1
|
Sun X, Li M, Mao Y, Dong C, Meng X, Wang D, Zheng C. Efficient smart-phone luminescent sensing detection based on new multifunctional Cd(II) luminescent coordination polymers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 326:125248. [PMID: 39396422 DOI: 10.1016/j.saa.2024.125248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/22/2024] [Accepted: 10/03/2024] [Indexed: 10/15/2024]
Abstract
Based on the mixed ligand strategy, two new isostructural CdII coordination polymers: {[Cd3(tcpa)2(bima)(DMF)]‧3DMF} (CP 1), {[Cd3(tcpa)2(bmima)(DMF)]‧3DMF} (CP 2) were synthesized by combining two flexible anthracene-based and a triphenylamine-based ligands with large π-electron-rich structure using a solvothermal method (H3tcpa = tris(4-carboxyphenyl)amine; bima = 9,10-bis(1H-imidazole-1-yl)methyl)anthracene and bmima = 9,10-bis((2-methyl-1H-imidazol-1-yl)methyl)anthracene). CP 1 and CP 2 show an unreported new 3D (3,14)-c net structure with the {430·648·813}{43}4 topology. Both CPs could detect Cr2O72-, Nitroaromatic explosives 2,4,6-Trinitrophenol (TNP) and 2,4-dinitrophenol (DNP) through rapid fluorescence quenching response with high quenching efficiency Ksv and low LOD with 0.19 μM (Cr2O72-), 0.54 μM (TNP), 0.76 μM (DNP) for CP 1 and 0.28 μM (Cr2O72-), 0.23 μM (TNP), 0.65 μM (DNP) for CP 2, respectively. In addition, the mechanism of quenching Cr2O72-, TNP and DNP by CPs is proposed through experimental research and theoretical simulation. The quenching of Cr2O72- by CPs is mainly competitive absorption (CA), while the quenching of TNP/DNP is achieved through the coexistence of competitive absorption CA, photo induced electron transfer (PET) and fluorescence resonance energy transfer (FRET). Moreover, we have been developed a portable smartphone-assisted on-site detection platform, which can perform semi-quantitative analysis of Cr2O72- acconding to fluorescence color changes. This work constructed a ratiometric sensing platform for quickly and conveniently detection of Cr2O72-, TNP and DNP pollutants.
Collapse
Affiliation(s)
- Xuancheng Sun
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Meiyin Li
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Yiqing Mao
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Chuanzong Dong
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Xianggao Meng
- College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Dunjia Wang
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Chunyang Zheng
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China.
| |
Collapse
|
2
|
Sun X, Li C, Meng X, Wang D, Zheng C. Multiresponsive luminescent sensors for antibiotics and Cr VI with two luminescent Zn II/Cd II coordination complexes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 306:123615. [PMID: 37948933 DOI: 10.1016/j.saa.2023.123615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Two new ZnII/CdII luminescent coordination polymers (CPs) based on the V-shaped bis(imidazole) ligand 3,6-bis (1H-benzo[d]imidazol-1-yl)-9-methyl-9H-carbazole (bbimc) with [1,1'-biphenyl]-4,4'-dicarboxylic acid ligand (H2bpdc) have been synthesized under solvothermal conditions: {[Zn(bbimc)(bpdc)]·DMF·2.5H2O} (CP 1), {[Cd(bbimc)(bpdc)]·2DMF} (CP 2). CP 1 and CP 2 both display a uninodal 4-c unimodal sql topology 2D framework with vertex symbols of {44·62}. In addition, the two identical 2D nets of CP 2 were interpenetrated each other to form a 2D + 2D → 3D and generate a 2-fold interpenetrating architecture. Moreover, sensing investigations of CP 1 and CP 2 revealed that both of compounds can be used as a highly sensitive and selective multi-responsive luminescent sensor for sensing Cr2O72-, CrO42- and antibiotics (TC: Tetracycline; CTC: Chlortetracycline) in H2O by exhibiting fluorescence quenching with significant quenching constants (Ksv = 1.369 × 104 M-1 (Cr2O72-), 2.003 × 104 M-1 (CrO42-), 5.343 × 104 M-1 (TC), 8.706 × 104 M-1 (CTC) for CP 1 and 4.452 × 104 M-1 (Cr2O72-), 2.119 × 104 M-1 (CrO42-), 4.175 × 104 M-1 (TC), 1.257 × 105 M-1 (CTC) for CP 2). The detection limit are 0.67 μM (Cr2O72-), 0.48 μM (Cr2O72-), 0.23 μM (TC), 0.14 μM (CTC) for CP 1 and 0.28 μM (Cr2O72-), 0.54 μM (CrO42-), 0.31 μM (TC), 0.098 μM (CTC) for CP 2, respectively. In addition, the probable fluorescence quenching mechanism was studied through experiment and theoretical calculation and the co-existance of competitive absorption (CA) and photoinduced electron transfer (PET) progress contributed to such sensing processes.
Collapse
Affiliation(s)
- Xuancheng Sun
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Chaoxiong Li
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Xianggao Meng
- College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Dunjia Wang
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Chunyang Zheng
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China.
| |
Collapse
|
3
|
Li ZH, Li M, Xu TY, Zhao BT. A viologen-derived luminescent material exhibiting photochromism, photocontrolled luminescence and selective detection of Cr 2O 72- in aqueous solution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 306:123579. [PMID: 37922851 DOI: 10.1016/j.saa.2023.123579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
Stable viologen-derived multifunctional smart materials exhibit widespread practical applications in many areas. In this study, a viologen-derived material with 4-fold interpenetrating diamondoid network, {[Cd(1,4-ndc)(cpbpy)]·2H2O}n, was successfully constructed based on asymmetrical N-(3-carboxyphenyl)-4,4'-bipyridinium (cpbpy) and 1,4-naphthalenedicarboxylic acid (1,4-H2ndc). The compound shows reversible photochromic behavior under a xenon lamp, which are proved by UV-vis spectra and EPR characterizations. Moreover, the compound with good photoluminescence properties displays photocontrolled luminescence quenching behaviors. Owing to its good water stability, the compound is then applied in luminescence sensing for the detection of Cr2O72- in aqueous solution. The corresponding luminescence quenching constant for Cr2O72- is KSV = 4.33 × 104 M-1, and the detection limit is 3.66 μM. Systematic investigations on the luminescence quenching mechanism suggest that the inner filter effect resulted in the selective detection of Cr2O72-. This study provides inspiration for the design and synthesis of target luminescent crystalline materials with rigid and asymmetric viologen-derived ligands.
Collapse
Affiliation(s)
- Zhao-Hao Li
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, Henan 471934, PR China.
| | - Min Li
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, Henan 471934, PR China
| | - Tian-Yu Xu
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, Henan 471934, PR China
| | - Bang-Tun Zhao
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, Henan 471934, PR China.
| |
Collapse
|
4
|
Shi C, Luo J, Wang Y, Ding L, Liang Q, Yang Z, Lu J, Wu A. A water-soluble naphthalimide fluorescent probe for Cr 2O 72- and Fe 3+ based on inner filter effect. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 289:122245. [PMID: 36535222 DOI: 10.1016/j.saa.2022.122245] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
A probe 3 (2-ethoxy-N-(2-(2-(2-hydroxyethoxy)ethyl)-1,3-dioxo-2,3-dihydro-1H-benzo[de] isoquinolin-6-yl)benzamide) that could selectively respond to Cr2O72- and Fe3+ was reported in this paper. The selectivity, pH titration, concentration titration, detection limit, time dependence, quenching constant and recognition mechanism of probe 3 for Cr2O72- and Fe3+ were studied in CH3CN/HEPES buffer solution. The results showed that Cr2O72- and Fe3+ could rapidly quench the fluorescence of probe 3 through the inner filter effect (IFE). The quenching kept constant after 30 s, and the quenching constants were 7.99 × 103 L.mol-1 and 4.13 × 103 L.mol-1, respectively. The detection limits of probe 3 for Cr2O72- and Fe3+ were 1.15 μmol.L-1 and 1.95 μmol.L-1, respectively, which were lower than the maximum allowable concentrations in drinking water stipulated by EPA. The determination results of Cr2O72- and Fe3+ in water samples indicated that probe 3 could be used as a potential detection tool in practical applications.
Collapse
Affiliation(s)
- Chuntian Shi
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - Jiangxiong Luo
- College of Mechanical & Vehicle Engineering, Hunan University, Changsha 410082, PR China
| | - Yijun Wang
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - Ling Ding
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - Qingxiang Liang
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - Zhihui Yang
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - Jihao Lu
- School of Science, Tianjin Chengjian University, Tianjin 300392, PR China
| | - Aibin Wu
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, PR China.
| |
Collapse
|
5
|
Kaur J, Kaur M, Kansal SK, Umar A, Algadi H. Highly fluorescent nickel based metal organic framework for enhanced sensing of Fe 3+ and Cr 2O 72- ions. CHEMOSPHERE 2023; 311:136832. [PMID: 36257400 DOI: 10.1016/j.chemosphere.2022.136832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/24/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Heavy metal contamination has sparked widespread concern among the populace. The significant issues necessitate the creation of high-performance fluorescent pigments that can identify harmful elements in water. The present study deals with metal organic framework [MOF] based on nickel [Ni-BDC MOF]. The Ni-BDC MOF was prepared by facile solvothermal method using nickel nitrate hexahydrate and terephthalic acid ligand as precursors. The MOF was characterized by various techniques in order to examine the crystal, morphological, structural, composition, thermal and optical properties. The detailed characterizations revealed that the synthesized Ni-BDC MOF are well-crystalline with high purity and possessing 3D rhombohedral microcrystals with rough surface. The MOF demonstrate good luminescence performance and excellent water stability. According to the Stern Volmer plot, the tests set up under optimized conditions demonstrate a linear correlation between the fluorescence intensity and concentration of both ions, i.e. Fe3+, and Cr2O72- ions. The linear range and detection limit for Fe3+ and Cr2O72- were found to be 0-1.4 nM and 0.159 nM, and 0-1 nM and 0.120 nM, respectively. The mechanisms for the selective detection of cations and anions were also explored. The recyclability for the prepared MOF was checked up to five cycles which showed excellent stability with just a slight reduction in efficiency. The constructed sensor was also used to assess the presence of Fe3+ and Cr2O72- ions in actual water samples. The results of the different experiments revealed that the prepared MOF is a good material for detecting Fe3+ and Cr2O72- ions.
Collapse
Affiliation(s)
- Jasjot Kaur
- Dr. S. S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh, 160014, India
| | - Manjot Kaur
- Dr. S. S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh, 160014, India
| | - Sushil Kumar Kansal
- Dr. S. S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh, 160014, India.
| | - Ahmad Umar
- Department of Chemistry, College of Science and Arts, Najran University, Najran, 11001, Saudi Arabia; Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Saudi Arabia; Department of Materials Science and Engineering, The Ohio State University, Columbus, 43210, OH, USA.
| | - Hassan Algadi
- Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Saudi Arabia; Department of Electrical Engineering, College of Engineering, Najran University, Najran, 11001, Saudi Arabia
| |
Collapse
|
6
|
Xiang Z, Jiang Y, Cui C, Luo Y, Peng Z. Sensitive, Selective and Reliable Detection of Fe 3+ in Lake Water via Carbon Dots-Based Fluorescence Assay. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196749. [PMID: 36235283 PMCID: PMC9573028 DOI: 10.3390/molecules27196749] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 11/17/2022]
Abstract
In this study, C-dots were facilely synthesized via microwave irradiation using citric acid and ethylenediamine as carbon precursors. The fluorescence emissions of the C-dots could be selectively quenched by Fe3+, and the degree of quenching was linearly related to the concentrations of Fe3+ presented. This phenomenon was utilized to develop a sensitive fluorescence assay for Fe3+ detection with broad linear range (0–250, 250–1200 μmol/L) and low detection limit (1.68 μmol/L). Most importantly, the assay demonstrated high reliability towards samples in deionized water, tap water and lake water, which should find potential applications for Fe3+ monitoring in complicated environments.
Collapse
Affiliation(s)
- Zhuang Xiang
- School of Materials and Energy, Yunnan University, Kunming 650091, China
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, Yunnan University, Kunming 650091, China
| | - Yuxiang Jiang
- School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Chen Cui
- School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Yuanping Luo
- School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Zhili Peng
- School of Materials and Energy, Yunnan University, Kunming 650091, China
- Correspondence: ; Tel.: +86-871-65037399
| |
Collapse
|
7
|
Wang Y, Wen RM, Su YH, Wang JR, Gong SM, Zhou RS, Yang QF, Song JF. A new zinc-based coordination polymer with blue light emission: synthesis, crystal structure and multifunctional fluorescence sensing properties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Shao J, Ni J, Chen W, Liu P, Liang Y, Li G, Wen L, Wang F. A Novel Co‐based MOF as an Efficient Multifunctional Fluorescent Chemosensor for the Determination of Fe
3+
and Cr
2
O
7
2−
in Aqueous Phase. ChemistrySelect 2022. [DOI: 10.1002/slct.202202094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Juanjuan Shao
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China
| | - Jianling Ni
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China
| | - Weimin Chen
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China
| | - Penglai Liu
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China
| | - Yu Liang
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China
| | - Guangjun Li
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China
| | - Lili Wen
- College of Chemistry Central China Normal University Wuhan Hubei 430079 China
| | - Fangming Wang
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China
| |
Collapse
|
9
|
Jia W, Fan R, Zhang J, Geng Z, Li P, Sun J, Gai S, Zhu K, Jiang X, Yang Y. Portable metal-organic framework alginate beads for high-sensitivity fluorescence detection and effective removal of residual pesticides in fruits and vegetables. Food Chem 2022; 377:132054. [PMID: 35008021 DOI: 10.1016/j.foodchem.2022.132054] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/07/2021] [Accepted: 01/02/2022] [Indexed: 11/04/2022]
Abstract
Pesticides have been emerged as major organic pollutants in environment, owing to widely spread and intrinsic high toxicity in agricultural productivity. Herein, we designed and synthesized a practicability and portable metal-organic framework (MOF) based composite beads MOF-alginate-Ca2+-polyacrylic acid (kgd-M1@ACPs) consist of biocompatible host material (sodium alginate) and fluorescent center with blue emission (where kgd-M1 stands for {[Cd(tbia)·H2O]·2H2O}n), which was further developed for high-efficiency and naked-eye 2,6-dichloro-4-nitroaniline (DCN) monitoring in fruits and vegetables. Significantly, the kgd-M1@ACPs shows obvious fluorescent quench towards toxic pesticide DCN with a low limit of detection (LOD) of 0.09 μM and high recovery from 98.08 to 104.37%. Moreover, the kgd-M1@ACPs also presents an excellent DCN adsorption ability. This work demonstrates that smart material kgd-M1@ACPs is expected to be a good candidate for detection and removal of DCN in real fruits and vegetables, which will present a broad prospect for monitoring and treating pesticides.
Collapse
Affiliation(s)
- Wenwen Jia
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, PR China
| | - Ruiqing Fan
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, PR China.
| | - Jian Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, PR China
| | - Ziqi Geng
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, PR China
| | - Pengxiang Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, PR China
| | - Jiakai Sun
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, PR China
| | - Shuang Gai
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, PR China
| | - Ke Zhu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, PR China
| | - Xin Jiang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, PR China
| | - Yulin Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, PR China.
| |
Collapse
|
10
|
Zhang Y, Gao L, Ma S, Hu T. Cd (II) coordination polymer as a strip based fluorescence sensor for sensing Fe 3+ ions in aqueous system. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120525. [PMID: 34752993 DOI: 10.1016/j.saa.2021.120525] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/26/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
The design and construction of a sensor that can sensitively and conveniently recognize metal ions are essential for the treatment of industrial wastewater. In this work, {[Cd4(HL)2(pyp)2(H2O)2]·2H2O·1.5Diox}n (1) was synthesized under solvothermal condition and presented a 2D 3,5-connected layered network with the point symbol of {3.4.5} {32.4.5.62.74}, which was coated on the surface of polyvinylidene fluoride (PVDF) to construct a novel paper sensor (1@PVDF). Meanwhile, the stability of 1@PVDF was characterized by powder X-ray diffraction (PXRD) and thermogravimetric analysis (TGA). In addition, fluorescence sensing experiments of 1@PVDF sensor for cations in aqueous system indicated that it has high sensitivity for sensing Fe3+ ions with the detection limit (DL) of 4.0 × 10-8 M. By the characterization of PXRD, UV-vis spectra, ICP, XPS, time-resolved excited-state decay measurements, the sensing mechanisms of 1@PVDF for Fe3+ ions were attributed to the competitive absorption and interaction between 1 and Fe3+. And the sensing process of 1@PVDF for Fe3+ ions was static in the Fe3+ concentration of 0 to 0.05 mM. In addition, the binding energies of Fe3+ and Zn2+ with the framework of 1 were calculated by density functional theory (DFT), which further proved that there was an obvious interaction between Fe3+ and the uncoordinated O atom in 1. Based on the thin film technology, a portable and convenient paper-based probe has been developed for practical applications.
Collapse
Affiliation(s)
- Yujuan Zhang
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, PR China
| | - Lingling Gao
- College of Chemistry and Chemical Engineering, Jinzhong University, Taiyuan 030606, PR China
| | - Sai Ma
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, PR China
| | - Tuoping Hu
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, PR China.
| |
Collapse
|
11
|
Li X, Xiu D, Shi J, Miao J, Yu Y, Song H, Lin J, Feng Q, Yu H. Visual Hg(II) sensing in aqueous solution via a new 2,5-Bis(4-pyridyl)thiazolo[5,4-d]thiazole-based fluorescence coordination polymer. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120367. [PMID: 34530197 DOI: 10.1016/j.saa.2021.120367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/26/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
A new fluorescence coordination polymer [Zn(Py2TTz)(5-OH-IPA)]n (1) (Py2TTz = 2,5-bis(4-pyridyl)thiazolo[5,4-d]thiazole, 5-OH-IPA = 5-hydroxyisophthalic acid dianion) was synthesized, which exhibited the characteristics of fluorescence quenching and bathochromic shift toward Hg(II) in aqueous solution at pH 7.00. Mechanism study showed that the interactions between Hg(II) ions and Py2TTz ligands in 1 were responsible for the fluorescence emission change. Thanks to the specific interactions between 1 and Hg(II), excellent selectivity was achieved both in aqueous solution and in solid test paper. The detection limit of 1 for Hg(II) sensing was 125.76 nmol L-1 and a linear rang was 1.00-10.00 μmol L-1. More importantly, satisfactory recovery and accuracy of 1 for Hg(II) sensing were also obtained in buffer-free real water samples.
Collapse
Affiliation(s)
- Xin Li
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Deping Xiu
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Junjie Shi
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Jiaran Miao
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Yingying Yu
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Huihua Song
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Jin Lin
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Qi Feng
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China.
| | - Haitao Yu
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China.
| |
Collapse
|
12
|
Fan L, Zhao D, Li B, Wang F, Deng Y, Peng Y, Wang X, Zhang X. Luminescent binuclear Zinc(II) organic framework as bifunctional water-stable chemosensor for efficient detection of antibiotics and Cr(VI) anions in water. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120232. [PMID: 34352500 DOI: 10.1016/j.saa.2021.120232] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/19/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
To achieve the ultrastable LMOFs with predominant luminescent sensing performances, the aromatic π-electron mixed ligands strategy was introduced, and the ternary LMOF of {[Zn2(HDDB)(bib)1.5]·3H2O}n (1), was fabricated based on 3,5-di(2',4'-dicarboxylphenyl)benozoic acid (H5DDB) and the N-donor of meta-bis(imidazol-1-yl)benzene (bib) under mixed solvothermal condition. LMOF 1 features the first reported 3D 3,4,4-c {62.83.10}{62.8}2{63.82.10}2 framework with 21.2 % porosity as well as high thermal and chemical stability. Further luminescent sensing showed that LMOF 1 as a bifunctional chemosensor possessing predominant detectability for sensitive detect the hexavalent chromates and nitroimidazoles/nitrofurans antibiotics in water through strong luminescent quenching effects, with excellent reusability as well as trace detection limits. Moreover, luminescent quenching mechanisms were further investigated from electron transfer and energy transfer viewpoints.
Collapse
Affiliation(s)
- Liming Fan
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, PR China; Center for Optics Research and Engineering, Shandong University, Qingdao 266237, PR China.
| | - Dongsheng Zhao
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, PR China
| | - Bei Li
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, PR China
| | - Feng Wang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, PR China
| | - Yuxin Deng
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, PR China
| | - Yuxin Peng
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, PR China
| | - Xin Wang
- Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China.
| | - Xiutang Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, PR China.
| |
Collapse
|
13
|
Shi C, Yu M, Wu A, Luo J, Li X, Wang N, Shu W, Yu W. A Water-Soluble Naphthalimide-Based Fluorescent Probe for Specific Sensing of Fe 3+ and $\text{C}{{\text{r}}_{2}}\text{O}_{7}^{2-}$. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202204032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Zhang C, Pan G, He Y. Conjugated microporous organic polymer as fluorescent chemosensor for detection of Fe 3+ and Fe 2+ ions with high selectivity and sensitivity. Talanta 2022; 236:122872. [PMID: 34635253 DOI: 10.1016/j.talanta.2021.122872] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/03/2021] [Accepted: 09/09/2021] [Indexed: 11/19/2022]
Abstract
A conjugated microporous organic polymer (TPA-Bp) comprised of triphenylamine (TPA) and 2,2'-bipyridine-5,5'-diformaldehyde (Bp) was prepared via the Schiff-base reaction under ambient conditions. TPA-Bp is an amorphous and microporous spherical nanoparticle with very high stability. TPA-Bp suspension in DMF displayed strong fluorescence emission and selective fluorescence quenching response towards Fe3+ and Fe2+ ions. The fluorescence intensity of TPA-Bp at 331 nm presents linear relationship with the concentrations of both Fe3+ and Fe2+ with low detection limits of 1.02 × 10-5 M for Fe3+ and 5.37 × 10-6 M for Fe2+. The results of X-ray photoelectron spectroscopy (XPS) and Fourier Transform infrared spectroscopy (FTIR) confirm the selective coordination of N atoms of pyridine unit with Fe ions. The fluorescence quenching of TPA-Bp upon the addition of Fe3+/Fe2+ ions can be attributed to the absorption competition quenching (ACQ) mechanism and the energy transfer between TPA-Bp and Fe3+/Fe2+ ions. This work demonstrates that the conjugated microporous polymers are promising candidates as luminescent sensor for detection of the special analytes in practical applications.
Collapse
Affiliation(s)
- Chao Zhang
- College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Guanjun Pan
- College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Yi He
- College of Chemistry, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|