1
|
Jaswal A, Swami S, Saini A. Mercury (Hg 2+) Sensing Using Coumarin-Derived Fluorescent Chemo-Sensors: An Intuitive Development from 2015 to 2023. J Fluoresc 2024:10.1007/s10895-024-03889-1. [PMID: 39126606 DOI: 10.1007/s10895-024-03889-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Mercury is known as a highly toxic metal that is poisonous even if present in a trace amount. Generally, it enters in the food chain (especially fish) and water resources via different pathways and leads to harmful effects. Owing to the detrimental nature of the metal, traditionally several methods were employed by researchers for regular monitoring of the mercury metal ions. However, these methods are associated with many limitations like high cost of technical expertise, and intricacy of the detection procedure. So, using these methods to detect mercury ions in real time is challenging. Therefore, in recent years fluorescent-based analytical tools emerged rapidly. Among the various fluorescent organic scaffolds, coumarin has been scorching, owing to quick response, light stability, high sensitivity, good selectivity, excellent fluorescence intensity, and fluorescence quantum yield. This review provides a deep dive into the coumarin-derived chemo-sensors development throughout 2015-2023. We anticipate that the review will assist to broad scientific community as a reference document to design more interesting sensors.
Collapse
Affiliation(s)
- Ansh Jaswal
- Department of Chemistry, Chandigarh University, NH-05, Ludhiana - Chandigarh State Hwy, Mohali, Punjab, India, 140413
| | - Suman Swami
- Department of Chemistry, Chandigarh University, NH-05, Ludhiana - Chandigarh State Hwy, Mohali, Punjab, India, 140413.
| | - Ajay Saini
- Central Analytical Facilities, Manipal University Jaipur, Jaipur-Ajmer Express Highway, Dehmi Kalan, Near GVK Toll Plaza, Jaipur, Rajasthan, India, 303007
| |
Collapse
|
2
|
Deng W, Li S, Zhou M, Zheng M, Wang P, An Y. Ratiometric peptide-based fluorescent probe with large Stokes shift for detection of Hg 2+ and S 2- and its applications in cells imaging and smartphone-assisted recognition. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 315:124306. [PMID: 38640624 DOI: 10.1016/j.saa.2024.124306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
In this work, a new ratiometric fluorescent probe DKA was synthesized based on the double sides of lysine backbone conjugated with alanine and dansyl groups. DKA exhibited fluorescence ratiometric response for Hg2+ with high sensitivity (13.4 nM), specific selectivity (only Hg2+), strong anti-interference ability (no interference), fast recognition (within 60 s) and wide pH range (5-10). The stoichiometry of binding of DKA and Hg2+ was determined to be 1:1 via Job's plot, ESI-HRMS and 1HNMR titration analysis. Subsequently, the in situ formation of DKA-Hg2+ complex was used for highly selective detection of S2- as a novel fluorescence "on-off" probe, and the lowest detection limit for S2- was 12.9 nM. In addition, DKA possessed excellent cells permeation and low toxicity, and fluorescence imaging of Hg2+ and S2- was performed in living Hacat cells. Most importantly, the digital imaging using a smartphone color recognition APP indicated that DKA could semi-quantitatively and visually detected Hg2+ and S2- without expensive equipment.
Collapse
Affiliation(s)
- Weiliang Deng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Shiyang Li
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Miao Zhou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Maoyue Zheng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Peng Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China.
| | - Yong An
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730030, PR China.
| |
Collapse
|
3
|
Sun L, Zhou Z, Wu Y, Meng Z, Huang H, Li T, Wang Z, Yang Y. A novel colormetric and light-up fluorescent sensor from flavonol derivative grafted cellulose for rapid and sensitive detection of Hg 2+ and its applications in biological and environmental system. Int J Biol Macromol 2024; 266:131209. [PMID: 38565364 DOI: 10.1016/j.ijbiomac.2024.131209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Mercury ion (Hg2+) is one of harmful heavy metal ions that can accumulate inside the human organism and cause some health problems. In the article, a highly effective fluorescent probe named EC-T-PCBM was prepared by grafting flavonol derivatives onto ethyl cellulose for the specific recognition of Hg2+. EC-T-PCBM exhibited a remarkable fluorescence light-up response toward Hg2+ with excellent sensitivity. EC-T-PCBM possessed several prominent sensing properties for Hg2+, such as low detection limit (43.9 nM), short response time (5 min), and wide detection pH range (6-9). The response mechanism of EC-T-PCBM to Hg2+ has been verified through 1H NMR titration and DFT computation. Additionally, EC-T-PCBM not only can be used for accurately determining trace amount of Hg2+ in actual environmental water samples, but also can serve as a portable and rapid device by loading it on test strips for sensitive and selective visualization of Hg2+. More importantly, the confocal fluorescence imaging of onion cells suggested the favorable cell membrane permeability of EC-T-PCBM and its prominent ability to continuously monitor the enrichment from Hg2+ within fresh plant tissues.
Collapse
Affiliation(s)
- Linfeng Sun
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zihang Zhou
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yangmei Wu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhiyuan Meng
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Huan Huang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ting Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhonglong Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yiqin Yang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
4
|
Zhang C, Nie S, Liu C, Zhang Y, Guo J. A Fluorescent Probe for Hg 2+ Specific Recognition Based on Xanthene and its Application in Food Detection and Cell Imaging. J Fluoresc 2024:10.1007/s10895-024-03711-y. [PMID: 38652359 DOI: 10.1007/s10895-024-03711-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Abstract
The mercury-loving unit aminothiourea was introduced into the xanthene fluorophore to synthesized the probe molecule NXH. NXH has a specific response to Hg2+, and with the addition of (0 ~ 50 µM) Hg2+, the fluorescence intensity of the probe solution was quenched from 2352 a.u. to about 308 a.u. NXH exhibited excellent detection performance of high sensitivity (LOD = 96.3 nM), real-time response (105 s), wide pH range (2.1 ~ 9.3), and strong anti-interference ability for Hg2+. At the same time, NXH has wide range of applications for Hg2+ detection, which can fluorescence imaging of Hg2+ in Hela cells and tea samples, and can also be made into Hg2+ detection test paper.
Collapse
Affiliation(s)
- Chenglu Zhang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning, 116029, China.
| | - Shiru Nie
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning, 116029, China
| | - Chang Liu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning, 116029, China
| | - Yang Zhang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning, 116029, China
| | - Jinghao Guo
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning, 116029, China
| |
Collapse
|
5
|
Randhawa P, Carbo-Bague I, Davey PRWJ, Chen S, Merkens H, Uribe CF, Zhang C, Tosato M, Bénard F, Radchenko V, Ramogida CF. Exploration of commercial cyclen-based chelators for mercury-197 m/g incorporation into theranostic radiopharmaceuticals. Front Chem 2024; 12:1292566. [PMID: 38389726 PMCID: PMC10881723 DOI: 10.3389/fchem.2024.1292566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
A comprehensive investigation of the Hg2+ coordination chemistry and 197m/gHg radiolabeling capabilities of cyclen-based commercial chelators, namely, DOTA and DOTAM (aka TCMC), along with their bifunctional counterparts, p-SCN-Bn-DOTA and p-SCN-Bn-TCMC, was conducted to assess the suitability of these frameworks as bifunctional chelators for the 197m/gHg2+ theranostic pair. Radiolabeling studies revealed that TCMC and DOTA exhibited low radiochemical yields (0%-6%), even when subjected to harsh conditions (80°C) and high ligand concentrations (10-4 M). In contrast, p-SCN-Bn-TCMC and p-SCN-Bn-DOTA demonstrated significantly higher 197m/gHg radiochemical yields (100% ± 0.0% and 70.9% ± 1.1%, respectively) under the same conditions. The [197 m/gHg]Hg-p-SCN-Bn-TCMC complex was kinetically inert when challenged against human serum and glutathione. To understand the differences in labeling between the commercial chelators and their bifunctional counterparts, non-radioactive natHg2+ complexes were assessed using NMR spectroscopy and DFT calculations. The NMR spectra of Hg-TCMC and Hg-p-SCN-Bn-TCMC suggested binding of the Hg2+ ion through the cyclen backbone framework. DFT studies indicated that binding of the Hg2+ ion within the backbone forms a thermodynamically stable product. However, competition can form between isothiocyanate binding and binding through the macrocycle, which was experimentally observed. The isothiocyanate bound coordination product was dominant at the radiochemical scale as, in comparison, the macrocycle bound product was seen at the NMR scale, agreeing with the DFT result. Furthermore, a bioconjugate of TCMC (TCMC-PSMA) targeting prostate-specific membrane antigen was synthesized and radiolabeled, resulting in an apparent molar activity of 0.089 MBq/nmol. However, the complex demonstrated significant degradation over 24 h when exposed to human serum and glutathione. Subsequently, cell binding assays were conducted, revealing a Ki value ranging from 19.0 to 19.6 nM. This research provides crucial insight into the effectiveness of current commercial chelators in the context of 197m/gHg2+ radiolabeling. It underscores the necessity for the development of specific and customized chelators to these unique "soft" radiometals to advance 197m/gHg2+ radiopharmaceuticals.
Collapse
Affiliation(s)
- Parmissa Randhawa
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada
- Life Sciences Division, TRIUMF, Vancouver, BC, Canada
| | - Imma Carbo-Bague
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada
- Life Sciences Division, TRIUMF, Vancouver, BC, Canada
| | - Patrick R W J Davey
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada
- Life Sciences Division, TRIUMF, Vancouver, BC, Canada
| | - Shaohuang Chen
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada
- Life Sciences Division, TRIUMF, Vancouver, BC, Canada
| | - Helen Merkens
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
| | - Carlos F Uribe
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
| | - Chengcheng Zhang
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
| | - Marianna Tosato
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada
- Life Sciences Division, TRIUMF, Vancouver, BC, Canada
| | - François Bénard
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
| | - Valery Radchenko
- Life Sciences Division, TRIUMF, Vancouver, BC, Canada
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Caterina F Ramogida
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada
- Life Sciences Division, TRIUMF, Vancouver, BC, Canada
| |
Collapse
|
6
|
Peng G, Guo M, Liu Y, Yang H, Wen Z, Chen X. Development of a Novel H-Shaped Electrochemical Aptasensor for Detection of Hg 2+ Based on Graphene Aerogels-Au Nanoparticles Composite. BIOSENSORS 2023; 13:932. [PMID: 37887125 PMCID: PMC10605725 DOI: 10.3390/bios13100932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/22/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023]
Abstract
Hg2+, a highly toxic heavy metal, poses significant environmental and health risks, necessitating rapid detection methods. In this study, we employed an electrochemical aptasensor for rapid and sensitive detection of Hg2+ based on DNA strands (H2 and H3) immobilized graphene aerogels-Au nanoparticles (GAs-AuNPs) hybrid recognition interface and exonuclease III (Exo III)-mediated cyclic amplification. Firstly, Gas-AuNPs were modified on the surface of the ITO electrode to form a sensing interface to increase DNA loading and accelerate electron transfer. Then, DNA helper was generated with the addition of Hg2+ via Exo III-mediated cycling. Finally, the hairpin structures of H2 and H3 were opened with the DNA helper, and then the methylene blue (MB) functionalized DNA (A1 and A2) combined with the H2 and H3 to form an H-shaped structure. The current response of MB as an electrochemical probe was proportional to the concentration of Hg2+. Under optimal conditions, the aptasensor showed excellent performance for Hg2+, achieving a linear range from 1 fM to 10 nM and a detection limit of 0.16 fM. Furthermore, the aptasensor was used to detect Hg2+ in spiked milk samples, achieving a high recovery rate and demonstrating promising application prospects.
Collapse
Affiliation(s)
- Gang Peng
- College of Food Engineering, Anhui Science and Technology University, Fengyang 233100, China; (M.G.); (Y.L.); (H.Y.); (Z.W.)
| | - Mengxue Guo
- College of Food Engineering, Anhui Science and Technology University, Fengyang 233100, China; (M.G.); (Y.L.); (H.Y.); (Z.W.)
| | - Yuting Liu
- College of Food Engineering, Anhui Science and Technology University, Fengyang 233100, China; (M.G.); (Y.L.); (H.Y.); (Z.W.)
| | - Han Yang
- College of Food Engineering, Anhui Science and Technology University, Fengyang 233100, China; (M.G.); (Y.L.); (H.Y.); (Z.W.)
| | - Zuorui Wen
- College of Food Engineering, Anhui Science and Technology University, Fengyang 233100, China; (M.G.); (Y.L.); (H.Y.); (Z.W.)
| | - Xiaojun Chen
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China;
| |
Collapse
|
7
|
Kumar A. Recent Development in Fluorescent Probes for the Detection of Hg 2+ Ions. Crit Rev Anal Chem 2023; 54:3269-3312. [PMID: 37517076 DOI: 10.1080/10408347.2023.2238066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Mercury, a highly toxic heavy metal, poses significant environmental and health risks, necessitating the development of effective and responsive techniques for its detection. Organic chromophores, particularly small molecules, have emerged as promising materials for sensing Hg2+ ions due to their high selectivity, sensitivity, and ease of synthesis. In this review article, we provide a systematic overview of recent advancements in the field of fluorescent chemosensors for Hg2+ ions detection, including rhodamine derivatives, Schiff bases, coumarin derivatives, naphthalene derivatives, BODIPY, BOPHY, naphthalimide, pyrene, dicyanoisophorone, bromophenol, benzothiazole flavonol, carbonitrile, pyrazole, quinoline, resorufin, hemicyanine, monothiosquaraine, cyanine, pyrimidine, peptide, and quantum/carbon dots probes. We discuss their detection capabilities, sensing mechanisms, limits of detection, as well as the strategies and approaches employed in their design. By focusing on recent studies conducted between 2022 and 2023, this review article offers valuable insights into the performance and advancements in the field of fluorescent chemosensors for Hg2+ ions detection.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Chemistry, D.B.S. (PG) College Dehradun, Uttarakhand, India
| |
Collapse
|
8
|
Pei S, Li C, Pei X, Zhang X, Chi Y, Zeng W, Zhang Y, Liao X, Chen J. A fluorescent probe based on an enhanced ICT effect for Hg 2+ detection and cell imaging. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023. [PMID: 37323034 DOI: 10.1039/d3ay00544e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The mercury ion (Hg2+) has hindered society to some extent due to its high biological toxicity, and a rapid method for Hg2+ detection is urgently needed. In the present work, two fluorescent probes, YF-Hg and YF-Cl-Hg, were developed. YF-Cl-Hg was produced by introducing an electron-withdrawing substituent (-Cl) into the structure of YF-Hg. The probe YF-Cl-Hg possesses a larger Stokes shift and a more pronounced UV-vis absorption redshift compared to YF-Hg in a pH = 7.4 environment. The reasons for the superior spectral performance of YF-Cl-Hg over YF-Hg were explored by density functional theory (DFT) calculations and UV-vis absorption spectroscopy. Furthermore, the good biocompatibility suggests that YF-Cl-Hg possesses the potential to be a tool for Hg2+ detection in cells.
Collapse
Affiliation(s)
- Shuchen Pei
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China.
| | - Chaozheng Li
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China.
| | - Xinyu Pei
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China.
| | - Xiangyang Zhang
- College of Chemistry and Chemical Engineering, Hunan University of Arts and Science, Changde 415000, China
| | - Yuting Chi
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China.
| | - Wenhong Zeng
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China.
| | - Yuanyuan Zhang
- School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Xiaoling Liao
- School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Jun Chen
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China.
| |
Collapse
|