1
|
Logan N, Cao C, Freitag S, Haughey SA, Krska R, Elliott CT. Advancing Mycotoxin Detection in Food and Feed: Novel Insights from Surface-Enhanced Raman Spectroscopy (SERS). ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309625. [PMID: 38224595 DOI: 10.1002/adma.202309625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/20/2023] [Indexed: 01/17/2024]
Abstract
The implementation of low-cost and rapid technologies for the on-site detection of mycotoxin-contaminated crops is a promising solution to address the growing concerns of the agri-food industry. Recently, there have been significant developments in surface-enhanced Raman spectroscopy (SERS) for the direct detection of mycotoxins in food and feed. This review provides an overview of the most recent advancements in the utilization of SERS through the successful fabrication of novel nanostructured materials. Various bottom-up and top-down approaches have demonstrated their potential in improving sensitivity, while many applications exploit the immobilization of recognition elements and molecular imprinted polymers (MIPs) to enhance specificity and reproducibility in complex matrices. Therefore, the design and fabrication of nanomaterials is of utmost importance and are presented herein. This paper uncovers that limited studies establish detection limits or conduct validation using naturally contaminated samples. One decade on, SERS is still lacking significant progress and there is a disconnect between the technology, the European regulatory limits, and the intended end-user. Ongoing challenges and potential solutions are discussed including nanofabrication, molecular binders, and data analytics. Recommendations to assay design, portability, and substrate stability are made to help improve the potential and feasibility of SERS for future on-site agri-food applications.
Collapse
Affiliation(s)
- Natasha Logan
- National Measurement Laboratory, Centre of Excellence in Agriculture and Food Integrity, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Cuong Cao
- National Measurement Laboratory, Centre of Excellence in Agriculture and Food Integrity, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
- Material and Advanced Technologies for Healthcare, Queen's University Belfast, 18-30 Malone Road, Belfast, BT9 5BN, UK
| | - Stephan Freitag
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Konrad-Lorenz-Str. 20, Tulln, 3430, Vienna, Austria
- FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1C, Tulln, 3430, Austria
| | - Simon A Haughey
- National Measurement Laboratory, Centre of Excellence in Agriculture and Food Integrity, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Rudolf Krska
- National Measurement Laboratory, Centre of Excellence in Agriculture and Food Integrity, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Konrad-Lorenz-Str. 20, Tulln, 3430, Vienna, Austria
- FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1C, Tulln, 3430, Austria
| | - Christopher T Elliott
- National Measurement Laboratory, Centre of Excellence in Agriculture and Food Integrity, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University, 99 Mhu 18, Khong Luang, Pathum Thani, 12120, Thailand
| |
Collapse
|
2
|
Lian S, Li X, Lv X. Density Functional Theory Study on the Interaction between Aflatoxin B1/M1 and Gold Substrate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1804-1816. [PMID: 38183291 DOI: 10.1021/acs.langmuir.3c03069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2024]
Abstract
Aflatoxin M1 (AFM1) and its precursor, Aflatoxin B1 (AFB1), are highly pathogenic and mutagenic substances, making the detection and sensing of AFB1/M1 a long-standing focus of researchers. Among various detection techniques, surface-enhanced Raman spectroscopy (SERS) is considered an ideal method for AFB1/M1 detection due to its ability not only to enhance characteristic frequencies but also to detect shifts in these frequencies with high repeatability. Therefore, we employed density functional theory in conjunction with surface-enhanced Raman spectroscopy to investigate the interaction between AFB1/M1 and a Au substrate in the context of the SERS effect for the first time. To predict the potential binding sites of AFB1/M1 and Au within the SERS effect, we performed calculations on the molecular electrostatic potential of AFB1/M1. Considering the crucial role of the binding energy in molecular docking studies, we computed the binding energy between two molecules interacting with Au at different binding sites. The molecular frontier orbitals and related chemical parameters of AFB1/M1 and "molecular-Au" complexes were computed to elucidate the alterations in AFB1/M1 molecules under the SERS effect. Subsequently, the theoretical Raman spectra of AFB1/M1 and the complexes were compared and analyzed, enabling determination of the adsorption conformation of AFB1/M1 on the gold surface based on SERS surface selection rules. These findings not only provide a deeper understanding of the interaction mechanism between molecules and substrates in the SERS effect but also offer theoretical support for developing novel aflatoxin SERS sensors.
Collapse
Affiliation(s)
- Shuai Lian
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoqiong Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Xuefei Lv
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
3
|
Yin S, Niu L, Liu Y. Recent Progress on Techniques in the Detection of Aflatoxin B 1 in Edible Oil: A Mini Review. Molecules 2022; 27:6141. [PMID: 36234684 PMCID: PMC9573432 DOI: 10.3390/molecules27196141] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Contamination of agricultural products and foods by aflatoxin B1 (AFB1) is becoming a serious global problem, and the presence of AFB1 in edible oil is frequent and has become inevitable, especially in underdeveloped countries and regions. As AFB1 results from a possible degradation of aflatoxins and the interaction of the resulting toxic compound with food components, it could cause chronic disease or severe cancers, increasing morbidity and mortality. Therefore, rapid and reliable detection methods are essential for checking AFB1 occurrence in foodstuffs to ensure food safety. Recently, new biosensor technologies have become a research hotspot due to their characteristics of speed and accuracy. This review describes various technologies such as chromatographic and spectroscopic techniques, ELISA techniques, and biosensing techniques, along with their advantages and weaknesses, for AFB1 control in edible oil and provides new insight into AFB1 detection for future work. Although compared with other technologies, biosensor technology involves the cross integration of multiple technologies, such as spectral technology and new nano materials, and has great potential, some challenges regarding their stability, cost, etc., need further studies.
Collapse
Affiliation(s)
- Shipeng Yin
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Road, Binhu District, Wuxi 214122, China
| | - Liqiong Niu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Yuanfa Liu
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Road, Binhu District, Wuxi 214122, China
| |
Collapse
|
4
|
Lin X, Yu W, Tong X, Li C, Duan N, Wang Z, Wu S. Application of Nanomaterials for Coping with Mycotoxin Contamination in Food Safety: From Detection to Control. Crit Rev Anal Chem 2022; 54:355-388. [PMID: 35584031 DOI: 10.1080/10408347.2022.2076063] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mycotoxins, which are toxic secondary metabolites produced by fungi, are harmful to humans. Mycotoxin-induced contamination has drawn attention worldwide. Consequently, the development of reliable and sensitive detection methods and high-efficiency control strategies for mycotoxins is important to safeguard food industry safety and public health. With the rapid development of nanotechnology, many novel nanomaterials that provide tremendous opportunities for greatly improving the detection and control performance of mycotoxins because of their unique properties have emerged. This review comprehensively summarizes recent trends in the application of nanomaterials for detecting mycotoxins (fluorescence, colorimetric, surface-enhanced Raman scattering, electrochemical, and point-of-care testing) and controlling mycotoxins (inhibition of fungal growth, mycotoxin absorption, and degradation). These detection methods possess the advantages of high sensitivity and selectivity, operational simplicity, and rapidity. With research attention on the control of mycotoxins and the gradual excavation of the properties of nanomaterials, nanomaterials are also employed for the inhibition of fungal growth, mycotoxin absorption, and mycotoxin degradation, and impressive controlling effects are obtained. This review is expected to provide the readers insight into this state-of-the-art area and a reference to design nanomaterials-based schemes for the detection and control of mycotoxins.
Collapse
Affiliation(s)
- Xianfeng Lin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Wenyan Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Xinyu Tong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Changxin Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
5
|
A tailorable and recyclable TiO2 NFSF/Ti@Ag NPs SERS substrate fabricated by a facile method and its applications in prohibited fish drugs detection. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01401-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
6
|
Au@Ag nanoflowers based SERS coupled chemometric algorithms for determination of organochlorine pesticides in milk. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Yadav N, Yadav SS, Chhillar AK, Rana JS. An overview of nanomaterial based biosensors for detection of Aflatoxin B1 toxicity in foods. Food Chem Toxicol 2021; 152:112201. [PMID: 33862122 DOI: 10.1016/j.fct.2021.112201] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/02/2021] [Accepted: 04/08/2021] [Indexed: 02/08/2023]
Abstract
Aflatoxin B1 (AFB1) is one of the most potent mycotoxin contaminating several foods and feeds. It suppresses immunity and consequently increases mutagenicity, carcinogenicity, teratogenicity, hepatotoxicity, embryonic toxicity and increasing morbidity and mortality. Continuous exposure of AFB1 causes liver damage and thus increases the prevalence of cirrhosis and hepatic cancer. This article was planned to provide understanding of AFB1 toxicity and provides future directions for fabrication of cost effective and user-friendly nanomaterials based analytical devices. In the present article various conventional (chromatographic & spectroscopic), modern (PCR & immunoassays) and nanomaterials based biosensing techniques (electrochemical, optical, piezoelectrical and microfluidic) are discussed alongwith their merits and demerits. Nanomaterials based amperometric biosensors are found to be more stable, selective and cost-effective analytical devices in comparison to other biosensors. But many unresolved issues about their stability, toxicity and metabolic fate needs further studies. In-depth studies are needed for development of advanced nanomaterials integrated biosensors for specific, sensitive and fast monitoring of AFB1 toxicity in foods. Integration of biosensing system with micro array technology for simultaneous and automated detection of multiple AFs in real samples is also needed. Concerted efforts are also required to reduce their possible hazardous consequences of nanomaterials based biosensors.
Collapse
Affiliation(s)
- Neelam Yadav
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat, Haryana, 131039, India; Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Surender Singh Yadav
- Deparment of Botany, MaharshiDayanand University, Rohtak, Haryana, 124001, India.
| | - Anil Kumar Chhillar
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Jogender Singh Rana
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat, Haryana, 131039, India.
| |
Collapse
|
8
|
Zhao X, Dai X, Zhao S, Cui X, Gong T, Song Z, Meng H, Zhang X, Yu B. Aptamer-based fluorescent sensors for the detection of cancer biomarkers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 247:119038. [PMID: 33120124 DOI: 10.1016/j.saa.2020.119038] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
Aptamers are short single-stranded RNA or DNA molecules that can recognize a series of targets with high affinity and specificity. Known as "chemical antibodies", aptamers have many unique merits, including ease of chemical synthesis, high chemical stability, low molecular weight, lack of immunogenicity, and ease of modification and manipulation compared to their protein counterparts. Using aptamers as the recognition groups, fluorescent aptasensors provide exciting opportunities for sensitive detection and quantification of analytes. Herein, we give an overview on the recent development of aptamer-based fluorescent sensors for the detection of cancer biomarkers. Based on various nanostructured sensor designs, we extended our discussions on sensitivity, specificity and the potential applications of aptamer-based fluorescent sensors in early diagnosis, treatment and prognosis of cancers.
Collapse
Affiliation(s)
- Xuhua Zhao
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaochun Dai
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Suya Zhao
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaohua Cui
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Tao Gong
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Zhiling Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hongmin Meng
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaobing Zhang
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Baofeng Yu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
9
|
Martinez L, He L. Detection of Mycotoxins in Food Using Surface-Enhanced Raman Spectroscopy: A Review. ACS APPLIED BIO MATERIALS 2021; 4:295-310. [PMID: 35014285 DOI: 10.1021/acsabm.0c01349] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mycotoxins are toxic metabolites produced by fungi that contaminate many important crops worldwide. Humans are commonly exposed to mycotoxins through the consumption of contaminated food products. Mycotoxin contamination is unpredictable and unavoidable; it occurs at any point in the food production system under favorable conditions, and they cannot be destroyed by common heat treatments, because of their high thermal stability. Early and fast detection plays an essential role in this unique challenge to monitor the presence of these compounds in the food chain. Surface-enhanced Raman spectroscopy (SERS) is an advanced spectroscopic technique that integrates Raman spectroscopic molecular fingerprinting and enhanced sensitivity based on nanotechnology to meet the requirement of sensitivity and selectivity, but that can also be performed in a cost-effective and straightforward manner. This Review focuses on the SERS methodologies applied to date for qualitative and quantitative analysis of mycotoxins based on a variety of SERS substrates, as well as our perspectives on current limitations and future trends for applying this technique to mycotoxin analyses.
Collapse
Affiliation(s)
- Lourdes Martinez
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts United States
| | - Lili He
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts United States
| |
Collapse
|
10
|
Lv X, Xu X, Miao T, Zang X, Geng C, Li Y, Cui B, Fang Y. Aggregation-Induced Electrochemiluminescence Immunosensor Based on 9,10-Diphenylanthracene Cubic Nanoparticles for Ultrasensitive Detection of Aflatoxin B 1. ACS APPLIED BIO MATERIALS 2020; 3:8933-8942. [PMID: 35019569 DOI: 10.1021/acsabm.0c01201] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
9,10-Diphenylanthracene cubic nanoparticles (DPA CNPs) with aggregation-induced emission characteristic (AIEgens) were synthesized through a facile reprecipitation method; then, a bright and stable electrochemiluminescence (ECL) signal can be observed when the DPA CNPs were modified at the glassy carbon electrode (GCE) in the presence of Tri-n-propylamine (TPA). This phenomenon is ascribed to the molecules with restricted movement that greatly blocked the energy leakage during the relaxation of the excited state, which facilitated the emission of energy in the form of photons. In addition, the size confinement effect of DPA CNPs in the aggregated state effectively enhanced the ECL emission. The application of DPA CNPs with AIE characteristics in an electrochemiluminescence immunosensor has not been reported. In this contribution, a free-label aggregation-induced electrochemiluminescence immunosensor based on DPA CNPs was fabricated and a simple strategy for ultrasensitive detection of aflatoxin B1 (AFB1) was proposed. The ECL signal is quenched linearly in the range of 0.01 pg/mL to 100 ng/mL for AFB1, and the detection limit is 3 fg/mL. In summary, the prepared sensor exhibits high sensitivity, acceptable accuracy, good anti-interference ability and stability, and satisfactory detection toward AFB1 in walnut samples. Therefore, the fabricated immunosensor will have significant applications in the fields of food, medicine, and so on.
Collapse
Affiliation(s)
- Xiaoyi Lv
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xiaoyun Xu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Tian Miao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xufeng Zang
- College of Science, Huzhou University, Huzhou, Zhejiang 313000, China
| | - Chao Geng
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Yanping Li
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Yishan Fang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| |
Collapse
|
11
|
Hassan MM, Zareef M, Xu Y, Li H, Chen Q. SERS based sensor for mycotoxins detection: Challenges and improvements. Food Chem 2020; 344:128652. [PMID: 33272760 DOI: 10.1016/j.foodchem.2020.128652] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 12/31/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has become a growing ultrasensitive analytical technique to quantify toxic molecules in foodstuffs. Monitoring the levels of chemical contaminants not only ensures food security but also offers a guideline on the production, processing, and risk analysis of consumer's health protection. The objective of this study was to point out the possible challenges associated with the detection of mycotoxins in foodstuffs. Herein, we have discussed briefly as to selectivity, accuracy, precision, robustness, ruggedness, non-specific adsorption (NSA), cross-reactivity (for both label-free and the target analyte capture approaches like the application of antibody, aptamer, molecularly imprinted polymer (MIP), linear polymer affinity agents and/or specific surface-modified nanomaterials) and their potential solution.
Collapse
Affiliation(s)
- Md Mehedi Hassan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Muhammad Zareef
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yi Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
12
|
Zhang H, Nie P, Xia Z, Feng X, Liu X, He Y. Rapid Quantitative Detection of Deltamethrin in Corydalis yanhusuo by SERS Coupled with Multi-Walled Carbon Nanotubes. Molecules 2020; 25:molecules25184081. [PMID: 32906783 PMCID: PMC7570915 DOI: 10.3390/molecules25184081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/19/2020] [Accepted: 08/28/2020] [Indexed: 11/16/2022] Open
Abstract
With the increase in demand, artificially planting Chinese medicinal materials (CHMs) has also increased, and the ensuing pesticide residue problems have attracted more and more attention. An optimized quick, easy, cheap, effective, rugged and safe (QuEChERS) method with multi-walled carbon nanotubes as dispersive solid-phase extraction sorbents coupled with surface-enhanced Raman spectroscopy (SERS) was first proposed for the detection of deltamethrin in complex matrix Corydalis yanhusuo. Our results demonstrate that using the optimized QuEChERS method could effectively extract the analyte and reduce background interference from Corydalis. Facile synthesized gold nanoparticles with a large diameter of 75 nm had a strong SERS enhancement for deltamethrin determination. The best prediction model was established with partial least squares regression of the SERS spectra ranges of 545~573 cm−1 and 987~1011 cm−1 with a coefficient of determination (R2) of 0.9306, a detection limit of 0.484 mg/L and a residual predictive deviation of 3.046. In summary, this article provides a new rapid and effective method for the detection of pesticide residues in CHMs.
Collapse
Affiliation(s)
- Hui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (H.Z.); (P.N.); (X.F.); (X.L.); (Y.H.)
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture, Hangzhou 310058, China
| | - Pengcheng Nie
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (H.Z.); (P.N.); (X.F.); (X.L.); (Y.H.)
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture, Hangzhou 310058, China
- West Electronic Business Company Limited, Yinchuan 750000, China
| | - Zhengyan Xia
- School of Medcine, Zhejiang University City College, Hangzhou 310015, China
- Correspondence: ; Tel.: +86-0571-8828-4325
| | - Xuping Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (H.Z.); (P.N.); (X.F.); (X.L.); (Y.H.)
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture, Hangzhou 310058, China
| | - Xiaoxi Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (H.Z.); (P.N.); (X.F.); (X.L.); (Y.H.)
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture, Hangzhou 310058, China
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (H.Z.); (P.N.); (X.F.); (X.L.); (Y.H.)
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture, Hangzhou 310058, China
| |
Collapse
|