, the changes in the cell surface hydrophobicity and cell membrane permeability differed between the strains and the Pseudomonas strain exhibited more significant modifications of these parameters. The results suggest that adaptation strategies of both tested strains are different and involve diverse reconstructions of the cell wall and membranes. The results provide a novel and deep insight into the interactions between environmental bacterial strains and chloroaromatic compounds, which opens new perspectives for applying spectrometric methods in investigation of cell adaptation strategies as a result of long-term contact with toxic pollutants.
Collapse
Affiliation(s)
- Wojciech Smułek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965, Poznań, Poland.
| | - Agata Zdarta
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965, Poznań, Poland
| | - Amanda Pacholak
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965, Poznań, Poland
| | - Tomasz Runka
- Institute of Materials Research and Quantum Engineering, Poznan University of Technology, Piotrowo 3, 60-965, Poznań, Poland
| | - Ewa Kaczorek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965, Poznań, Poland
| |
Collapse
|
18
|
Solvent free synthesis of ferrocene based rhodamine – hydrazone molecular probe with improved bioaccumulation for sensing and imaging applications. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.120999] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
19
|
Tian X, Shen Z, Han Z, Zhou Y. The effect of extracellular polymeric substances on exogenous highly toxic compounds in biological wastewater treatment: An overview. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2018.11.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|