1
|
Nesterovschi I, Maškarić K, Poplăcean IC, Santos JP, Kantarciyan A, Slaveykova VI, Pînzaru SC. Impact of inorganic mercury on carotenoids in freshwater algae: Insights from single-cell resonance Raman spectroscopy. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107085. [PMID: 39276605 DOI: 10.1016/j.aquatox.2024.107085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024]
Abstract
The influence of inorganic mercury (Hg(II)) exposure on photosynthetic microorganisms and their pigments remains understudied. Here, we employed resonance Raman (RR) spectroscopy to investigate the responses of two freshwater phytoplankton species, the green alga Chlamydomonas reinhardtii and the diatom Cyclotella meneghiniana to Hg(II) exposure. We selectively recorded the spectral RR signature of carotenoids in intact cells exposed to concentrations of 10 nM and 100 nM of Hg(II), representative for contaminated environment and unexposed control cells. A two-hour exposure of C. reinhardtii resulted in a slight decrease in lutein and β-carotene levels, while total carotenoids RR band broadening, as revealed by the FWHM of the υ1(C=C) stretching mode from averaged RR spectra, suggested conformational changes in pigments. Higher Hg(II) concentration induced more pronounced conformational changes. Similarly, a two-hour exposure of C. meneghiniana resulted in slight decreased level of the fucoxanthin, while diadinoxanthin showed an opposite trend compared to control: when fucoxanthin decreased, diadinoxanthin increased under 10 nM Hg (II) exposure. At higher concentrations, the decrease in fucoxanthin was less pronounced, accompanied by a broadening of the band area, (with FHHM increased), indicating possible conformer occurrence in response to Hg-induced stress. The changes in the main carotenoid species of the two algae are species-specific, Hg(II) concentration-specific, and dependent on exposure time. The calculated spectral differences in absorbances from UV-VIS spectra of methanol extracts from each group supported the main findings obtained by RR, though with caution due to the selective extraction efficiency of the respective carotenoids. This study highlighted for a first time the capability of single-cell RR spectroscopy as a valuable tool for toxicity assessment and for comprehending early-stage alterations in carotenoid metabolism due to toxic metal exposure in vivo.
Collapse
Affiliation(s)
- Ion Nesterovschi
- Biomolecular Physics Department, Babeş-Bolyai University, Kogălniceanu 1, RO, 400084, Cluj-Napoca, Romania; Institute for Research, Development and Innovation in Applied Natural Sciences, Babes-Bolyai University, Fantanele 30, Cluj-Napoca, Romania
| | - Karlo Maškarić
- Biomolecular Physics Department, Babeş-Bolyai University, Kogălniceanu 1, RO, 400084, Cluj-Napoca, Romania; Institute for Research, Development and Innovation in Applied Natural Sciences, Babes-Bolyai University, Fantanele 30, Cluj-Napoca, Romania
| | - Iuliana-Cornelia Poplăcean
- Biomolecular Physics Department, Babeş-Bolyai University, Kogălniceanu 1, RO, 400084, Cluj-Napoca, Romania
| | - João P Santos
- Environmental Biogeochemistry and Ecotoxicology, Department F.A. Forel for Environmental and Aquatic Sciences, Faculty of Sciences, University of Geneva, 66 Bvd Carl-Vogt 66, CH, 1211, Geneva, Switzerland
| | - Arin Kantarciyan
- Environmental Biogeochemistry and Ecotoxicology, Department F.A. Forel for Environmental and Aquatic Sciences, Faculty of Sciences, University of Geneva, 66 Bvd Carl-Vogt 66, CH, 1211, Geneva, Switzerland
| | - Vera I Slaveykova
- Environmental Biogeochemistry and Ecotoxicology, Department F.A. Forel for Environmental and Aquatic Sciences, Faculty of Sciences, University of Geneva, 66 Bvd Carl-Vogt 66, CH, 1211, Geneva, Switzerland.
| | - Simona Cîntă Pînzaru
- Biomolecular Physics Department, Babeş-Bolyai University, Kogălniceanu 1, RO, 400084, Cluj-Napoca, Romania; Institute for Research, Development and Innovation in Applied Natural Sciences, Babes-Bolyai University, Fantanele 30, Cluj-Napoca, Romania.
| |
Collapse
|
2
|
Zhou Q, Liu Q, Wang Y, Chen J, Schmid O, Rehberg M, Yang L. Bridging Smart Nanosystems with Clinically Relevant Models and Advanced Imaging for Precision Drug Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308659. [PMID: 38282076 PMCID: PMC11005737 DOI: 10.1002/advs.202308659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Indexed: 01/30/2024]
Abstract
Intracellular delivery of nano-drug-carriers (NDC) to specific cells, diseased regions, or solid tumors has entered the era of precision medicine that requires systematic knowledge of nano-biological interactions from multidisciplinary perspectives. To this end, this review first provides an overview of membrane-disruption methods such as electroporation, sonoporation, photoporation, microfluidic delivery, and microinjection with the merits of high-throughput and enhanced efficiency for in vitro NDC delivery. The impact of NDC characteristics including particle size, shape, charge, hydrophobicity, and elasticity on cellular uptake are elaborated and several types of NDC systems aiming for hierarchical targeting and delivery in vivo are reviewed. Emerging in vitro or ex vivo human/animal-derived pathophysiological models are further explored and highly recommended for use in NDC studies since they might mimic in vivo delivery features and fill the translational gaps from animals to humans. The exploration of modern microscopy techniques for precise nanoparticle (NP) tracking at the cellular, organ, and organismal levels informs the tailored development of NDCs for in vivo application and clinical translation. Overall, the review integrates the latest insights into smart nanosystem engineering, physiological models, imaging-based validation tools, all directed towards enhancing the precise and efficient intracellular delivery of NDCs.
Collapse
Affiliation(s)
- Qiaoxia Zhou
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
- Department of Forensic PathologyWest China School of Preclinical and Forensic MedicineSichuan UniversityNo. 17 Third Renmin Road NorthChengdu610041China
- Burning Rock BiotechBuilding 6, Phase 2, Standard Industrial Unit, No. 7 LuoXuan 4th Road, International Biotech IslandGuangzhou510300China
| | - Qiongliang Liu
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
- Department of Thoracic SurgeryShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080China
| | - Yan Wang
- Qingdao Central HospitalUniversity of Health and Rehabilitation Sciences (Qingdao Central Medical Group)Qingdao266042China
| | - Jie Chen
- Department of Respiratory MedicineNational Key Clinical SpecialtyBranch of National Clinical Research Center for Respiratory DiseaseXiangya HospitalCentral South UniversityChangshaHunan410008China
- Center of Respiratory MedicineXiangya HospitalCentral South UniversityChangshaHunan410008China
- Clinical Research Center for Respiratory Diseases in Hunan ProvinceChangshaHunan410008China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory DiseaseChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunan410008P. R. China
| | - Otmar Schmid
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
| | - Markus Rehberg
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
| | - Lin Yang
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
| |
Collapse
|
3
|
Li C, Li P, Fu H, Chen J, Ye M, Zhai S, Hu F, Zhang C, Ge Y, Fortin C. A comparative study of the accumulation and detoxification of copper and zinc in Chlamydomonas reinhardtii: The role of extracellular polymeric substances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:161995. [PMID: 36739008 DOI: 10.1016/j.scitotenv.2023.161995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Extracellular polymeric substances (EPS) form an interface between microalgae and the surrounding water environment. Copper (Cu) and zinc (Zn) are essential micronutrients but may negatively affect microbial growth when their concentrations reach toxic thresholds. However, how EPS affect the accumulation and resistance of Cu and Zn in microalgae remains largely unknown. Here, we investigated EPS production upon Cu/Zn exposure and compared the tolerance strategies to the two metals by Chlamydomonas reinhardtii with and without EPS. Microalgal EPS synthesis was induced by Cu/Zn treatments, and the functional groups of polysaccharides and proteins were involved in complexation with metal ions. The extraction of EPS aggravated the toxicity and reduced the removal of metals from solution, but the effect was more pronounced for Cu than for Zn. Copper bound on the cell surface accounted for 54.6 ± 2.0 % of the Cu accumulated by C. reinhardtii, whose EPS components strongly correlated with Cu adsorption. In contrast, 74.3 ± 3.0 % of accumulated Zn was absorbed in cells, and glutathione synthesis was significantly induced. Redundancy and linear correlation analyses showed that the polysaccharide, protein and DNA contents in EPS were significantly correlated with Cu accumulation, absorption and adsorption but not with Zn. Data fitted to a Michaelis-Menten model further showed that the EPS-intact cells had higher binding capacity for Cu2+ but not for Zn2+. These differential impacts of EPS on Cu/Zn sorption and detoxification contribute to a more comprehensive understanding of the roles of microalgal EPS in the biogeochemical cycle of metals.
Collapse
Affiliation(s)
- Chonghua Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Peihuan Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongxuan Fu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiale Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Menglei Ye
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Suhua Zhai
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fan Hu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunhua Zhang
- Demonstration Laboratory of Element and Life Science Research, Laboratory Centre of Life Science, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Ge
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Claude Fortin
- EcotoQ, Institut National de la Recherche Scientifique, Centre Eau Terre Environnement, 490 de la Couronne, Québec, QC G1K 9A9, Canada
| |
Collapse
|
4
|
Pandey S, Archana G, Bagchi D. Micro-Raman spectroscopy of the light-harvesting pigments in Chlamydomonas reinhardtii under salinity stress. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121613. [PMID: 35853253 DOI: 10.1016/j.saa.2022.121613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/07/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Microalgae are a rich source of carotenoids with enhanced yields during biotic or abiotic stresses, which often impose survival challenges on the cells. Using a non-invasive pigment profiling approach with micro-Raman spectroscopy, we have analyzed the effect of salinity stress on carotenoids in autotrophic Chlamydomonas reinhardtii. Raman spectral analysis of ν(C = C) mode indicates an increase in the carotenoids with lower conjugation length (lutein and zeaxanthin) compared to β-carotene, as the function of culture age and salinity stress, but especially when salinity stress was imposed in two-stage mode (stress imposed on 2nd day, D2_100, and 4th day, D4_100, during exponential phase). Population-scale heterogeneities in carotenoid Raman mode peak center, quantified with heterogeneity index (HI), were highest during the stationary phase of the cultures and under salinity stress. Although the Raman signal was obtained from a randomly selected small focal volume in the cell, a decrease in chlorophyll Raman mode intensities with age and salinity stress was well corroborated by single-cell population fraction measurements by microscopy. Raman intensity fluctuations (If) were high for both chlorophyll and carotenoid modes under salinity stress, which can arise due to variations in chlorophyll/carotenoid content and composition, or conformational changes in the pigments in C. reinhardtii cells. Interestingly, in all growth conditions, chlorophyll a Raman mode intensity was found to show a high correlation to that of β-carotene, pointing out a high degree of cooperativity in the light-harvesting complex pigments even during salinity stress. Thus, we demonstrate the usefulness of non-invasive pigment profiling with micro-Raman spectroscopy for developing an optimization for salinity stress conditions for high biomass yield and proper harvest time to obtain carotenoids with desired chemical composition.
Collapse
Affiliation(s)
- Shubhangi Pandey
- Department of Microbiology and Biotechnology Centre, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - G Archana
- Department of Microbiology and Biotechnology Centre, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India.
| | - Debjani Bagchi
- Department of Physics, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India.
| |
Collapse
|
5
|
Sá M, Ferrer-Ledo N, Gao F, Bertinetto CG, Jansen J, Crespo JG, Wijffels RH, Barbosa M, Galinha CF. Perspectives of fluorescence spectroscopy for online monitoring in microalgae industry. Microb Biotechnol 2022; 15:1824-1838. [PMID: 35175653 PMCID: PMC9151345 DOI: 10.1111/1751-7915.14013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 11/27/2022] Open
Abstract
Microalgae industrial production is viewed as a solution for alternative production of nutraceuticals, cosmetics, biofertilizers, and biopolymers. Throughout the years, several technological advances have been implemented, increasing the competitiveness of microalgae industry. However, online monitoring and real-time process control of a microalgae production factory still require further development. In this mini-review, non-destructive tools for online monitoring of cellular agriculture applications are described. Still, the focus is on the use of fluorescence spectroscopy to monitor several parameters (cell concentration, pigments, and lipids) in the microalgae industry. The development presented makes it the most promising solution for monitoring up-and downstream processes, different biological parameters simultaneously, and different microalgae species. The improvements needed for industrial application of this technology are also discussed.
Collapse
Affiliation(s)
- Marta Sá
- Bioprocess Engineering, Wageningen University and Research, Wageningen, 6708PB, The Netherlands.,Stichting imec Nederland - OnePlanet Research Center, Wageningen, 6708WH, The Netherlands
| | - Narcis Ferrer-Ledo
- Bioprocess Engineering, Wageningen University and Research, Wageningen, 6708PB, The Netherlands
| | - Fengzheng Gao
- Bioprocess Engineering, Wageningen University and Research, Wageningen, 6708PB, The Netherlands
| | - Carlo G Bertinetto
- Institute for Molecules and Materials (Analytical Chemistry), Radboud University, Nijmegen, The Netherlands
| | - Jeroen Jansen
- Institute for Molecules and Materials (Analytical Chemistry), Radboud University, Nijmegen, The Netherlands
| | - João G Crespo
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Caparica, 2829-516, Portugal
| | - Rene H Wijffels
- Bioprocess Engineering, Wageningen University and Research, Wageningen, 6708PB, The Netherlands.,Faculty of Biosciences and Aquaculture, Nord University, Bodø, N-8049, Norway
| | - Maria Barbosa
- Bioprocess Engineering, Wageningen University and Research, Wageningen, 6708PB, The Netherlands
| | - Claudia F Galinha
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Caparica, 2829-516, Portugal
| |
Collapse
|
6
|
Resonance Raman and SERRS of fucoxanthin: Prospects for carotenoid quantification in live diatom cells. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Jayan H, Pu H, Sun DW. Recent developments in Raman spectral analysis of microbial single cells: Techniques and applications. Crit Rev Food Sci Nutr 2021; 62:4294-4308. [PMID: 34251940 DOI: 10.1080/10408398.2021.1945534] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The conventional microbial cell analyses are mostly population-averaged methods that conceal the characteristics of single-cell in the community. Single-cell analysis can provide information on the functional and structural variation of each cell, resulting in the elimination of long and tedious microbial cultivation techniques. Raman spectroscopy is a label-free, noninvasive, and in-vivo method ideal for single-cell measurement to obtain spatially resolved chemical information. In the current review, recent developments in Raman spectroscopic techniques for microbial characterization at the single-cell level are presented, focusing on Raman imaging of single cells to study the intracellular distribution of different components. The review also discusses the limitation and challenges of each technique and put forward some future outlook for improving Raman spectroscopy-based techniques for single-cell analysis. Raman spectroscopic methods at the single-cell level have potential in precision measurements, metabolic analysis, antibiotic susceptibility testing, resuscitation capability, and correlating phenotypic information to genomics for cells, the integration of Raman spectroscopy with other techniques such as microfluidics, stable isotope probing (SIP), and atomic force microscope can further improve the resolution and provide extensive information. Future focuses should be given to advance algorithms for data analysis, standardized reference libraries, and automated cell isolation techniques in future.
Collapse
Affiliation(s)
- Heera Jayan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510641, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, and Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510641, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, and Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510641, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, and Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.,Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Dublin 4, Ireland
| |
Collapse
|