Photochemical Properties and Stability of BODIPY Dyes.
Int J Mol Sci 2021;
22:ijms22136735. [PMID:
34201648 PMCID:
PMC8267640 DOI:
10.3390/ijms22136735]
[Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 01/10/2023] Open
Abstract
The present study is devoted to the combined experimental and theoretical description
of the photophysical properties and photodegradation of the new boron-dipyrromethene (BODIPY)
derivatives obtained recently for biomedical applications, such as bacteria photoinactivation
(Piskorz et al., Dyes and Pigments 2020, 178, 108322). Absorption and emission spectra for a wide
group of solvents of different properties for the analyzed BODIPY derivatives were investigated
in order to verify their suitability for photopharmacological applications. Additionally, the photostability
of the analyzed systems were thoroughly determined. The exposition to the UV light was
found first to cause the decrease in the most intensive absorption band and the appearance of the
hypsochromically shifted band of similar intensity. On the basis of the chromatographic and computational
study, this effect was assigned to the detachment of the iodine atoms from the BODIPY core.
After longer exposition to UV light, photodegradation occurred, leading to the disappearance of the
intensive absorption bands and the emergence of small intensity signals in the strongly blue-shifted
range of the spectrum. Since the most intensive bands in original dyes are ascribed to the molecular
core bearing the BF2 moiety, this result can be attributed to the significant cleavage of the BF2 ring. In
order to fully characterize the obtained molecules, the comprehensive computational chemistry study
was performed. The influence of the intermolecular interactions for their absorption in solution was
analyzed. The theoretical data entirely support the experimental outcomes.
Collapse