1
|
Zaid MHA, El-Enany N, Mostafa AE, Hadad GM, Belal F. Utility of Microwave-Synthesized Silver Nano Particles as Spectrofluorimetric Sensors for the Determination of Nano Concentrations of Favipravir: Application to Dosage Forms and Spiked Human Plasma. J Fluoresc 2024:10.1007/s10895-024-03979-0. [PMID: 39425838 DOI: 10.1007/s10895-024-03979-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/26/2024] [Indexed: 10/21/2024]
Abstract
A simple and facile microwave-assisted method was developed for the synthesis of highly fluorescent silver-nanoparticles (Ag-NPs). The synthesis of silver-nanoparticles depends on a redox reaction between silver nitrate and ascorbic acid using chitosan as a stabilizing agent. The produced Ag-NPs were characterized using Zeta potential and transmission electron microscope micrograph where they are spherical in shape with smooth surface morphology and size of 26.81 ± 2.2 nm. Favipiravir (FAV) was found to cause an obvious enhancement in the fluorescence of Ag-NPs; hence, they were used for its spectrofluorimetric estimation. The fluorescence intensity was measured at 430 nm after excitation at 360 nm. Under optimum conditions, a good linear relationship was accomplished between the FAV concentration and the fluorescence intensity in a range of (5.0-200.0) ng/mL with a limit of detection of 1.59 ng/mL. The method was successfully applied for the assay of the drug in its commercial tablets and spiked human plasma samples, and the results obtained were satisfactory.
Collapse
Affiliation(s)
- Mona H Abo Zaid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 35712, Egypt.
| | - Nahed El-Enany
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, New Mansoura University, New Mansoura, 7723730, Egypt
| | - Aziza E Mostafa
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Ghada M Hadad
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Fathalla Belal
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
2
|
Aboelghar SM, Hegazy MA, Wagdy HA. Eco-Friendly Synchronous Spectrofluorimetric Method for Simultaneous Determination of Remdesivir and Acetyl Salicylic Acid in Spiked Human Plasma. J Fluoresc 2024:10.1007/s10895-024-03851-1. [PMID: 39150458 DOI: 10.1007/s10895-024-03851-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
Remdesivir and acetyl salicylic acid are often co-administered medications in the treatment of COVID-19, specifically targeting the viral infection and thromboembolism associated with the condition. Hence, it is essential to establish a technique that enables the concurrent quantification of these pharmaceutical compounds in plasma while also keeping environmentally friendly methods. Accordingly, the aim of this work is to simultaneously determine remdesivir and acetyl salicylic acid through a bioanalytical validated synchronous spectrofluorimetric method with applying principles of green chemistry. Since, the two drugs showed severe overlap after excitation at 242.0 nm, 284.0 nm for remdesivir and acetyl salicylic acid, respectively. The overlap was effectively overcome by using synchronous mode with a wavelength difference (Δλ) of 160.0 nm for remdesivir and 100.0 nm for acetyl salicylic acid. Different parameters have been optimized such as Δλ, solvent, pH and surfactant. A linear calibration was obtained over the concentration range 0.01-4.00 µg/mL for remdesivir and 0.01-3.00 µg/mL for acetyl salicylic acid and the method was precise and accurate. The method was successfully used for the investigation of pharmaceutical formulation and the quantification of the maximum plasma concentration (Cmax) of the two drugs. The method has been evaluated as an excellent green analytical method based on three greenness assessment tools.
Collapse
Affiliation(s)
- Sohair M Aboelghar
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, The British University in Egypt, P.O. Box 43, El-Sherouk City, Cairo, 11837, Egypt
- Health Research Center of Excellence, Drug Research and Development Group, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Egypt
| | - Maha A Hegazy
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr-El-Aini Street, Cairo, 11562, Egypt.
| | - Hebatallah A Wagdy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, The British University in Egypt, P.O. Box 43, El-Sherouk City, Cairo, 11837, Egypt
- Health Research Center of Excellence, Drug Research and Development Group, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Egypt
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
3
|
El-Masry AA, Abbas AEF, Salem YA. A dual methodology employing ion-pair chromatography and built-in UV spectrophotometry for quantifying recently approved combination of mometasone and indacaterol in a novel combined metered dose inhaler: assessing the greenness, carbon footprint, blueness, and whiteness. BMC Chem 2024; 18:143. [PMID: 39097711 PMCID: PMC11297607 DOI: 10.1186/s13065-024-01242-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/08/2024] [Indexed: 08/05/2024] Open
Abstract
Developing analytical techniques that align with green and sustainable chemistry principles is crucial in today's scientific landscape. This work introduces two innovative approaches for the simultaneous quantification of indacaterol (IND) and mometasone (MOM), a recently approved combination therapy for chronic obstructive pulmonary disease. These methods-rapid isocratic ion pair chromatography (IPC) and UV-visible spectrophotometry-demonstrate improved environmental sustainability, cost-effectiveness, and versatility compared to existing techniques. The optimized 4-min IPC method achieved excellent resolution (retention times 2.18 ± 0.1 min for IND and 3.95 ± 0.1 min for MOM), peak symmetry, and sensitivity. It utilizes a low-cost ion pair mobile phase of acetonitrile and acidified water containing 0.025% sodium dodecyl sulfate (50:50% v/v), making it suitable for laboratories with standard chromatographic instruments. The spectrophotometric approach offers two procedures: first derivative and ratio derivative methods. These serve as simplified, low-cost alternatives for resource-limited laboratories without access to advanced instruments. Both techniques feature simplified protocols that minimize extraction and fractionation steps. Comprehensive validation confirmed outstanding accuracy (98-102%) and precision (%2 <). Sustainability assessments using ComplexGAPI, AGREE, carbon footprint, BAGI, and RGB12 tools demonstrated enhanced environmental performance compared to existing methods. The IPC and spectrophotometry methods achieved greenness scores of 0.81 and 0.85, respectively, surpassing the 0.63-0.67 range of reported techniques. Additionally, they showed lower carbon footprints of 0.035 and 0.022 kg CO2 equivalent emissions per sample, compared to 0.079-0.092 kg for conventional procedures. The application of novel "blueness" and "whiteness" concepts using BAGI and RGB12 algorithms further confirmed superior sustainability, with scores of 87.5 & 90 for blueness and 88.1 & 89.8 for whiteness. Successfully applied to quantify IND and MOM in combined capsules, this work provides a model for eco-friendly pharmaceutical analysis that maintains high analytical reliability while improving sustainability metrics.
Collapse
Affiliation(s)
- Amal A El-Masry
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Ahmed Emad F Abbas
- Analytical Chemistry Department, Faculty of Pharmacy, October 6 University, 6 October City, 12585, Giza, Egypt
| | - Yomna A Salem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sinai University-Kantara Branch, Ismailia, 341636, Egypt.
| |
Collapse
|
4
|
Alnemari RM, Abdelazim AH, Almalki AH, Alqahtani AS, Alaqel SI, Alsulami FT, Serag A. Application of signal processing techniques for the spectroscopic analysis of dolutegravir and lamivudine: a comparative assessment and greenness appraisal. BMC Chem 2024; 18:129. [PMID: 38978116 PMCID: PMC11232167 DOI: 10.1186/s13065-024-01226-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/13/2024] [Indexed: 07/10/2024] Open
Abstract
HIV treatment has greatly improved over the years, with the introduction of antiretroviral drugs that target the virus and suppress its replication. Dolutegravir and lamivudine are two such antiretroviral drugs that are commonly used in HIV treatment regimens. Herein, three spectrophotometric methods manipulating ratio spectra were developed for the simultaneous analysis of dolutegravir and lamivudine in their binary mixtures. These methods include mathematical processing stages like ratio difference method or signal processing approaches such as the first derivative of the ratio spectra, and continuous wavelet transform. The developed spectrophotometric methods exploit the characteristic spectral differences between dolutegravir and lamivudine in order to quantify them simultaneously. These methods have shown promising results in terms of sensitivity and selectivity as validated per the ICH guidelines. Moreover, these methods offer a straightforward and economical alternative to more intricate analytical methodologies like high-performance liquid chromatography. By incorporating the analytical eco-scale and AGREE for greenness evaluation of the proposed methods, we can further ensure that these techniques are effective and environmentally friendly, aligning with the principles of green chemistry. This evaluation will provide a comprehensive understanding of the environmental friendliness of these spectrophotometric methods in pharmaceutical analysis.
Collapse
Affiliation(s)
- Reem M Alnemari
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ahmed H Abdelazim
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11751, Egypt
| | - Atiah H Almalki
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
- Addiction and Neuroscience Research Unit, Health Science Campus, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Arwa S Alqahtani
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box, 90950, Riyadh, 11623, Saudi Arabia
| | - Saleh I Alaqel
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha, 91911, Saudi Arabia
| | - Fahad T Alsulami
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ahmed Serag
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11751, Egypt.
| |
Collapse
|
5
|
Mostafa A. Insights into the sustainability of liquid chromatographic methods for favipiravir bioanalysis: a comparative study. RSC Adv 2024; 14:19658-19679. [PMID: 38899032 PMCID: PMC11185049 DOI: 10.1039/d4ra03017f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024] Open
Abstract
The introduction of favipiravir as a broad-spectrum antiviral agent, particularly in treating influenza and exploring its potential against COVID-19, emphasizes the necessity for efficient analytical methods. Liquid chromatography has emerged as a commonly utilized technique for quantifying favipiravir in biological fluids. However, the environmental and health concerns linked to classical analytical methods mean a transition toward green analytical chemistry is required. This study investigates the environmental impact of 19 liquid chromatographic methods utilized in the bioanalysis of favipiravir. Recognizing the importance of eco-friendly practices in pharmaceutical analysis, the study employs three widely accepted greenness assessment tools: Analytical Eco-Scale (AES), Green Analytical Procedure Index (GAPI), and Analytical Greenness Calculator (AGREE). Moreover, it incorporates a comprehensive evaluation on a global scale utilizing the whiteness assessment tool Red-Green-Blue 12 (RGB 12). The comprehensive evaluation aims to extend beyond traditional validation criteria and considerations of green chemistry, providing insights into the development of practically efficient, eco-friendly and economical analytical methods for favipiravir determination. This study emphasizes the necessity of planning for the environmental impact and overall sustainability of analytical methods before laboratory trials. Additionally, the integration of greenness/whiteness evaluation in method validation protocols is strongly advocated, emphasizing the importance of critical and global evaluations in analytical chemistry.
Collapse
Affiliation(s)
- Ahmed Mostafa
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University King Faisal Road, P.O. Box 1982 Dammam 31441 Eastern Province Saudi Arabia (+966) 56 262 3776
| |
Collapse
|
6
|
Ghozzy EA, El-Enany NM, Tolba MM, El Abass SA. An eco-friendly and cost-effective HPTLC method for quantification of COVID-19 antiviral drug and co-administered medications in spiked human plasma. Sci Rep 2024; 14:10025. [PMID: 38693137 PMCID: PMC11063142 DOI: 10.1038/s41598-024-56923-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/12/2024] [Indexed: 05/03/2024] Open
Abstract
The coronavirus-2 has led to a global pandemic of COVID-19 with an outbreak of severe acute respiratory syndrome leading to worldwide quarantine measures and a rise in death rates. The objective of this study is to propose a green, sensitive, and selective densitometric method to simultaneously quantify remdesivir (REM) in the presence of the co-administered drug linezolid (LNZ) and rivaroxaban (RIV) in spiked human plasma. TLC silica gel aluminum plates 60 F254 were used as the stationary phase, and the mobile phase was composed of dichloromethane (DCM): acetone (8.5:1.5, v/v) with densitometric detection at 254 nm. Well-resolved peaks have been observed with retardation factors (Rf) of 0.23, 0.53, and 0.72 for REM, LNZ, and RIV, respectively. A validation study was conducted according to ICH Q2 (R1) Guidelines. The method was rectilinear over the concentration ranges of 0.2-5.5 μg/band, 0.2-4.5 μg/band and 0.1-3.0 μg/band for REM, LNZ and RIV, respectively. The sensitivities of REM, LIN, and RIV were outstanding, with quantitation limits of 128.8, 50.5, and 55.8 ng/band, respectively. The approach has shown outstanding recoveries ranging from 98.3 to 101.2% when applied to pharmaceutical formulations and spiked human plasma. The method's greenness was assessed using Analytical Eco-scale, GAPI, and AGREE metrics.
Collapse
Affiliation(s)
- Ekram A Ghozzy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 35712, Egypt
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Nahed M El-Enany
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, New Mansoura University, New Mansoura, 7723730, Egypt
| | - Manar M Tolba
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Samah Abo El Abass
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
7
|
Madbouly EA, El-Shanawani AA, El-Adl SM, Abdelkhalek AS. Green chemometric-assisted UV-spectrophotometric methods for the determination of favipiravir, cefixime and moxifloxacin hydrochloride as an effective therapeutic combination for COVID-19; application in pharmaceutical form and spiked human plasma. BMC Chem 2024; 18:65. [PMID: 38575973 PMCID: PMC10996251 DOI: 10.1186/s13065-024-01168-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/20/2024] [Indexed: 04/06/2024] Open
Abstract
As pharmaceutical analysis progresses towards environmental sustainability, there is a growing need to enhance the safety and health conditions for analysts. Consequently, the incorporation of chemometrics into environmentally friendly analytical methods represents a promising approach. Favipiravir, cefixime, and moxifloxacin hydrochloride have been currently used in COVID-19 treatment. In this study, we develop spectrophotometric methods depending on chemometric based models to measure the levels of favipiravir, cefixime, and moxifloxacin hydrochloride in pharmaceutical preparations and spiked human plasma. It is challenging to determine favipiravir, cefixime, and moxifloxacin simultaneously because of overlap in their UV absorption spectra. Two advanced chemometric models, partial least square (PLS) and genetic algorithm (GA), have been developed to provide better predictive abilities in spectrophotometric determination of the drugs under study. The described models were created using a five-level, three-factor experimental design. The outcomes of the models have been thoroughly assessed and interpreted, and a statistical comparison with recognized values has been taken into consideration. The analytical eco-scale and the green analytical procedure index (GAPI) evaluation methods were also utilized to determine how environmentally friendly the mentioned models were. The outcomes demonstrated how well the models described complied with the environmental requirements.
Collapse
Affiliation(s)
- Eman A Madbouly
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
| | - Abdalla A El-Shanawani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Sobhy M El-Adl
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Ahmed S Abdelkhalek
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
8
|
Alsharif ST, Almalki AH, Ramzy S, Sultan Alqahtani A, Abduljabbar MH, Algarni MA, Serag A. Derivative spectroscopy and wavelet transform as green spectrophotometric methods for abacavir and lamivudine measurement. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123913. [PMID: 38271846 DOI: 10.1016/j.saa.2024.123913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Herein, two different sustainable and green signal processing spectrophotometric approaches, namely, derivative spectroscopy and wavelet transform, have been utilized for effective measurement of the antiretroviral therapy abacavir and lamivudine in their pharmaceutical formulations. These methods were used to enhance the spectral data and differentiate between the absorption bands of abacavir and lamivudine in order to accurately measure their concentrations. For determining abacavir and lamivudine, the first derivative spectrophotometric method has been applied to the zero-order and ratio spectra of both drugs. The same approach has been tested using the continuous wavelet transform method where a second order 2.4 of rbio and bior wavelet families were found to be optimum for measuring both drugs. Validation of the proposed methods affirmed their reliability in terms of linearity over the concentration range 1.5-30 µg/mL and 1.5-36 µg/mL for abacavir and lamivudine, respectively, precision (RSD < 2 %), and accuracy with mean recoveries ranging between 98 % and 102 %. Additionally, these spectrophotometric methodologies were applied to real pharmaceutical preparations and yielded results congruent with a prior chromatographic method. Most prominently, the proposed methods stood out for their greenness and sustainability with 97 points as evaluated by the analytical eco-scale method and a score value of 0.79 as analyzed by AGREE method, thereby making them suitable for resource-limited settings and highlighting the potential for broader application of green analytical methods in pharmaceutical analysis.
Collapse
Affiliation(s)
- Shaker T Alsharif
- Department of Pharmaceutical Sciences, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Atiah H Almalki
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, 21944 Taif, Saudi Arabia; Addiction and Neuroscience Research Unit, Health Science Campus, Taif University, P.O. Box 11099, 21944 Taif, Saudi Arabia
| | - Sherif Ramzy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, 11751 Nasr City, Cairo, Egypt
| | - Arwa Sultan Alqahtani
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box, 90950, Riyadh 11623, Saudi Arabia
| | - Maram H Abduljabbar
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Majed A Algarni
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed Serag
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, 11751 Nasr City, Cairo, Egypt.
| |
Collapse
|
9
|
Morovati S, Larijani K, Helalizadeh M, Mohammadkhani LG, Faraji H. Determination of remdesivir in human plasma using (deep eutectic solvent-ionic liquid) ferrofluid microextraction combined with liquid chromatography. J Chromatogr A 2023; 1712:464468. [PMID: 37926006 DOI: 10.1016/j.chroma.2023.464468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023]
Abstract
A microextraction technique based on ferrofluids was developed for the preconcentration and quantification of Remdesivir in human plasma samples. This method utilized a new type of magnetic colloids created by combining silica-coated magnetic particles with modified ionic liquid and natural hydrophobic deep eutectic solvent as the carrier liquid. The efficiency of the sorption and desorption steps was optimized using a chemometrics approach. Under the optimized conditions, the calibration curve exhibited linearity in the concentration range of 0.5 to 500.0 μg L-1, with a limit of detection and quantification of 0.2 and 0.5 μg L-1, respectively. The method precision was evaluated by assessing intra- and interday precision at three different analyte concentrations, yielding values of 8.9% and 16.8%, respectively. Moreover, the method accuracy fell within the range of 90.9% to 107.5%. This proposed method offers a green and environmentally friendly sample preparation technique for conducting pharmacodynamic, pharmacokinetic, and therapeutic drug monitoring studies of Remdesivir in biological fluids. Importantly, this technique eliminates the need for external energy sources or the use of dispersive solvents, providing a more efficient and sustainable approach.
Collapse
Affiliation(s)
- Sanaz Morovati
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kambiz Larijani
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Masoumeh Helalizadeh
- Department of Exercise Physiology, Sport Medicine Research Center, Sport Sciences Research Institute, Tehran, 1587958711, Iran
| | | | - Hakim Faraji
- Laboratorio de Materiales para Análisis Químico (MAT4LL), Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), 38206, Tenerife, Spain.
| |
Collapse
|
10
|
Batubara AS, Ainousah BE, Ramzy S, Abdelazim AH, Gamal M, Tony RM. Synchronous spectrofluorimetric determination of favipiravir and aspirin at the nano-gram scale in spiked human plasma; greenness evaluation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122880. [PMID: 37216820 DOI: 10.1016/j.saa.2023.122880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023]
Abstract
Favipiravir and aspirin are co-administered during COVID-19 treatment to prevent venous thromboembolism. For the first time, a spectrofluorometric method has been developed for the simultaneous analysis of favipiravir and aspirin in plasma matrix at nano-gram detection limits. The native fluorescence spectra of favipiravir and aspirin in ethanol showed overlapping emission spectra at 423 nm and 403 nm, respectively, after excitation at 368 nm and 298 nm, respectively. Direct simultaneous determination with normal fluorescence spectroscopy was difficult. The use of synchronous fluorescence spectroscopy for analyzing the studied drugs in ethanol at Δλ = 80 nm improved spectral resolution and enabled the determination of favipiravir and aspirin in the plasma matrix at 437 nm and 384 nm, respectively. The method described allowed sensitive determination of favipiravir and aspirin over a concentration range of 10-500 ng/mL and 35-1600 ng/mL, respectively. The described method was validated with respect to the ICH M10 guidelines and successfully applied for the simultaneous determination of the mentioned drugs in pure form and in the spiked plasma matrix. Moreover, the compliance of the method with the concepts of environmentally friendly analytical chemistry was evaluated using two metrics, the Green Analytical Procedure Index and the AGREE tool. The results showed that the described method was consistent with the accepted metrics for green analytical chemistry.
Collapse
Affiliation(s)
- Afnan S Batubara
- Department of Pharmaceutical Chemistry, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | - Bayan E Ainousah
- Department of Pharmaceutical Chemistry, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Sherif Ramzy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, 11751 Cairo, Egypt.
| | - Ahmed H Abdelazim
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, 11751 Cairo, Egypt
| | - Mohammed Gamal
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Beni-Suef University, 62514 Beni-Suef, Egypt
| | - Rehab M Tony
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| |
Collapse
|
11
|
Khalil HA, Hassanein NA, El-Yazbi AF. Recent analytical methodologies for the determination of anti-covid-19 drug therapies in various matrices: a critical review. RSC Adv 2023; 13:13224-13239. [PMID: 37124020 PMCID: PMC10143325 DOI: 10.1039/d3ra00654a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/18/2023] [Indexed: 05/02/2023] Open
Abstract
Since the discovery of the first case infected with severe acute respiratory syndrome coronavirus-2 (SARS CoV-2) in Wuhan, China in December 2019, it has turned into a global pandemic. According to the World Health Organization (WHO) statistics, about 603.7 million confirmed coronavirus cases and 6.4 million deaths have been reported. Remdesivir (RMD) was the first U.S. Food and Drug Administration (FDA) approved antiviral drug for the treatment of coronavirus in pediatrics and adults with different disease severities, ranging from mild to severe, in both hospitalized and non-hospitalized patients. Various drug regimens are used in Covid-19 treatment, all of which rely on the use of antiviral agents including ritonavir (RTN)/nirmatrelvir (NTV) combination, molnupiravir (MLP) and favipiravir (FVP). Optimizing analytical methods for the selective and sensitive quantification of the above-mentioned drugs in pharmaceutical dosage forms and biological matrices is a must in the current pandemic. Several analytical techniques were reported for estimation of antivirals used in Covid-19 therapy. Chromatographic methods include Thin Layer Chromatography (TLC) densitometry, High Performance Thin Layer Chromatography (HPTLC), Reversed Phase-High Performance Liquid Chromatography (RP-HPLC), High Performance Liquid Chromatography Tandem Mass Spectrometry (HPLC-MS/MS) or Ultraviolet detectors (HPLC-UV), Ultra High-Performance Liquid Chromatography (UHPLC-MS/MS) or (UPLC-UV) and Micellar Liquid Chromatography (MLC). In addition to other spectroscopic methods including Paper Spray Mass Spectrometry (PS-MS), UV-Visible Spectrophotometry, and Spectrofluorimetry. Herein, we will focus on the clarification of trendy, simple, rapid, accurate, precise, sensitive, selective, and eco-friendly analytical methods used for the analysis of anti-Covid-19 drugs in dosage forms as well as biological matrices.
Collapse
Affiliation(s)
- Hadeel A Khalil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, University of Alexandria P.O.Box: 21521, El-Messalah Alexandria 21521 Egypt
| | - Nermeen A Hassanein
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, University of Alexandria P.O.Box: 21521, El-Messalah Alexandria 21521 Egypt
| | - Amira F El-Yazbi
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, University of Alexandria P.O.Box: 21521, El-Messalah Alexandria 21521 Egypt
| |
Collapse
|
12
|
El Sharkasy ME, Tolba MM, Belal F, Walash MI, Aboshabana R. Simultaneous spectrofluorimetic determination of remdesivir and simeprevir in human plasma. Sci Rep 2022; 12:21980. [PMID: 36539455 PMCID: PMC9763795 DOI: 10.1038/s41598-022-26559-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
As new infectious mutations of SARS-CoV-2 emerged throughout the world, innovative therapies to counter the virus-altered drug sensitivities were urgently needed. Several antiviral options have been in clinical trials or in compassionate use for the treatment of SARS-CoV-2 infections in an attempt to minimize both clinical severity and viral shedding. Recent research indicated that simeprevir acts synergistically with remdesivir, allowing for a multiple-fold decrease in its effective dose when used at physiologically acceptable concentrations. The goal of this work is to develop a sensitive synchronous spectrofluorimetric approach to simultaneously quantify the two drugs in biological fluids. Using this method, remdesivir and simeprevir could be measured spectrofluorimetrically at 283 and 341 nm, respectively, without interference from each other using Δλ of 90 nm. The effect of various experimental parameters on the fluorescence intensity of the two drugs was extensively explored and optimized. For each of remdesivir and simeprevir, the method exhibited a linearity range of 0.10-1.10 μg/mL, with lower detection limits of 0.01 and 0.02 μg/mL and quantification limits of 0.03 and 0.05 μg/mL, respectively. The high sensitivity of the developed method permitted the simultaneous determination of both drugs in spiked plasma samples with % recoveries ranging from 95.0 to 103.25 with acceptable standard deviation values of 1.92 and 3.04 for remdesivir and simeprevir, respectively. The validation of the approach was approved by the International Council of Harmonization (ICH) guidelines.
Collapse
Affiliation(s)
- Mona E El Sharkasy
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Manar M Tolba
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Fathalla Belal
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Mohamed I Walash
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Rasha Aboshabana
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|