1
|
Scorsone E, Stewart S, Hamel M. Highly Sensitive and Selective Detection of L-Tryptophan by ECL Using Boron-Doped Diamond Electrodes. SENSORS (BASEL, SWITZERLAND) 2024; 24:3627. [PMID: 38894416 PMCID: PMC11175342 DOI: 10.3390/s24113627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 05/27/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024]
Abstract
L-tryptophan is an amino acid that is essential to the metabolism of humans. Therefore, there is a high interest for its detection in biological fluids including blood, urine, and saliva for medical studies, but also in food products. Towards this goal, we report on a new electrochemiluminescence (ECL) method for L-tryptophan detection involving the in situ production of hydrogen peroxide at the surface of boron-doped diamond (BDD) electrodes. We demonstrate that the ECL response efficiency is directly related to H2O2 production at the electrode surface and propose a mechanism for the ECL emission of L-tryptophan. After optimizing the analytical conditions, we show that the ECL response to L-tryptophan is directly linear with concentration in the range of 0.005 to 1 µM. We achieved a limit of detection of 0.4 nM and limit of quantification of 1.4 nM in phosphate buffer saline (PBS, pH 7.4). Good selectivity against other indolic compounds (serotonin, 3-methylindole, tryptamine, indole) potentially found in biological fluids was observed, thus making this approach highly promising for quantifying L-tryptophan in a broad range of aqueous matrices of interest.
Collapse
Affiliation(s)
- Emmanuel Scorsone
- Université Paris-Saclay, CEA, List, F-91120 Palaiseau, France; (S.S.)
| | | | | |
Collapse
|
2
|
Shah JH, Sharif S, Shahbaz M, Riaz B, Shahzad S, Şahin O, Munawar KS, Ahmad H, Al-Ammar EA. Pyridine-2,6-Dicarboxylic Acid As a Facile and Highly Selective "Turn-Off" Fluorimetric Chemosensor for Detection of Cu (II) Ions in Aqueous Media. J Fluoresc 2024:10.1007/s10895-024-03764-z. [PMID: 38805132 DOI: 10.1007/s10895-024-03764-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/05/2024] [Indexed: 05/29/2024]
Abstract
Copper metal is third most abundant trace element in human body. Determination of Cu (II) ions is a burning topic in field of environment protection and food safety because of its significant impact on ecosystem. In this study, 2,6-pyridine dicarboxylic acid (PDA) has been explored as "turn-off" florescent probe for florescent detection of Cu (II) ions. This sensor showed highly selective complexing ability towards Cu (II) ions. Addition of aqueous solution of Cu (II) ions remarkably quenched the fluorescence intensity of PDA while, on contrary, there was no any prominent fluorescence quenching interference on addition of various metal ions. The binding mode of PDA and Cu (II) ions was determined as stoichiometry of 1:1 and it was further confirmed by single crystal XRD analysis. Mechanisms of static and dynamic quenching were confirmed by stern-volmer plot. Limit of detection (LOD) and limit of quantification (LOQ) for Cu (II) ions was calculated as 3.6 µM and 1.23 µM respectively, which is far below the acceptable value (31.5µM) according to the World Health Organization. The use of the sensor for detection of Cu (II) ions in real samples in aqueous media was also performed.
Collapse
Affiliation(s)
- Javed Hussain Shah
- Materials Chemistry Laboratory, Institute of Chemical Sciences, Government College University Lahore, Lahore, 54000, Pakistan
| | - Shahzad Sharif
- Materials Chemistry Laboratory, Institute of Chemical Sciences, Government College University Lahore, Lahore, 54000, Pakistan.
| | - Muhammad Shahbaz
- Materials Chemistry Laboratory, Institute of Chemical Sciences, Government College University Lahore, Lahore, 54000, Pakistan
| | - Bilal Riaz
- Materials Chemistry Laboratory, Institute of Chemical Sciences, Government College University Lahore, Lahore, 54000, Pakistan
| | - Sundas Shahzad
- Materials Chemistry Laboratory, Institute of Chemical Sciences, Government College University Lahore, Lahore, 54000, Pakistan
| | - Onur Şahin
- Department of Occupat Health & Safety, Faculty of Health Sciences, Sinop University, TR-57000, Sinop, Turkey
| | | | - Hijaz Ahmad
- Section of Mathematics, International Telematic University Uninettuno, Corso Vittorio Emanuele II, 39, 00186, Rome, Italy
- Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon
| | - Essam A Al-Ammar
- Department of Electrical Engineering, College of Engineering, King Saud University, P.O. Box 800, 11421, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Mohammadi F, Roushani M, Valipour A. Development of a label-free impedimetric aptasensor based on Zr-MOF and titaniom carbide nanosheets for detection of L-tryptophan. Bioelectrochemistry 2024; 155:108584. [PMID: 37832184 DOI: 10.1016/j.bioelechem.2023.108584] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/01/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023]
Abstract
This study primarily focuses on the L-Tryptophan (Trp) biomarker assay, with particular attention given to its objectives. The investigation centers on the potential implications of imbalanced Trp levels and its associated metabolites, which have been attributed to the spectrum of both psychological and physiological disorders, encompassing conditions such as cancer. Therefore, the swift and accurate detection of this amino acid is of paramount importance in cancer monitoring, as it plays a crucial role in preventing the metastasis and spread of cancer cells. Thus, an electrochemical aptasensor was designed based on nanocomposite of AgNPs@UiO-66/Ti3C2 (MXene) as immobilization strategy for the ultrasensitive detection of Trp. Zirconium metal-organic frameworks (Zr-MOFs) were employed as carriers for silver nanoparticles to facilitate subsequent binding with aptamers. Markedly, the obtained results show that the constructed aptasensor can specifically detect Trp in the two concentration range from 1fM to 1 nM and 1 nM to 200 nM and with a low detection limit of 0.35 fM. When applied to real samples, the experimental results demonstrated positive recovery rates. Consequently, a discerning and sensitive electrochemical aptasensor devoid of labeling agents was successfully fabricated for the explicit purpose of Trp detection.
Collapse
Affiliation(s)
- Farzaneh Mohammadi
- Department of Chemistry, Faculty of Sciences, Ilam University, Ilam P. O. BOX. 69315-516, Iran
| | - Mahmoud Roushani
- Department of Chemistry, Faculty of Sciences, Ilam University, Ilam P. O. BOX. 69315-516, Iran.
| | - Akram Valipour
- Department of Chemistry, Faculty of Sciences, Ilam University, Ilam P. O. BOX. 69315-516, Iran
| |
Collapse
|
4
|
Alshareef M. Recent Advances in Organic Sensors for the Detection of Ag + Ions: A Comprehensive Review (2019-2023). Crit Rev Anal Chem 2023; 55:83-98. [PMID: 37792301 DOI: 10.1080/10408347.2023.2263877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Recently, organic sensors for the detection of Ag+ and other metal ions have experienced significant advancements. This is because there is a growing demand for reliable and sensitive tools to monitor various environmental pollutants. Organic sensors have O-, S-, and N-donor atoms, which can act as a ligand and coordinate with different metal ions, hence stabilizing them in a variety of oxidation states. This interaction gives colorimetric and fluorescence changes, which are used to monitor Ag+ and other metal ions. This comprehensive review highlights the latest developments in organic sensors for the recognition of Ag+. We present an in-depth analysis of the underlying principles and mechanisms governing Ag+ ion recognition. Various organic sensing platforms, such as fluorescent and colorimetric sensors, are discussed, shedding light on their unique advantages and limitations. Special attention is given to the diverse range of organic ligands, receptors, and functional materials used to achieve high sensitivity, selectivity, and quantification accuracy. Additionally, we delve into real-world applications of organic sensors for Ag+ ion detection, examining their performance in complex matrices such as biological, environmental, industrial and agricultural matrices.
Collapse
Affiliation(s)
- Mubark Alshareef
- Department of Chemistry, Faculty of Applied Science, Umm Al Qura University, Makkah, Saudi Arabia
| |
Collapse
|
5
|
Zhang J, Wang K, Sun Y. A Simple Schiff Base Probe for Quintuplicate-Metal Analytes with Four Emission-Wavelength Responses. Molecules 2023; 28:6400. [PMID: 37687230 PMCID: PMC10490265 DOI: 10.3390/molecules28176400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
A versatile mono-Schiff compound consisting of o-aminobenzene-hydroxyjulolidine (ABJ-MS) has been easily synthesized using a one-step reaction. ABJ-MS displays four diverse fluorescence responses to the addition of Zn2+/Al3+/Fe3+/Ag+, with the maximum fluorescence emission at 530 nm undergoing a hypsochromic shift to 502/490/440/430 nm, synchronously with the discriminating fluorescence enhancement being 10.6/22.8/2.6/7.1-fold, respectively. However, the addition of Cu2+ into ABJ-MS leads to an opposite behavior, namely, fluorescence quenching. Meanwhile, ABJ-MS also displays distinct absorption changes after adding these five metal ions due to different binding affinities between them and ABJ-MS, which gives ABJ-MS quite a versatile detecting nature for Cu2+/Zn2+/Al3+/Fe3+/Ag+. Moreover, ABJ-MS can mimic a series of versatile AND/OR/INH-consisting logic circuits on the basis of the Cu2+/Zn2+/Al3+/Fe3+/Ag+-mediated diverse optical responses. These will endow the smart ABJ-MS molecule and potential applications in the multi-analysis chemosensory and molecular logic material fields.
Collapse
Affiliation(s)
- Jingzhe Zhang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
- Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaili Wang
- Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China
- State Environmental Protection Engineering (Beijing) Center for Industrial Wastewater Pollution Control, Beijing 100037, China
| | - Yilu Sun
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
He Y, Wang H, Fang X, Zhang W, Zhang J, Qian J. Semicarbazide-based fluorescent probe for detection of Cu 2+ and formaldehyde in different channels. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122818. [PMID: 37167742 DOI: 10.1016/j.saa.2023.122818] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/19/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023]
Abstract
Two fluorescent sensors with the receptor semicarbazide respectively at 7- (CAA) and 3-position (CAB) of coumarin were designed and synthesized. CAA exhibits fluorescence turn-on response to Cu2+ by triggering the intramolecular charge transfer (ICT) process via Cu2+-catalyzed hydrolysis, and can detect formaldehyde (FA) at different channel by inhibiting the photo-induced electron transfer (PET). However, CAB displays quite different responses: the photophysical properties hardly changed in the presence of FA; while a three-stage fluorescence response of fast quenching, steady increasing and slowly decreasing was found upon addition of Cu2+. The high selectivity enabled CAA a good candidate for quantification of Cu2+ and formaldehyde as well as bioimaging Cu2+ in living cells. Good linear relationships between the fluorescence intensity and analyte concentration were observed in the range of 0.1-30 μM for Cu2+ and 1.0-50 μM for FA, and their detection limits (LOD) were calculated to be 0.43 μM and 1.92 μM (3δ/k), respectively.
Collapse
Affiliation(s)
- Yuting He
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hao Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xinhang Fang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weibing Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jingyuan Zhang
- Department of Chemistry, Faculty of Science, University of Alberta, Edmonton, Alberta t6g2r3, Canada
| | - Junhong Qian
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
7
|
Chantarasunthon K, Promkatkaew M, Waranwongcharoen P, Sueksachat A, Prasop N, Norasi T, Sonsiri N, Sansern S, Chomngam S, Wechakorn K, Thana C, Sakulsaknimitr W, Kongsaeree P, Srisuratsiri P. A novel highly selective FRET sensor for Fe(III) and DFT mechanistic evaluation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:122031. [PMID: 36323091 DOI: 10.1016/j.saa.2022.122031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
A novel FRET-based sensor has been designed and developed through the conjugation of naphthyl and rhodamine via propylamine spacer, Naph-Rh. The naphthyl moiety serves as a FRET donor due to its emission spectrum overlapping with the rhodamine B absorption band. Naph-Rh exhibited a selectivity for sensing Fe3+ over other metal ions with a visual color change and fluorescent enhancement. The ratio of the Naph-Rh and Fe3+ was determined to be 1:1 based on Job's plot analysis with a detection limit of 83 nM. The probe exhibited a linear response to Fe3+ in the range of 0-120 μM. Furthermore, the density functional theory (DFT) calculations of Naph-Rh were carried out to rationalize the design and portray the plausible Fe3+ sensing mechanism.
Collapse
Affiliation(s)
- Ketsarin Chantarasunthon
- Department of Basic Science and Physical Education, Faculty of Science at Sriracha, Kasetsart University Sriracha Campus, Chonburi 20230, Thailand
| | - Malinee Promkatkaew
- Department of Basic Science and Physical Education, Faculty of Science at Sriracha, Kasetsart University Sriracha Campus, Chonburi 20230, Thailand
| | - Patthreera Waranwongcharoen
- Department of Basic Science and Physical Education, Faculty of Science at Sriracha, Kasetsart University Sriracha Campus, Chonburi 20230, Thailand
| | - Anek Sueksachat
- Department of Basic Science and Physical Education, Faculty of Science at Sriracha, Kasetsart University Sriracha Campus, Chonburi 20230, Thailand
| | - Nitchanan Prasop
- Department of Basic Science and Physical Education, Faculty of Science at Sriracha, Kasetsart University Sriracha Campus, Chonburi 20230, Thailand
| | - Thanaporn Norasi
- Department of Basic Science and Physical Education, Faculty of Science at Sriracha, Kasetsart University Sriracha Campus, Chonburi 20230, Thailand
| | - Narisa Sonsiri
- Department of Basic Science and Physical Education, Faculty of Science at Sriracha, Kasetsart University Sriracha Campus, Chonburi 20230, Thailand
| | - Sirirat Sansern
- Department of Basic Science and Physical Education, Faculty of Science at Sriracha, Kasetsart University Sriracha Campus, Chonburi 20230, Thailand
| | - Sinchai Chomngam
- Department of Chemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Kanokorn Wechakorn
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathumthani 12110, Thailand
| | - Chanat Thana
- Department of Basic Science and Physical Education, Faculty of Science at Sriracha, Kasetsart University Sriracha Campus, Chonburi 20230, Thailand
| | - Wissawat Sakulsaknimitr
- Department of Basic Science and Physical Education, Faculty of Science at Sriracha, Kasetsart University Sriracha Campus, Chonburi 20230, Thailand
| | - Palangpon Kongsaeree
- Department of Chemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Pailin Srisuratsiri
- Department of Basic Science and Physical Education, Faculty of Science at Sriracha, Kasetsart University Sriracha Campus, Chonburi 20230, Thailand.
| |
Collapse
|
8
|
An ultra-selective smart electrochemical sensor based upon hydrophilic core-shell molecularly imprinted polymer for determination of L-tryptophan. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
9
|
Stîngă G, Băran A, Iovescu A, Maxim ME, Anghel DF. Metal ions recognition by pyrene labeled poly(acrylic acid). J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Fluorometric/electrochemical dual-channel sensors based on carbon quantum dots for the detection and information anti-counterfeiting. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
11
|
Mayurachayakul P, Chantarasriwong O, Yotapan N, Kamkaew A, Mingvanish W, Srisuwannaket C, Sukwattanasinitt M, Niamnont N. Novel selective "on-off" fluorescence sensor based on julolidine hydrazone-Al 3+ complex for Cu 2+ ion: DFT study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121382. [PMID: 35598577 DOI: 10.1016/j.saa.2022.121382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
A hydrazone (T1) was synthesized by reacting 8-hydroxyjulolidine-9-carboxaldehyde with 2-furoic hydrazide and then modified with Al3+ ion to form a novel hydrazone Al3+ complex (T1-Al3+) in an aqueous solution (8% propylene glycol in 10 mM HEPES pH 5.5). The T1-Al3+ complex was studied as a Cu2+ selective sensor due to its highly efficient capacibility of paramagnetic quenching. The results showed that the T1-Al3+ complexed sensor possesses remarkable sensitivity and selectivity for Cu2+ ion in 8% propylene glycol in 10 mM HEPES pH 5.5 as compared with other tested analytes. Notably, this sensor has a broad linear detection range of 10-110 µM for Cu2+ ion and a detection limit level of 0.62 µM, which is lower than the Cu2+ concentration threshold in drinking water designated by the United States Environmental Protection Agency (EPA). Additionally, it was detectable for the presence of Cu2+ ion in mineral water and tap water samples. The selectivity of T1-Al3+ complexed sensor with Cu2+ ion could be explained by the basis of computation with Gaussian software complied with the basis sets of B3LYP/6-31 G(d,p)/LANL2DZ. Furthermore, only T1 exhibited anticancer efficacy against HeLa and U251 cells with MTT assay.
Collapse
Affiliation(s)
- Pipattra Mayurachayakul
- Organic Synthesis, Electrochemistry & Natural Product Research Unit, Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Oraphin Chantarasriwong
- Organic Synthesis, Electrochemistry & Natural Product Research Unit, Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Nattawut Yotapan
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science and Nanotec-CU Center of Excellence on Food and Agriculture, Chulalongkorn University, Bangkok 10330, Thailand
| | - Anyanee Kamkaew
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Withawat Mingvanish
- Organic Synthesis, Electrochemistry & Natural Product Research Unit, Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Choladda Srisuwannaket
- Organic Synthesis, Electrochemistry & Natural Product Research Unit, Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Mongkol Sukwattanasinitt
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science and Nanotec-CU Center of Excellence on Food and Agriculture, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nakorn Niamnont
- Organic Synthesis, Electrochemistry & Natural Product Research Unit, Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand.
| |
Collapse
|
12
|
Chounechenan SA, Mohammadi A, Khalili B. A highly selective silver ion optical chemosensor based on isoxazolyl-azo pyrimidine: synthesis, spectroscopy, DFT calculations and applications. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3405-3415. [PMID: 35983903 DOI: 10.1039/d2ay00868h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this work, an isoxazolyl-azo pyrimidine optical chemosensor (PICS) was efficiently synthesized and applied for naked-eye detection of Ag+ ions in solution. The chemical formula of the PICS was recognized by UV-vis, FTIR and NMR analyses. The detection ability of PICS toward various ions was assessed. The results revealed the excellent selectivity and sensitivity of the chemosensor PICS to Ag+ ions in aqueous DMSO solutions. The PICS displayed an obvious color change from yellow to dark red in the presence of silver ions. The PICS could efficiently detect Ag+ ions over a wide pH range of 6-11, which makes it suitable for detection of Ag+ under physiological conditions. PICS also binds Ag+ ions to form a 1 : 1 stoichiometry complex (PICS-Ag+), resulting in a bathochromic shift in the absorption maximum from 372 to 410 nm. The detection limit of the probe PICS towards Ag+ was calculated to be 1.78 μM. Furthermore, the probe PICS shows excellent detection performance in the solid state, and PICS-based test strips were fabricated and applied as efficient Ag+ test kits for detection of silver ions in water samples. In addition, the sensing mechanism of PICS-Ag+ was completely evaluated using the density functional theory (DFT) calculations. Results indicated that the calculated energy gap between the HOMO and LUMO (3.41 eV) of PICS-Ag is lower than that of the free PICS (3.57 eV). This suggests that a red shift occurred upon addition of the Ag+ ion to PICS.
Collapse
Affiliation(s)
| | - Asadollah Mohammadi
- Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, Iran.
| | - Behzad Khalili
- Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, Iran.
| |
Collapse
|
13
|
Pundi A, Chang CJ, Chen J, Hsieh SR, Lee MC. A dimedone-phenylalanine-based fluorescent sensor for the detection of iron (III), copper (II), L-cysteine, and L-tryptophan in solution and pharmaceutical samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 274:121108. [PMID: 35272123 DOI: 10.1016/j.saa.2022.121108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
The development of fluorescence molecules for the fast and effective detection of L-tryptophan (L-Trp) has attracted a lot of attention because it is an important amino acid for baby growth, nitrogen equilibrium in adults, improving sleep, and mood regulation. A dimedone-phenylalanine-based chiral sensor (SDPA) was synthesized and exhibited a strong fluorescence quenching by Fe3+ and Cu2+ in a water/DMSO (3/7) solution with a detection limit of 2.29 × 10-6 M and 6.37 × 10-6 M, respectively. The factors affecting fluorescence sensings, such as the pH and competing cations, were studied. The sensor can be reused at least five times after being treated with EDTA. The Job plot, ESI-MS spectra, 1H NMR spectra, absorbance, and fluorescence titration experiments were investigated to study the mechanism of SDPA-Fe3+ and SDPA-Cu2+ complexation. The SDPA-Cu2+ complex can detect L-tryptophan and L-cysteine at trace levels by turn-on fluorescence with a detection limit of 9.35 × 10-6 M and 8.86 × 10-6 M, respectively. Moreover, applying the SDPA-Cu2+ complex for quantitative analysis of L-tryptophan in real sleep-improving capsules resulted in good recovery. The L-tryptophan level of the Elining capsule was determined at 190.8 ± 10.5 mg/g (mg L-tryptophan/g medicine), which is close to the announced quantity of 180 mg/g. Besides, the SDPA-Cu2+ complex can selectively detect free L-Try molecules and L-Try residues in proteins.
Collapse
Affiliation(s)
- Arul Pundi
- Department of Chemical Engineering, Feng Chia University, 100, Wenhwa Road, Seatwen, Taichung 40724, Taiwan ROC
| | - Chi-Jung Chang
- Department of Chemical Engineering, Feng Chia University, 100, Wenhwa Road, Seatwen, Taichung 40724, Taiwan ROC.
| | - Jemkun Chen
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, 43, Sec.4, Keelung Rd, Taipei 106, Taiwan, ROC
| | - Shih-Rong Hsieh
- Cardiovascular Center, Taichung Tzu Chi Hospital, 88, Sec. 1, Fengxing Road, Tanzi, Taichung 427, Taiwan, ROC
| | - Ming-Ching Lee
- Department of Surgery, Taichung Veterans General Hospital, 1650 Taiwan Boulevard Section 4, Taichung 40705, Taiwan, ROC
| |
Collapse
|
14
|
Yang Z, Yuan Y, Xu X, Guo H, Yang F. An effective long-wavelength fluorescent sensor for Cu 2+ based on dibenzylidenehydrazine-bridged biphenylacrylonitrile. Anal Bioanal Chem 2022; 414:4707-4716. [PMID: 35562571 DOI: 10.1007/s00216-022-04093-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 11/01/2022]
Abstract
Although numerous fluorescence sensors for Cu2+ have been presented, a long-wavelength sensor in aqueous media has rarely been reported as expected due to practical application requirements. In this work, a novel AIE molecule (DHBB) containing two biphenylacrylonitrile units bridged by dibenzylidenehydrazine was prepared. It possessed the merits of long-wavelength emission, good emission in aqueous media, and multiple functional groups for binding Cu2+. It exhibited good sensing selectivity for Cu2+ among all kinds of tested metal ions. The detection limit was as low as 1.08 × 10-7 M. The sensing mechanism was clarified as 1:1 stoichiometric ratio based on the binding cooperation of O and N functional groups of DHBB. The selective sensing ability for Cu2+ remained stable at pH = 5-9 and was influenced little by other metal ions. The Cu2+ sensing ability of DHBB was applied in real samples with 96% recovery rate. The bio-imaging experiment of living cells suggested that DHBB possessed not only good bio-imaging performance but also sensing ability for Cu2+ in living environments. This work suggested the good application prospect of DHBB to sense Cu2+ in real samples and living environment.
Collapse
Affiliation(s)
- Zengwei Yang
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, 350007, People's Republic of China.,Fujian Key Laboratory of Polymer Materials, Fuzhou, 350007, People's Republic of China
| | - Yufei Yuan
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, 350007, People's Republic of China.,Fujian Provincial Key Laboratory of Advanced, Materials Oriented Chemical Engineering, Fuzhou, 350007, People's Republic of China
| | - Xiangfei Xu
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, 350007, People's Republic of China
| | - Hongyu Guo
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, 350007, People's Republic of China.,Fujian Key Laboratory of Polymer Materials, Fuzhou, 350007, People's Republic of China
| | - Fafu Yang
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, 350007, People's Republic of China. .,Fujian Key Laboratory of Polymer Materials, Fuzhou, 350007, People's Republic of China. .,Fujian Provincial Key Laboratory of Advanced, Materials Oriented Chemical Engineering, Fuzhou, 350007, People's Republic of China.
| |
Collapse
|
15
|
Ciprofloxacin/Topoisomerase-II complex as a promising dual UV–Vis/fluorescent probe: accomplishments and opportunities for the cancer diagnosis. Theor Chem Acc 2022. [DOI: 10.1007/s00214-022-02884-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Abbas A, Li K, Guo X, Wu A, Ali F, Attique S, Ahmad AU. Solvothermal synthesis of 3D hierarchical Cu 2FeSnS 4 microspheres for photocatalytic degradation of organic pollutants. ENVIRONMENTAL RESEARCH 2022; 205:112539. [PMID: 34896322 DOI: 10.1016/j.envres.2021.112539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/01/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
In this work, we prepared Cu2FeSnS4 (CFTS) microspheres via solvothermal method and studied their photocatalytic performance towards the degradation of organic pollutants. With increasing solvothermal temperature from 160 °C to 180 °C, the morphology of CFTS changes from irregular 2D to hierarchical 3D shapes. Hierarchical 3D CFTS microspheres packed with 2D nanosheets were successfully prepared at 180 °C. During the solvothermal process, octadecyl amine (ODA) acts as a capping agent to prevent the aggregation of particles, while L-cystine functions as an environmentally friendly sulfur source and complexing reagent. The large surface area and mesoporous structure of the as-prepared 3D hierarchical CFTS microspheres provide more active sites, enhance visible light absorption and promote charge separation and transfer, leading to the improved photodegradation performance for RhB and MB compared to the samples prepared at the temperature lower than 180 °C. This work provides a simple and low-cost method for the synthesis of 3D hierarchical CFTS towards photocatalytic applications.
Collapse
Affiliation(s)
- Akmal Abbas
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China; Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Material Science and Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Keyan Li
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
| | - Aimin Wu
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Material Science and Engineering, Dalian University of Technology, Dalian, 116024, China.
| | - Faizan Ali
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Material Science and Engineering, Dalian University of Technology, Dalian, 116024, China; School of Information & Intelligence Engineering, University of Sanya, Sanya, 572022, China
| | - Sanam Attique
- Institute for Composites Science and Innovation (InCS), School of Material Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Aqrab Ul Ahmad
- School of Physics and School of Microelectronics, Dalian University of Technology, Dalian, 116024, China; Department of Physics, Riphah International University, Faisalabad Campus, 38000, Pakistan
| |
Collapse
|
17
|
Zhu XY, Yang XN, Luo Y, Redshaw C, Liu M, Tao Z, Xiao X. Construction of a Supramolecular Fluorescence Sensor from Water‐soluble Pillar[5]arene and 1‐Naphthol for Recognition of Metal Ions. ChemistrySelect 2021. [DOI: 10.1002/slct.202103744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xin Yi Zhu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University
| | - Xi Nan Yang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University
| | - Yang Luo
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University
| | - Carl Redshaw
- Department of Chemistry University of Hull Cottingham Rd Hull HU6 7RX, U.K
| | - Ming Liu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University
| |
Collapse
|
18
|
Pundi A, Chen J, Chang CJ, Hsieh SR, Lee MC, Chou CH, Way TD. Naked-eye colorimetric and turn-on fluorescent Schiff base sensor for cyanide and aluminum (III) detection in food samples and cell imaging applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 262:120139. [PMID: 34245971 DOI: 10.1016/j.saa.2021.120139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
A new efficient Schiff base sensor SB3 for fluorescent and colorimetric "naked-eye" "turn-on" sensing of cyanide anion (CN-) with excellent sensitivity and selectivity was developed. The 4,4'-(perfluoropropane-2,2-diyl)bisphenol group and two phenyl groups were covalently linked by two C = N bonds to extend the conjugation length. The four hydroxyl groups can improve the water solubility of the SB3 sensor. The SB3 sensor exhibited high specificity towards CN- by interrupting its intramolecular charge transfer, resulting in a color change and remarkable "turn-on" green fluorescence emission. The sensing mechanism is caused by the nucleophilic addition of CN- toward imine groups of the SB3 sensor, leading to breaks of the conjugation, fluorescent spectral changes, and color change. It was confirmed by 1H NMR titration and Mass spectra. The detection limits for CN- and Al3+obtained by fluorescence spectrum are 0.80 µM and 0.25 µM, respectively. The SB3 sensor can act as an efficient chemical sensor for detecting the CN- and Al3+ ions under common environmental and physiological conditions (pH 5-12). Besides, the sensor can also detect CN- in food materials (such as sprouting potatoes and cassava flour) and imaging CN-in living cells with strong "turn-on" fluorescence at 490 nm. SB3 is an excellent CN- sensor that exhibits some advantages, including easy synthesis, distinct fluorescence and color change, high selectivity, low detection limit, and good anti-interference ability to analyze solution and food samples, together with fluorescence cell imaging.
Collapse
Affiliation(s)
- Arul Pundi
- Department of Chemical Engineering, Feng Chia University, 100, Wenhwa Road, Seatwen, Taichung 40724, Taiwan, ROC
| | - Jemkun Chen
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, 43, Sec.4, Keelung Rd, Taipei 106, Taiwan, ROC
| | - Chi-Jung Chang
- Department of Chemical Engineering, Feng Chia University, 100, Wenhwa Road, Seatwen, Taichung 40724, Taiwan, ROC.
| | - Shih-Rong Hsieh
- Cardiovascular Center, Taichung Tzu Chi Hospital, 88, Sec. 1, Fengxing Road, Tanzi, Taichung 427, Taiwan, ROC
| | - Ming-Ching Lee
- Department of Surgery, Taichung Veterans General Hospital, 1650 Taiwan Boulevard Section 4, Taichung 40705, Taiwan, ROC
| | - Chun-Hung Chou
- Program for Biotechnology Industry, College of Life Sciences, China Medical University, Taichung, Taiwan, ROC
| | - Tzong-Der Way
- Program for Biotechnology Industry, College of Life Sciences, China Medical University, Taichung, Taiwan, ROC; Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan, ROC; Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan, ROC
| |
Collapse
|
19
|
Deng YH, Li RY, Zhang JQ, Wang YF, Li JT, Guo WT, Dong WK. A novel turn-on fluorogenic aldehyde-appended salamo-like copper(ii) complex probe for the simultaneous detection of S2O32− and GSH. NEW J CHEM 2021. [DOI: 10.1039/d1nj01445e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A novel salamo-like copper(ii) complex probe (ASC) behaves as a two-pronged sensor of S2O32− ions and GSH by a ‘turn-on’ fluorescence mechanism.
Collapse
Affiliation(s)
- Yun-Hu Deng
- School of Chemical and Biological Engineering
- Lanzhou Jiaotong University
- Lanzhou
- China
| | - Ruo-Yu Li
- School of Chemical and Biological Engineering
- Lanzhou Jiaotong University
- Lanzhou
- China
| | - Jin-Qiang Zhang
- School of Chemical and Biological Engineering
- Lanzhou Jiaotong University
- Lanzhou
- China
| | - Yue-Fei Wang
- School of Chemical and Biological Engineering
- Lanzhou Jiaotong University
- Lanzhou
- China
| | - Jian-Ting Li
- School of Chemical and Biological Engineering
- Lanzhou Jiaotong University
- Lanzhou
- China
| | - Wen-Ting Guo
- School of Chemical and Biological Engineering
- Lanzhou Jiaotong University
- Lanzhou
- China
| | - Wei-Kui Dong
- School of Chemical and Biological Engineering
- Lanzhou Jiaotong University
- Lanzhou
- China
| |
Collapse
|