1
|
Cai Z, Zhang Y, Zhao M, Bao J, Lv L, Li H. A facile synthesis of water-soluble copper nanoclusters as label-free fluorescent probes for rapid, selective and sensitive determination of alizarin red. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124708. [PMID: 38936210 DOI: 10.1016/j.saa.2024.124708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
Copper nanoclusters (FA@CuNCs) emitting blue fluorescence were successfully developed via a one-pot technique. In this method, the copper chloride, folic acid and hydrazine hydrate were applied as a precursor, protective agent and reducing agent, respectively. The absorption, fluorescence excitation and emission spectra of FA@CuNCs were carried out by using ultraviolet-visible and fluorescence spectrometry, respectively. The morphology, particle size, functional groups, oxidation states of elements of FA@CuNCs were discussed via using transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The stability of FA@CuNCs was studied under various conditions, such as storage time at 25 ℃, ultraviolet radiation time, sodium chloride solutione and pH. The FA@CuNCs displayed blue fluorescence under the excitation wavelength of 361 nm, and the fluorescence quantum yield was 7.45 %. As a result of the inner filter effect, the alizarin red could significantly weaken the blue fluorescence of FA@CuNCs. Thus, the as-prepared FA@CuNCs could be utilized as fluorescence nanosensors for the trace determination of alizarin red. This platform suggested an excellent linear range for alizarin red varying from 0.5 to 200 μM with a fitting coefficient of 0.9955. The detection limit was calculated to be 0.064 μM in the light of the 3b/k (b and k refer to the standard deviation and slope of fitted curve, respectively). Furthermore, the as-developed FA@CuNCs could be used to detect the alizarin red in real samples and for the sensing of temperature.
Collapse
Affiliation(s)
- Zhifeng Cai
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong, 030619, PR China.
| | - Yixuan Zhang
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong, 030619, PR China
| | - Manlin Zhao
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong, 030619, PR China
| | - Jinjia Bao
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong, 030619, PR China
| | - Ling Lv
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong, 030619, PR China
| | - Haoyang Li
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong, 030619, PR China
| |
Collapse
|
2
|
El-Husseini DM, Elmasry DMA, Abo Hatab EM, Kassem S. Development of a paper-based fluorescent carbon quantum dots MIPs sensor for selective detection of lumpy skin disease virus. RSC Adv 2024; 14:27438-27448. [PMID: 39211908 PMCID: PMC11358880 DOI: 10.1039/d4ra04895d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Lumpy skin disease (LSD) is a contagious viral disease caused by the Lumpy Skin Disease virus (LSDV), a member of the Capripoxviridae family. Traditional LSDV diagnostic procedures proved to have challenges in terms of cross reactivity as well as limited sensitivity and specificity. Herein, we combined molecularly imprinted polymers (MIPs) and quantum dots (QDs) technology to develop a paper-based turn on fluorescence sensor for rapid, sensitive and selective detection of LSDV. Under optimal conditions, the sensor showed linear enhancement in fluorescence intensity with the increase of LSDV concentration and exhibited a detection limit of 101 log10 TCID50 per ml. It also presented high specificity towards LSDV compared to other viruses viz sheep pox virus (SPV). Furthermore, the proposed sensor was successfully tested with spiked and real LSDV samples, proving its potential to serve as a sensitive selective sensor for LSDV diagnosis. Based on our knowledge, this is the first record of a paper-based diagnostic sensor for LSDV utilizing a CQDs-MIPs turn-on mechanism.
Collapse
Affiliation(s)
| | - Dalia M A Elmasry
- Nanomaterials Research and Synthesis Unit, AHRI, ARC Giza 12618 Egypt
| | | | - Samr Kassem
- Nanomaterials Research and Synthesis Unit, AHRI, ARC Giza 12618 Egypt
| |
Collapse
|
3
|
Que R, Audibert JF, Garcia-Caurel E, Plantevin O, Kalli K, Lancry M, Poumellec B, Pansu RB. Carbon Dot Synthesis in CYTOP Optical Fiber Using IR Femtosecond Laser Direct Writing and Its Luminescence Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:941. [PMID: 38869566 PMCID: PMC11173491 DOI: 10.3390/nano14110941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/09/2024] [Accepted: 05/22/2024] [Indexed: 06/14/2024]
Abstract
Luminescent carbon dots (CDs) were locally synthesized in the core of CYTOP fibers using IR femtosecond laser direct writing (FLDW), a one-step simple method serving as a post-treatment of the pristine fiber. This approach enables the creation of several types of modifications such as ellipsoid voids. The CDs and photoluminescence (PL) distribute at the periphery of the voids. The PL spectral properties were studied through the excitation/emission matrix in the visible range and excitation/emission spectra in the UV/visible range. Our findings reveal the presence of at least three distinct luminescent species, facilitating a broad excitation range extending from UV to green, and light emission spanning from blue to red. The average laser power and dose influence the quantity and ratio of these luminescent CD species. Additionally, we measured the spatially resolved lifetime of the luminescence during and after the irradiation. We found longer lifetimes at the periphery of the laser-induced modified regions and shorter ones closer to the center, with a dominant lifetime ~2 ns. Notably, unlike many other luminophores, these laser-induced CDs are insensitive to oxygen, enhancing their potential for display or data storage applications.
Collapse
Affiliation(s)
- Ruyue Que
- CNRS, ENS Paris-Saclay, CentraleSupélec, LuMIn, Université Paris-Saclay, 91190 Gif-sur-Yvette, France; (R.Q.); (J.-F.A.); (R.B.P.)
| | - Jean-Frédéric Audibert
- CNRS, ENS Paris-Saclay, CentraleSupélec, LuMIn, Université Paris-Saclay, 91190 Gif-sur-Yvette, France; (R.Q.); (J.-F.A.); (R.B.P.)
| | - Enrique Garcia-Caurel
- Institut Polytechnique de Paris, CNRS, École Polytechnique, LPICM, 91120 Palaiseau, France;
| | - Olivier Plantevin
- Laboratoire de Physique des Solides, CNRS, Université Paris-Saclay, 91405 Orsay, France;
| | - Kyriacos Kalli
- Nanophotonics Research Laboratory, Cyprus University of Technology, 3036 Limassol, Cyprus
| | - Matthieu Lancry
- Institut de Chimie Moléculaire et des Matériaux d’Orsay, CNRS, Université Paris-Saclay, 91405 Orsay, France;
| | - Bertrand Poumellec
- Institut de Chimie Moléculaire et des Matériaux d’Orsay, CNRS, Université Paris-Saclay, 91405 Orsay, France;
| | - Robert B. Pansu
- CNRS, ENS Paris-Saclay, CentraleSupélec, LuMIn, Université Paris-Saclay, 91190 Gif-sur-Yvette, France; (R.Q.); (J.-F.A.); (R.B.P.)
| |
Collapse
|
4
|
Zhao B, Liu X, Cheng Z, Liu X, Zhang X, Feng X. Smartphone-integrated paper-based sensing platform for the visualization and quantitative detection of pymetrozine. Food Chem 2024; 440:138269. [PMID: 38157705 DOI: 10.1016/j.foodchem.2023.138269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/11/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Pymetrozine (PYM) is an effective pyridine insecticide for controlling aphids, while its residues pose a serious threat to human health. Herein, a europium complex (Eu-DBPA, DBPA represents deprotonated 2,5-dibromoterephthalic acid ligand) probe was prepared for the detection of PYM via fluorescence quenching. The detection process has the advantages of short response time (2 min), wide linear range (0-4 and 4-45 mg/kg) and low detection limit (2.2 μg/kg). Furthermore, a portable detection platform was designed by integrating Eu-DBPA-based paper strip with smartphone and applied for the visual detection of PYM in real cucumber, tomato, cabbage and apple samples, obtaining satisfactory recovery (99.00 %-107.00 %) and low standard deviation (RSD < 3.4 %). In addition, a logic gate device was designed to simplify the detection process. The smartphone-integrated paper-based probe detection platform provides a new strategy for intelligent and online identification of hazards in environmental and biological samples.
Collapse
Affiliation(s)
- Beibei Zhao
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China; College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471022, China
| | - Xinfang Liu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China.
| | - Zheng Cheng
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China; College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471022, China
| | - Xu Liu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China; College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471022, China
| | - Xiaoyu Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471022, China.
| | - Xun Feng
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China
| |
Collapse
|
5
|
Meng L, Wu H. Preparation of carbon quantum dots and their application in the detection of vitamin B2. RSC Adv 2024; 14:15499-15506. [PMID: 38741964 PMCID: PMC11089531 DOI: 10.1039/d4ra01388c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/04/2024] [Indexed: 05/16/2024] Open
Abstract
A novel metal-doped carbon quantum dot, zinc-chlorine co-doped carbon quantum dots (Zn/Cl-CQDs), has been developed for the fluorescent probe detection of vitamin B2 and the analysis of the correlation properties of this carbon quantum dot and vitamin B2. Stability experiments demonstrate that Zn/Cl-CQDs possess good fluorescence properties under alkaline conditions. However, when vitamin B2 is added into Zn/Cl-CQDs, the fluorescence intensity decreases sharply, indicating that the fluorescence sensor shows rapid and sensitive detection of vitamin B2 under the static quenching. Lastly, the use of Zn/Cl-CQDs in the detection of vitamin B2 tablets and vitamin B2-rich fruits resulted in recovery rates of 98.2% and 100.6%, respectively. Therefore, this method can be well applied to the detection and analysis of vitamin B2, and has great development prospects in the pharmaceutical industry and food monitoring fields.
Collapse
Affiliation(s)
- Lifen Meng
- School of Chemical Engineering, Guizhou University of Engineering Science 551700 Bijie China
| | - Haizhi Wu
- School of Mining Engineering, Guizhou University of Engineering Science Bijie 551700 China
| |
Collapse
|
6
|
Qian J, Li J, Jiang Y, Liu C, Zhu J, Gu L, Guo Y. Simple fluorescence "turn-off" assay for Congo red using commercial 2-aminophthalic acid. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2760-2765. [PMID: 38638102 DOI: 10.1039/d4ay00506f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
In this work, the fluorescence properties of 2-aminophthalic acid (NH2-BDC) were studied. NH2-BDC possessed excellent optical properties including bright blue emission with maximum emission at 425 nm, a high quantum yield of 38.49% and excellent photostability. And the fluorescence of NH2-BDC could be selectively quenched by Congo red, which was ascribed to the inner filter effect. Accordingly, NH2-BDC was further employed for fluorescence "turn-off" assay of Congo red with a linear range of 0.05-50 μM and a limit of detection of 1.72 μM. And the sensor was used for the detection of Congo red in real water samples with acceptable results.
Collapse
Affiliation(s)
- Jiaqi Qian
- School of Teacher Education, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Jie Li
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yihan Jiang
- School of Teacher Education, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Chaoyong Liu
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Jiayao Zhu
- School of Teacher Education, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Liyu Gu
- School of Teacher Education, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Yongming Guo
- School of Teacher Education, Nanjing University of Information Science & Technology, Nanjing 210044, China.
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
7
|
Tsyupka DV, Pigarev SV, Podkolodnaya YA, Khudina EA, Popova NR, Goryacheva IY, Goryacheva OA. One-pot hydrothermal synthesis of fluorophore-modified cerium oxide nanoparticles. Phys Chem Chem Phys 2024; 26:9546-9555. [PMID: 38456314 DOI: 10.1039/d4cp00237g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Cerium oxide nanoparticles (CeO2 NPs), which have powerful antioxidant properties, are promising nanomaterials for the treatment of diseases associated with oxidative stress. The well-developed surface of CeO2 NPs makes them promising for use as a multifunctional system for various biomedical applications. This work demonstrates a simple approach that allows the direct formation of a molecular fluorophore on the surface of CeO2 NPs using a simple one-pot hydrothermal synthesis. Thus, we were able to synthesize CeO2 NPs of ultra-small size ∼2 nm with a narrow distribution, highly stable fluorescence, and a quantum yield of ∼62%. UV-visible transmission studies revealed that the resulting CeO2 NPs exhibited fast autogenerative catalytic reduction. In vitro results showed high biocompatibility of CeO2 NPs; their internalization occurs mainly in the region of cell nuclei. Thus, the resulting NPs have the necessary parameters and can be successfully used in biovisualization and therapy.
Collapse
Affiliation(s)
- Daria V Tsyupka
- Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia.
| | - Sergey V Pigarev
- Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia.
| | | | | | - Nelli R Popova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya str., 3, Moscow Region, Pushchino 142290, Russia
| | | | - Olga A Goryacheva
- Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia.
| |
Collapse
|
8
|
Guo Y, Li Y, Xiang Y. Advances in Fluorescent Nanosensors for Detection of Vitamin B 12. Crit Rev Anal Chem 2024:1-11. [PMID: 38498177 DOI: 10.1080/10408347.2024.2328104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Vitamin B12 plays a significant role in maintaining human health. Deficiency or excess intake of vitamin B12 may cause some diseases. Therefore, it is significant to fabricate sensors for sensitive assay of vitamin B12. In the past few years, a variety of nanomaterials have been developed for the fluorescence detection of vitamin B12 in tablets, injection, human serum and food. In the review, the assay mechanisms of fluorescent nanomaterials for sensing vitamin B12 were first briefly discussed. And the progress of various nanomaterials for fluorescence detection of vitamin B12 were systematically summarized. Furthermore, the sensing performance of fluorescent nanosensors was compared with fluorescent probes. Lastly, the challenges and perspectives about the topic were presented.
Collapse
Affiliation(s)
- Yongming Guo
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, China
| | - Yijin Li
- Reading Academy, Nanjing University of Information Science & Technology, Nanjing, China
| | - Yubin Xiang
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, China
| |
Collapse
|
9
|
Zhang S, Bao J, Lv L, Bai Y, Zhang Y, Zhang Y. Yellow-emitting carbon dots as fluorescent sensors for the rapid determination of curcumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123819. [PMID: 38157744 DOI: 10.1016/j.saa.2023.123819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/16/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
The non-standard use of curcumin could cause some adverse drug reactions, such as diarrhea, nausea and skin allergies. Thus, the curcumin determination was fundamental to disease treatment and prevention. Herein, a facile and efficient fluorescent probe was developed based on carbon dots, which was prepared through hydrothermal method (o-phenylenediamine and N-isopropylacrylamide as the reaction raw materials). Characteristics of the as-fabricated carbon dots (NCDs) were studied through some analysis techniques, such as UV-vis absorption spectroscopy, transmission electron microscopy, Fourier transform infrared instrument, X-ray photoelectron spectroscopy and fluorescence spectrophotometer. Fluorescence quenching phenomenon could be observed after addition of curcumin. This as-prepared fluorescent probe displayed a significant response for the determination of curcumin with a satisfactorily lower detection limit of 0.017 μM and a considerable linear range of 0.5-50 μM compared to reported literatures. Because of the preeminent repeatability and anti-jamming capability, the as-developed CDs suggested mighty potentiality for actual applications of curcumin detection in real samples and temperature sensing.
Collapse
Affiliation(s)
- Shen Zhang
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong 030619, PR China.
| | - Jinjia Bao
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong 030619, PR China
| | - Ling Lv
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong 030619, PR China
| | - Yongjie Bai
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong 030619, PR China
| | - Yiming Zhang
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong 030619, PR China
| | - Yaofang Zhang
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong 030619, PR China
| |
Collapse
|
10
|
Guo Y, Wang R, Wei C, Li Y, Fang T, Tao T. Carbon quantum dots for fluorescent detection of nitrite: A review. Food Chem 2023; 415:135749. [PMID: 36848836 DOI: 10.1016/j.foodchem.2023.135749] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/31/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023]
Abstract
NO2- is commonly found in foods and the environment, and excessive intake of NO2- poses serious hazards to human health. Thus, rapid and accurate assay of NO2- is of considerable significance. Traditional instrumental approaches for detection of NO2- faced with limitations of expensive instruments and complicated operations. Current gold standards for sensing NO2- are Griess assay and 2,3-diaminonaphthalene assay, which suffer from slow detection kinetics and bad water solubility. The newly emerged carbon quantum dots (CQDs) exhibit integrated merits including easy fabrication, low-cost, high quantum yield, excellent photostability, tunable emission behavior, good water solubility and low toxicity, which make CQDs be widely applied to fluorescent assay of NO2-. In this review, synthetic strategies of CQDs are briefly presented. Advances of CQDs for fluorescent detection of NO2- are systematically highlighted. Lastly, the challenges and perspectives in the field are discussed.
Collapse
Affiliation(s)
- Yongming Guo
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Ruiqing Wang
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Chengwei Wei
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yijin Li
- Reading Academy, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Tiancheng Fang
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Tao Tao
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| |
Collapse
|
11
|
Zhang M, Zhang Y, Cai ZF. Selective determination of ellagic acid in aqueous solution using blue-green emissive copper nanoclusters. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 295:122597. [PMID: 36930836 DOI: 10.1016/j.saa.2023.122597] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Development of beneficial sensors to analyze ellagic acid concentrations is of great importance for food safety and human health. Herein, a facile and fast fluorescent probe was carried out for the excellently selective and sensitive measurement of ellagic acid in real samples through histidine protected copper nanoclusters (histidine@Cu NCs) as a nanosensor. This as-developed histidine@Cu NCs were performed through UV-vis absorption spectroscopy, fluorescence spectroscopy, transmission electron microscopy, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy and fluorescence lifetime analysis. The TEM image revealed that this nanomaterial had spherical features with the average diameter of 2.5 ± 0.05 nm. The blue-green fluorescence of this Cu NCs was found under the UV light. Meanwhile, the maximum excitation and emission wavelength were located at 387 nm and 488 nm. After addition of ellagic acid, the fluorescence of histidine@Cu NCs was slowly weakened with excellent linear range of 0.5-300 μM and detection limit of 0.077 μM. The fluorescence weakening mechanism of this nanosensor were attributed to the inner filter effect (IFE) and static quenching. Finally, this as-established analysis platform was successfully employed to measure ellagic acid in real samples.
Collapse
Affiliation(s)
- Minglu Zhang
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, 441053, Hubei Province, P.R. China
| | - Yi Zhang
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, 441053, Hubei Province, P.R. China.
| | - Zhi-Feng Cai
- Department of Chemistry, Taiyuan Normal University, Jinzhong 030619, P.R. China.
| |
Collapse
|
12
|
Kundu A, Maity B, Basu S. Orange Pomace-Derived Fluorescent Carbon Quantum Dots: Detection of Dual Analytes in the Nanomolar Range. ACS OMEGA 2023; 8:22178-22189. [PMID: 37360434 PMCID: PMC10285992 DOI: 10.1021/acsomega.3c02474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023]
Abstract
Green-emissive carbon quantum dots (CQDs) with exclusive chemosensing aspects were synthesized from orange pomace as a biomass-based precursor via a facile microwave method without using any chemicals. The synthesis of highly fluorescent CQDs with inherent nitrogen was confirmed through X-ray diffraction, X-ray photoelectron, Fourier transform infrared, Raman, and transmission electron microscopic techniques. The average size of the synthesized CQDs was found to be 7.5 nm. These fabricated CQDs displayed excellent photostability, water solubility, and outstanding fluorescent quantum yield, i.e., 54.26%. The synthesized CQDs showed promising results for the detection of Cr6+ ions and 4-nitrophenol (4-NP). The sensitivity of CQDs toward Cr6+ and 4-NP was found up to the nanomolar range with the limit of detection values of 59.6 and 14 nM, respectively. Several analytical performances were thoroughly studied for high precision of dual analytes of the proposed nanosensor. Various photophysical parameters of CQDs (quenching efficiency, binding constant, etc.) were analyzed in the presence of dual analytes to gain more insights into the sensing mechanism. The synthesized CQDs exhibited fluorescence quenching toward incrementing the quencher concentration, which was rationalized by the inner filter effect through time-correlated single-photon counting measurements. The CQDs fabricated in the current work exhibited a lower detection limit and a wide linear range through the simple, eco-friendly, and rapid detection of Cr6+ and 4-NP ions. To evaluate the feasibility of the detection approach, real sample analysis was conducted, demonstrating satisfactory recovery rates and relative standard deviations toward the developed probes. This research paves the way for developing CQDs with superior characteristics utilizing orange pomace (biowaste precursor).
Collapse
Affiliation(s)
- Aayushi Kundu
- School
of Chemistry and Biochemistry, Senior Research Fellow—TIET-Virginia
Tech Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Banibrata Maity
- School
of Chemistry and Biochemistry, Affiliate Faculty—TIET-Virginia
Tech Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Soumen Basu
- School
of Chemistry and Biochemistry, Affiliate Faculty—TIET-Virginia
Tech Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala 147004, India
| |
Collapse
|
13
|
Han Y, Li P, Du Y. Encapsulating functionalized graphene quantum dot into metal-organic framework as a ratiometric fluorescent nanoprobe for doxycycline sensing. Mikrochim Acta 2023; 190:234. [PMID: 37217761 DOI: 10.1007/s00604-023-05815-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023]
Abstract
A distinctive fluorescent nanoprobe with the function of doxycycline identification was designed by encapsulating histidine and serine-functionalized graphene quantum dots (His-GQDs-Ser) into the luminescent metal-organic frameworks (MOF). The synthesized nanoprobe displayed the merits of prominent selectivity, wide detection range, and high sensitivity. The interaction of doxycycline and the fabricated fluorescent nanoprobe contributed to the phenomenon of the suppression of the fluorescence of the His-GQDs-Ser and enhancement of the MOF fluorescence. Linear relation between the concentration of doxycycline and the ratio fluorescence intensity of the nanoprobe was observed, which evidenced the brilliant capability in the ranges 0.003-6.25 μM and 6.25-25 μM with a detection limit of 1.8 nM. Additionally, the practicability of the probe was verified in analysis of spiked milk sample, and the satisfactory recoveries of doxycycline varied from 97.39 to 103.61%, with relative standard deviations in the range 0.62-1.42%. A proportional fluorescence sensor for doxycycline detection in standard solution was constructed, which provides a potential for the development of other fluorescence detection systems.
Collapse
Affiliation(s)
- Yixiu Han
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, People's Republic of China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Peipei Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, People's Republic of China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Yingxiang Du
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, Jiangsu, 210009, People's Republic of China.
| |
Collapse
|
14
|
Hao L, Yu Y, Liang Z, Hou H, Liu X, Chen C, Min D. Deciphering photocatalytic degradation of methylene blue by surface-tailored nitrogen-doped carbon quantum dots derived from Kraft lignin. Int J Biol Macromol 2023; 242:124958. [PMID: 37217057 DOI: 10.1016/j.ijbiomac.2023.124958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023]
Abstract
Lignin in black liquor can be used to manufacture carbon nanomaterials on a large scale. However, the effect of nitrogen doping on the physicochemical properties and photocatalytic performance of carbon quantum dots (NCQDs) remains to be explored. In this study, NCQDs with different properties were prepared hydrothermally by using kraft lignin as the raw material and EDA as a nitrogen dopant. The amount of EDA added affects the carbonization reaction and surface state of NCQDs. Raman spectroscopy showed that the surface defects increased from 0.74 to 0.84. Photoluminescence spectroscopy (PL) showed that NCQDs had different intensities of fluorescence emission at 300-420 nm and 600-900 nm. Meanwhile, NCQDs can photo-catalytically degrade 96 % of MB under simulated sunlight irradiation within 300 min. After three months of storage, the fluorescence intensity of NCQDs remained above 94 %, showing remarkable fluorescence stability. After four times of recycling, the photo-degradation rate of NCQDs was maintained above 90 %, confirming its outstanding stability. As a result, a clear understanding of the design of carbon-based photo-catalyst fabricated from the waste of the paper-making industry has been gained.
Collapse
Affiliation(s)
- Lingyun Hao
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Yuanyuan Yu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Zhanming Liang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Hewei Hou
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Xi Liu
- Guangxi Bossco Environmental Protection Technology Co., Ltd, Nanning 530007, PR China
| | - Changzhou Chen
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Douyong Min
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China.
| |
Collapse
|
15
|
Chen J, Li P, Han Y, Li Y, Du Y. Highly photoluminescent nitrogen-doped carbon quantum dots as a green fluorescence probe for determination of myricetin. Food Chem 2023; 417:135920. [PMID: 36933427 DOI: 10.1016/j.foodchem.2023.135920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023]
Abstract
Highly photoluminescent N-doped carbon quantum dots (N-CDs) which the quantum yield reached 63% were prepared through hydrothermal treatment. The obtained N-CDs displayed a uniform distribution of particle size, superior stability in high-salt conditions, and excellent sensitivity. A green fluorescence probe based on N-CDs was constructed for ultrasensitive determination of myricetin in vine tea on account of the static quenching. The N-CDs presented excellent linear fluorescence response in the concentration range of 0.2-40 μM and 56-112 μM and with a low detection limit of 56 nM. Additionally, the practicability of the probe was verified in spiked vine tea sample, and the satisfactory recoveries of myricetin varied from 98.8% to 101.2%, with relative standard deviations in the range of 1.52%-3.48%. It is the first time to employ N-CDs without any material modification as a fluorescence sensor to detect myricetin, which is a promising approach to expand the path for myricetin screening.
Collapse
Affiliation(s)
- Jingjing Chen
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Peipei Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yixiu Han
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yuchen Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yingxiang Du
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
16
|
Synthesis, characterization and potential sensing application of carbon dots synthesized via the hydrothermal treatment of cow milk. Sci Rep 2022; 12:22495. [PMID: 36577768 PMCID: PMC9797560 DOI: 10.1038/s41598-022-26906-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Carbon quantum dots (CQDs) were synthesized in this study by hydrothermally treating cow milk. The procedure is simple, non-hazardous to the environment, and does not necessitate the use of any special instruments or chemicals. CQDs were practically almost circular when they were manufactured and had an average size of 7 nm. Carbon (67.36%), oxygen (22.73%), and nitrogen (9.91%) comprised the majority of their composition. They feature broad excitation-emission spectra, excitation-dependent emission, and temperature-dependent photoluminescence. They remained quite stable in the presence of a lot of salt, UV radiation, and storage time. Because luminescence quenching mechanisms are sensitive to and selective for Sn2+, they can be employed to create a nanosensor for detecting Sn2+.
Collapse
|
17
|
Gaurav A, Jain A, Tripathi SK. Review on Fluorescent Carbon/Graphene Quantum Dots: Promising Material for Energy Storage and Next-Generation Light-Emitting Diodes. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7888. [PMID: 36431372 PMCID: PMC9695987 DOI: 10.3390/ma15227888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 05/10/2023]
Abstract
Carbon/graphene quantum dots are 0D fluorescent carbon materials with sizes ranging from 2 nm to around 50 nm, with some attractive properties and diverse applications. Different synthesis routes, bandgap variation, higher stability, low toxicity with tunable emission, and the variation of physical and chemical properties with change in size have drawn immense attention to its potential application in different optoelectronics-based materials, especially advanced light-emitting diodes and energy storage devices. WLEDs are a strong candidate for the future of solid-state lighting due to their higher luminance and luminous efficiency. High-performance batteries play an important part in terms of energy saving and storage. In this review article, the authors provide a comparative analysis of recent and ongoing advances in synthesis (top-down and bottom-up), properties, and wide applications in different kinds of next-generation light-emitting diodes such as WLEDs, and energy storage devices such as batteries (Li-B, Na-B) and supercapacitors. Furthermore, they discuss the potential applications and progress of carbon dots in battery applications such as electrode materials. The authors also summarise the developmental stages and challenges in the existing field, the state-of-the-art of carbon/graphene quantum dots, and the potential and possible solutions for the same.
Collapse
Affiliation(s)
- Ashish Gaurav
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Amrita Jain
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
| | - Santosh Kumar Tripathi
- Department of Physics, School of Physical Sciences, Mahatma Gandhi Central University, Motihari 845401, Bihar, India
| |
Collapse
|
18
|
Chen MY, Lang JY, Bai CC, Yu SS, Kong XJ, Dong LY, Wang XH. Construction of PEGylated boronate-affinity-oriented imprinting magnetic nanoparticles for ultrasensitive detection of ellagic acid from beverages. Anal Bioanal Chem 2022; 414:6557-6570. [PMID: 35831534 DOI: 10.1007/s00216-022-04213-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/03/2022] [Accepted: 07/04/2022] [Indexed: 11/28/2022]
Abstract
Molecularly imprinted polymers (MIPs) can exhibit antibody-level affinity for target molecules. However, the nonspecific adsorption of non-imprinted regions for non-target molecules limits the application range of MIPs. Herein, we fabricated PEGylated boronate-affinity-oriented ellagic acid-imprinting magnetic nanoparticles (PBEMN), which first integrated boronate-affinity-oriented surface imprinting and sequential PEGylation for small molecule-imprinted MIPs. The resultant PBEMN possess higher adsorption capacity and faster adsorption rate for template ellagic acid (EA) molecules than the non-PEGylated control. To prove the excellent performance, the PBEMN were linked with hydrophilic boronic acid-modified/fluorescein isothiocyanate-loaded graphene oxide (BFGO), because BFGO could selectively label cis-diol-containing substances by boronate-affinity and output ultrasensitive fluorescent signals. Based on a dual boronate-affinity synergy, the PBEMN first selectively captured EA molecules by boronate-affinity-oriented molecular imprinted recognition, and then the EA molecules were further labeled with BFGO through boronate-affinity. The PBEMN linked BFGO (PBPF) strategy provided ultrahigh sensitivity for EA molecules with a limit of detection of 39.1 fg mL-1, resulting from the low nonspecific adsorption of PBEMN and the ultrasensitive fluorescence signal of BFGO. Lastly, the PBPF strategy was successfully employed in the determination of EA concentration in a spiked beverage sample with recovery and relative standard deviation in the range of 96.5 to 104.2% and 3.8 to 5.1%, respectively. This work demonstrates that the integration of boronate-affinity-oriented surface imprinting and sequential PEGylation may be a universal tool for improving the performance of MIPs.
Collapse
Affiliation(s)
- Meng-Ying Chen
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Building B, 22 Qixiangtai Road, Heping District, Tianjin, 300072, China
| | - Jin-Ye Lang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Building B, 22 Qixiangtai Road, Heping District, Tianjin, 300072, China
| | - Chen-Chen Bai
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Building B, 22 Qixiangtai Road, Heping District, Tianjin, 300072, China
| | - Shi-Song Yu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Building B, 22 Qixiangtai Road, Heping District, Tianjin, 300072, China
| | - Xiang-Jin Kong
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, Liaocheng University, Liaocheng, 252000, China.
| | - Lin-Yi Dong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Building B, 22 Qixiangtai Road, Heping District, Tianjin, 300072, China
| | - Xian-Hua Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Building B, 22 Qixiangtai Road, Heping District, Tianjin, 300072, China.
| |
Collapse
|
19
|
Yang C, Li T, Yang Q, Guo Y, Tao T. One-step hydrothermal synthesis of fluorescent silicon nanoparticles for sensing sulfide ions and cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 273:121048. [PMID: 35219270 DOI: 10.1016/j.saa.2022.121048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/27/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
We have presented a hydrothermal approach for synthesizing fluorescent silicon nanoparticles (F-SiNPs) with yellow-green emission. The obtained F-SiNPs exhibited excellent stability and good biocompatibility. By virtue of the specific reaction between S2- and 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB), colorimetric assay of S2- was realized with a good linear range of 0-100 μM. The colorimetric detection system could be further combined with F-SiNPs to construct a probe for fluorescence turn-off sensing S2- in aqueous solution due to inner filter effect. In the fluorescent detection system, a good linearity with S2- concentration in the range of 0-50 μM was accomplished. And as low as 0.1 μM S2- was successfully detected. Moreover, the F-SiNPs displayed low cytotoxicity and good biocompatibility, and was further utilized for cell imaging. These results demonstrated the promising applications of F-SiNPs in S2- analysis and bioimaging.
Collapse
Affiliation(s)
- Chao Yang
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Ting Li
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Qin Yang
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yongming Guo
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Tao Tao
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
20
|
Yakusheva A, Sayapina A, Luchnikov L, Arkhipov D, Karunakaran G, Kuznetsov D. Carbon Quantum Dots' Synthesis with a Strong Chemical Claw for Five Transition Metal Sensing in the Irving-Williams Series. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:806. [PMID: 35269294 PMCID: PMC8912369 DOI: 10.3390/nano12050806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/07/2022] [Accepted: 02/21/2022] [Indexed: 02/04/2023]
Abstract
Carbon quantum dots (CQDs) are an excellent eco-friendly fluorescence material, ideal for various ecological testing systems. Herein, we establish uniform microwave synthesis of the group of carbon quantum dots with specific functionalization of ethylenediamine, diethylenetriamine, and three types of Trilon (A, B and C) with chelate claws -C-NH3. CQDs' properties were studied and applied in order to sense metal cations in an aquatic environment. The results provide the determination of the fluorescence quench in dots by pollutant salts, which dissociate into double-charged ions. In particular, the chemical interactions with CQDs' surface in the Irving-Williams series (IWs) via functionalization of the negatively charged surface were ascribed. CQD-En and CQD-Dien demonstrated linear fluorescence quenching in high metal cation concentrations. Further, the formation of claws from Trilon A, Trilon B, and C effectively caught the copper and nickel cations from the solution due to the complexation on CQDs' surface. Moreover, CQD-Trilon C presented chelating properties of the surface and detected five cations (Cu2+, Ni2+, Ca2+, Mg2+, Zn2+) from 0.5 mg/mL to 1 × 10-7 mg/mL in the Irving-William's series. Dependence was mathematically attributed as an equation (ML regression model) based on the constant of complex formation. The reliability of the data was 0.993 for the training database.
Collapse
Affiliation(s)
- Anastasia Yakusheva
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology MISIS, Leninsky Prospect 4, 119049 Moscow, Russia; (A.S.); (L.L.); (D.A.); (D.K.)
| | - Anastasia Sayapina
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology MISIS, Leninsky Prospect 4, 119049 Moscow, Russia; (A.S.); (L.L.); (D.A.); (D.K.)
| | - Lev Luchnikov
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology MISIS, Leninsky Prospect 4, 119049 Moscow, Russia; (A.S.); (L.L.); (D.A.); (D.K.)
| | - Dmitry Arkhipov
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology MISIS, Leninsky Prospect 4, 119049 Moscow, Russia; (A.S.); (L.L.); (D.A.); (D.K.)
| | - Gopalu Karunakaran
- Institute for Applied Chemistry, Department of Fine Chemistry, Seoul National University of Science and Technology (Seoul Tech), Gongneung-ro 232, Nowon-gu, Seoul 01811, Korea;
| | - Denis Kuznetsov
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology MISIS, Leninsky Prospect 4, 119049 Moscow, Russia; (A.S.); (L.L.); (D.A.); (D.K.)
| |
Collapse
|
21
|
Guan H, Wang D, Sun B. Dual-mode colorimetric/fluorometric sensor for the detection of glutathione based on the peroxidase-like activity of carbon quantum dots. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2021.109147] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
22
|
Wang G, Zhang S, Cui J, Gao W, Rong X, Lu Y, Gao C. Preparation of nitrogen-doped carbon quantum dots from chelating agent and used as fluorescent probes for accurate detection of ClO− and Cr(Ⅵ). Anal Chim Acta 2022; 1195:339478. [DOI: 10.1016/j.aca.2022.339478] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/29/2021] [Accepted: 01/07/2022] [Indexed: 11/01/2022]
|
23
|
Guo Y, Yang C, Zhang Y, Tao T. Nanomaterials for fluorescent detection of curcumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120359. [PMID: 34530202 DOI: 10.1016/j.saa.2021.120359] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/28/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Owing to the attractive biological and pharmacological activities, sensitive and selective detection of curcumin is of great significance. Nanomaterials possessing unique optical properties exhibit potential applications in the fluorescent detection of curcumin. This review first discussed the detection strategies of fluorescent nanosensors. In the subsequent section, we highlighted the recent advances of different nanomaterials for fluorescent detection of curcumin, including semiconductor QDs, lanthanide upconversion nanoparticles, fluorescent metal nanoclusters, and carbon quantum dots. And we further provided the merits of fluorescent nanosensors for curcumin. Lastly, the challenges and further directions were presented.
Collapse
Affiliation(s)
- Yongming Guo
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Chao Yang
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yijia Zhang
- Changwang School of Honors, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Tao Tao
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
24
|
Synthesis and Properties of Nitrogen-Doped Carbon Quantum Dots Using Lactic Acid as Carbon Source. MATERIALS 2022; 15:ma15020466. [PMID: 35057183 PMCID: PMC8778145 DOI: 10.3390/ma15020466] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 02/01/2023]
Abstract
Nitrogen-doped carbon quantum dots (N-CQDs) were synthesized in a one-step hydrothermal technique utilizing L-lactic acid as that of the source of carbon and ethylenediamine as that of the source of nitrogen, and were characterized using dynamic light scattering, X-ray photoelectron spectroscopy ultraviolet-visible spectrum, Fourier-transformed infrared spectrum, high-resolution transmission electron microscopy, and fluorescence spectrum. The generated N-CQDs have a spherical structure and overall diameters ranging from 1-4 nm, and their surface comprises specific functional groups such as amino, carboxyl, and hydroxyl, resulting in greater water solubility and fluorescence. The quantum yield of N-CQDs (being 46%) is significantly higher than that of the CQDs synthesized from other biomass in literatures. Its fluorescence intensity is dependent on the excitation wavelength, and N-CQDs release blue light at 365 nm under ultraviolet light. The pH values may impact the protonation of N-CQDs surface functional groups and lead to significant fluorescence quenching of N-CQDs. Therefore, the fluorescence intensity of N-CQDs is the highest at pH 7.0, but it decreases with pH as pH values being either more than or less than pH 7.0. The N-CQDs exhibit high sensitivity to Fe3+ ions, for Fe3+ ions would decrease the fluorescence intensity of N-CQDs by 99.6%, and the influence of Fe3+ ions on N-CQDs fluorescence quenching is slightly affected by other metal ions. Moreover, the fluorescence quenching efficiency of Fe3+ ions displays an obvious linear relationship to Fe3+ concentrations in a wide range of concentrations (up to 200 µM) and with a detection limit of 1.89 µM. Therefore, the generated N-CQDs may be utilized as a robust fluorescence sensor for detecting pH and Fe3+ ions.
Collapse
|
25
|
Li P, Du Y, Ma M, Zhang J. Nitrogen-doped graphene quantum dots coated with molecularly imprinted polymers as a fluorescent sensor for selective determination of warfarin. NEW J CHEM 2022. [DOI: 10.1039/d2nj00853j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The strong photoluminescence of NGQDs and the selectivity of MIPs were combined to construct a fluorescent sensor for rapid determination of warfarin.
Collapse
Affiliation(s)
- Peipei Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P. R. China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yingxiang Du
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P. R. China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Mingxuan Ma
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P. R. China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jian Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P. R. China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
26
|
Zhang W, Deng S, Yan C, Zhu Z, Li P, Li N, Chen Y, Jin T. Highly Efficiency Fluorescent Probe for Mercury Ions Based on (N, S)‐Co‐Doped Carbon Dots. ChemistrySelect 2021. [DOI: 10.1002/slct.202103383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wenge Zhang
- Guangzhou Institute of Chemistry Chinese Academy of Sciences 510650 Guangzhou PR China
- University of Chinese Academy of Sciences 100000 Beijing PR China
| | - Suqin Deng
- Guangzhou Institute of Chemistry Chinese Academy of Sciences 510650 Guangzhou PR China
- University of Chinese Academy of Sciences 100000 Beijing PR China
| | - Chao Yan
- Guangzhou Institute of Chemistry Chinese Academy of Sciences 510650 Guangzhou PR China
- University of Chinese Academy of Sciences 100000 Beijing PR China
| | - Zifan Zhu
- Guangzhou Institute of Chemistry Chinese Academy of Sciences 510650 Guangzhou PR China
- University of Chinese Academy of Sciences 100000 Beijing PR China
| | - Peiying Li
- Guangzhou Institute of Chemistry Chinese Academy of Sciences 510650 Guangzhou PR China
- University of Chinese Academy of Sciences 100000 Beijing PR China
| | - Nian Li
- Guangzhou Institute of Chemistry Chinese Academy of Sciences 510650 Guangzhou PR China
- University of Chinese Academy of Sciences 100000 Beijing PR China
| | - Yufang Chen
- Guangzhou Institute of Chemistry Chinese Academy of Sciences 510650 Guangzhou PR China
- University of Chinese Academy of Sciences 100000 Beijing PR China
- CAS Testing Technical Services (Guangzhou) Co., Ltd. 510650 Guangzhou PR China
- CAS Engineering Laboratory for Special Fine Chemicals Chinese Academy of Sciences Guangzhou 510650 PR China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics Guangzhou 510650 PR China
| | - Tao Jin
- Guangzhou Institute of Chemistry Chinese Academy of Sciences 510650 Guangzhou PR China
- University of Chinese Academy of Sciences 100000 Beijing PR China
- CAS Testing Technical Services (Guangzhou) Co., Ltd. 510650 Guangzhou PR China
- CAS Engineering Laboratory for Special Fine Chemicals Chinese Academy of Sciences Guangzhou 510650 PR China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics Guangzhou 510650 PR China
| |
Collapse
|
27
|
Latief U, Ul Islam S, Khan ZMSH, Khan MS. A facile green synthesis of functionalized carbon quantum dots as fluorescent probes for a highly selective and sensitive detection of Fe 3+ ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 262:120132. [PMID: 34245967 DOI: 10.1016/j.saa.2021.120132] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/19/2021] [Accepted: 06/26/2021] [Indexed: 05/07/2023]
Abstract
In this study, we have reported an economical, easy, greener and non-toxic synthesis route of water soluble carbon quantum dots (CQDs) through hydrothermal treatment using gelatin as precursor. Under the UV lamp of wavelength 365 nm, the as-prepared CQDs exhibit strong blue fluorescence along with CIE coordinate index of (0.17, 0.14) and possess a quantum yield of 22.7% with rhodamine B as standard. The morphology of as-synthesized CQDs as investigated by TEM measurement confirmed their spherical shape and also revealed that their sizes varied in the scale of 0.5-5 nm. Furthermore, the CQDs showed excitation dependent fluorescence emission behaviour in range of 280 nm to 420 nm as a result of quantum confinement effect. Apart from this, in CQDs solution, the addition of Fe3+ ion lead to fluorescence quenching effect. These results revealed that the as-synthesized CQDs have a sensitive response towards the Fe3+ ion. The calculated limit of detection (LOD) is 0.2 μM with correlation coefficient R2 = 0.996 in the concentration range 0 to 50 μM. More remarkably, the application of CQDs for monitoring the trace level of Fe3+ ion in tap water yielded acceptable recoveries (103.33%-105%). Therefore, this work provides a novel additional fluorescent probe for the detection of Fe3+ ion in real world.
Collapse
Affiliation(s)
- Urosa Latief
- Department of Physics, Jamia Millia Islamia, New Delhi 110025, India
| | - Shafi Ul Islam
- Department of Physics, Jamia Millia Islamia, New Delhi 110025, India
| | - Zubair M S H Khan
- Department of Physics, Jamia Millia Islamia, New Delhi 110025, India
| | - Mohd Shahid Khan
- Department of Physics, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
28
|
Zhang S, Wang Z, Pang Y, Jing Z, Li Z, Peng F, Zhao Y, Guo Y. Highly fluorescent carbon dots from coix seed for the determination of furazolidone and temperature. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 260:119969. [PMID: 34051636 DOI: 10.1016/j.saa.2021.119969] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/15/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
In this work, blue emission fluorescent carbon dots (CDs) were fabricated by using the hydrothermal strategy from coix seed for the first time. We found that the prepared CDs possessed many excellent characteristics including excitation-dependent properties, good solubility and strong photostability. The optimal excitation and emission wavelength of CDs were 363 and 435 nm, respectively. Unbelievably, the fluorescence of CDs was selectively and effectively quenched with the addition of furazolidone (Fu). The quenching mechanisms might be assumed to the static quenching and inner filter effect (IFE). Based on this principle, a novel fluorescence probe was developed for the determination of Fu. At the same time, the proposed probe showed excellent sensitivity and selectivity towards Fu with a wide linear range from 0.5 to 100 μM, and the corresponding detection limit was 0.096 μM. Moreover, the CDs also could be applied for the sensing of temperature. The practical application of the CDs for Fu detection in real samples was also confirmed with the satisfactory recoveries changing from 96.6% to 108.5%, which provided huge possibility in the field of medical analysis.
Collapse
Affiliation(s)
- Shen Zhang
- Department of Chemistry, Taiyuan Normal University, Jinzhong 030619, PR China.
| | - Zixin Wang
- Department of Chemistry, Taiyuan Normal University, Jinzhong 030619, PR China
| | - Yating Pang
- Department of Chemistry, Taiyuan Normal University, Jinzhong 030619, PR China
| | - Zerong Jing
- Department of Chemistry, Taiyuan Normal University, Jinzhong 030619, PR China
| | - Zheng Li
- Department of Physics, Taiyuan Normal University, Jinzhong 030619, PR China
| | - Fangfang Peng
- Department of Physics, Taiyuan Normal University, Jinzhong 030619, PR China
| | - Yiyan Zhao
- Department of Physics, Taiyuan Normal University, Jinzhong 030619, PR China
| | - Yuyu Guo
- College of Arts, Taiyuan University of Technology, Taiyuan 030024, Shanxi, PR China.
| |
Collapse
|
29
|
Cai ZF, Deng CH, Wang J, Zuo Y, Wu JL, Wang XP, Lv TZ, Wang YY, Feng DY, Zhao J, Zhang CF, Zhang JM. Sensitive and selective determination of aloin with highly stable histidine-capped silver nanoclusters based on the inner filter effect. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Wang D, Zhang Y, Cai Z, You S, Sun Y, Dai Y, Wang R, Shao S, Zou J. Corn Stalk-Derived Carbon Quantum Dots with Abundant Amino Groups as a Selective-Layer Modifier for Enhancing Chlorine Resistance of Membranes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:22621-22634. [PMID: 33950689 DOI: 10.1021/acsami.1c04777] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Low permeability and chlorine resistance of normal thin-film composite (TFC) membranes restrict their practical applications in many fields. This study reports the preparation of a high chlorine-resistant TFC membrane for forward osmosis (FO) by incorporating corn stalk-derived N-doped carbon quantum dots (N-CQDs) into the selective polyamide (PA) layer to construct a polydopamine (PDA) sub-layer (PTFCCQD). Membrane modification is characterized by surface morphology, hydrophilicity, Zeta potential, and roughness. Results show that TFCCQD (without PDA pretreatment) and PTFCCQD membranes possess greater negative surface charges and thinner layer-thickness (less than 68 nm). With N-CQDs and PDA pretreatment, the surface roughness of the PTFCCQD membrane decreases significantly with the co-existence of microsized balls and flocs with a dense porous structure. With the variation of concentration and type of draw solution, the PTFCCQD membrane exhibits an excellent permeability with low J(reverse salt flux)/J(water flux) values (0.1-0.25) due to the enhancement of surface hydrophilicity and the shortening of permeable paths. With 16,000 ppm·h chlorination, reverse salt flux of the PTFCCQD membrane (8.4 g m-2 h-1) is far lower than those of TFCCQD (136.2 g m-2 h-1), PTFC (127.6 g m-2 h-1), and TFC (132 g m-2 h-1) membranes in FO processes. The decline of salt rejection of the PTFCCQD membrane is only 8.2%, and the normalized salt rejection maintains 0.918 in the RO system (16,000 ppm·h chlorination). Super salt rejection is ascribed to the existence of abundant N-H bonds (N-CQDs), which are preferentially chlorinated by free chlorine to reduce the corrosion of the PA layer. The structure of the PA layer is stable during chlorination also due to the existence of various active groups grafted on the surface. This study may pave a new direction for the preparation of durable biomass-derivative (N-CQD)-modified membranes to satisfy much more possible applications.
Collapse
Affiliation(s)
- Di Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Ying Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Zhuang Cai
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Shijie You
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Yubo Sun
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Ying Dai
- School of Civil Engineering, Heilongjiang Institute of Technology, Harbin 150050, China
| | - Rongyue Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Siliang Shao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Jinlong Zou
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
31
|
Chauhan P, Chaudhary S, Bhasin K. Usage of agarose gel waste for the high yield production of carbon dots and new insight into their toxicological screening. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
32
|
Sousa HBA, Martins CSM, Prior JAV. You Don't Learn That in School: An Updated Practical Guide to Carbon Quantum Dots. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:611. [PMID: 33804394 PMCID: PMC7998311 DOI: 10.3390/nano11030611] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 12/25/2022]
Abstract
Carbon quantum dots (CQDs) have started to emerge as candidates for application in cell imaging, biosensing, and targeted drug delivery, amongst other research fields, due to their unique properties. Those applications are possible as the CQDs exhibit tunable fluorescence, biocompatibility, and a versatile surface. This review aims to summarize the recent development in the field of CQDs research, namely the latest synthesis progress concerning materials/methods, surface modifications, characterization methods, and purification techniques. Furthermore, this work will systematically explore the several applications CQDs have been subjected to, such as bioimaging, fluorescence sensing, and cancer/gene therapy. Finally, we will briefly discuss in the concluding section the present and future challenges, as well as future perspectives and views regarding the emerging paradigm that is the CQDs research field.
Collapse
Affiliation(s)
| | | | - João A. V. Prior
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n. 228, 4050-313 Porto, Portugal; (H.B.A.S.); (C.S.M.M.)
| |
Collapse
|
33
|
Chen S, Chen C, Wang J, Luo F, Guo L, Qiu B, Lin Z. A Bright Nitrogen-doped-Carbon-Dots based Fluorescent Biosensor for Selective Detection of Copper Ions. JOURNAL OF ANALYSIS AND TESTING 2021. [DOI: 10.1007/s41664-021-00162-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
34
|
Qi Z, Lu R, Wang S, Xiang C, Xie C, Zheng M, Tian X, Xu X. Selective fluorometric determination of microcystin-LR using a segment template molecularly imprinted by polymer-capped carbon quantum dots. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105798] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
35
|
Lin C, Zou Z, Lei Z, Wang L, Song Y. Fluorescent metal-organic frameworks MIL-101(Al)-NH 2 for rapid and sensitive detection of ellagic acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 242:118739. [PMID: 32717527 DOI: 10.1016/j.saa.2020.118739] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
Ellagic acid (EA) is a symmetric natural phenol bioactive compound present in fruits and nuts, and has attracted substantial interest worldwide owing to its beneficial health effects. Here, the exploration of luminescent metal-organic frameworks (MOFs) of MIL-101(Al)-NH2 (MIL = Materials of Institute Lavoisier) for rapid and sensitive sensing of EA in aqueous solution was reported initially. The porous MIL-101(Al)-NH2 MOFs was synthesized by solvent-thermal method with inexpensive 2-aminoterephthalic acid and aluminum salt, which exhibited uniform spherical crystals (~340 nm) and specific mesoporous structure (3.2 nm). The fluorescence intensity of MIL-101(Al)-NH2 at 425 nm showed a good linear relationship with EA concentration in the range of 0.15-100 μM. The detection limit was as low as 43.8 nM, the rapid response time was within 2 min, and the cost of detection was low. In addition, the "turn off" fluorescence probe could be utilized for visual detection of EA according to the color change under the UV lamp. Based on the Stern-Volmer equation, the quenching constants was decreased with the rise of temperature, which indicated that the probable quenching mechanism was static quenching. The nanoprobe was successfully used to detect EA in the cherry and serum samples. MIL-101(Al)-NH2 represents the first instance of MOFs-based fluorescent probe in EA detection. This work not only enriches the detection method of EA, but also expands the potential application of MIL MOFs in small molecules.
Collapse
Affiliation(s)
- Chunhua Lin
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China; National Monosaccharide Chemical Synthesis Engineering Research Center, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China.
| | - Zhifeng Zou
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| | - Zhiwei Lei
- National Monosaccharide Chemical Synthesis Engineering Research Center, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| | - Li Wang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| | - Yonghai Song
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| |
Collapse
|
36
|
Liu F, Li H, Liao D, Xu Y, Yu M, Deng S, Zhang G, Xiao T, Long J, Zhang H, Li Y, Li K, Zhang P. Carbon quantum dots derived from the extracellular polymeric substance of anaerobic ammonium oxidation granular sludge for detection of trace Mn(vii) and Cr(vi). RSC Adv 2020; 10:32249-32258. [PMID: 35518178 PMCID: PMC9056554 DOI: 10.1039/d0ra06133f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/24/2020] [Indexed: 11/21/2022] Open
Abstract
Carbon quantum dots (CQDs) were synthesized via a hydrothermal method, in which extracellular polymeric substance (EPS) from anaerobic ammonium oxidation (anammox) granular sludge was used as a carbon precursor, while citric acid and ethylenediamine were applied as auxiliary carbon source and passivation agent, respectively. The synthesized CQDs, with orderly spherical shape and mean size of 7.15 nm, emitted blue fluorescent light under UV radiation of 365 nm. The CQDs had a high fluorescence yield (40.84%), with good water solubility and excellent spectroscopic properties. In addition, the CQDs exhibited selective, sensitive and distinctive fluorescence quenching behaviors for Cr(vi) and Mn(vii) in a PBS buffer solution (NaH2PO4–Na2HPO4) of pH 7, with a detection limit of 5.8 nM for Cr(vi) and 2.3 nM for Mn(vii). Owing to the nitrogen components from the EPS of anammox granules, the CQDs were well nitrogen-doped, promoting electron-transfer and leading to reduction between the CQDs and Mn(vii)/Cr(vi). These results indicate that CQD-based chemical sensing is a simple and efficient means for the fluorescence detection of Mn(vii) and Cr(vi). Fluorescence detection of trace Mn(vii) or Cr(vi) by the CQDs prepared from anaerobic ammonium oxidation granular sludge.![]()
Collapse
Affiliation(s)
- Fengli Liu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, College of Chemistry and Chemical Engineering, Guangzhou University Guangzhou 510006 China +86 20 39366505
| | - Huosheng Li
- Institute of Environmental Research at Greater Bay Area, Guangzhou University Guangzhou 510006 China
| | - Dandan Liao
- School of Environmental Science and Engineering, Guangzhou University Guangzhou 510006 China
| | - Yanhong Xu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University Chongqing 400045 China
| | - Mingxia Yu
- School of Environmental Science and Engineering, Guangzhou University Guangzhou 510006 China
| | - Shengwen Deng
- Institute of Environmental Research at Greater Bay Area, Guangzhou University Guangzhou 510006 China
| | - Gaosheng Zhang
- Institute of Environmental Research at Greater Bay Area, Guangzhou University Guangzhou 510006 China
| | - Tangfu Xiao
- School of Environmental Science and Engineering, Guangzhou University Guangzhou 510006 China
| | - Jianyou Long
- School of Environmental Science and Engineering, Guangzhou University Guangzhou 510006 China
| | - Hongguo Zhang
- School of Environmental Science and Engineering, Guangzhou University Guangzhou 510006 China
| | - Yuting Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, College of Chemistry and Chemical Engineering, Guangzhou University Guangzhou 510006 China +86 20 39366505
| | - Keke Li
- School of Environmental Science and Engineering, Guangzhou University Guangzhou 510006 China
| | - Ping Zhang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, College of Chemistry and Chemical Engineering, Guangzhou University Guangzhou 510006 China +86 20 39366505
| |
Collapse
|
37
|
Janus Ł, Radwan-Pragłowska J, Piątkowski M, Bogdał D. Facile Synthesis of Surface-Modified Carbon Quantum Dots (CQDs) for Biosensing and Bioimaging. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3313. [PMID: 32722356 PMCID: PMC7436324 DOI: 10.3390/ma13153313] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/17/2022]
Abstract
Recently, fluorescent probes became one of the most efficient tools for biosensing and bioimaging. Special attention is focused on carbon quantum dots (CQDs), which are characterized by the water solubility and lack of cytotoxicity. Moreover, they exhibit higher photostability comparing to traditional organic dyes. Currently, there is a great need for the novel, luminescent nanomaterials with tunable properties enabling fast and effective analysis of the biological samples. In this article, we propose a new, ecofriendly bottom-up synthesis approach for intelligent, surface-modified nanodots preparation using bioproducts as a raw material. Obtained nanomaterials were characterized over their morphology, chemical structure and switchable luminescence. Their possible use as a nanodevice for medicine was investigated. Finally, the products were confirmed to be non-toxic to fibroblasts and capable of cell imaging.
Collapse
Affiliation(s)
- Łukasz Janus
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, 31-155 Krakow, Poland; (J.R.-P.); (M.P.); (D.B.)
| | | | | | | |
Collapse
|