1
|
Aslam N, Akbar M, Andolfi A. Allelopathic interactions of Carthamus oxyacantha, Macrophomina phaseolina and maize: Implications for the use of Carthamus oxyacantha as a natural disease management strategy in maize. PLoS One 2024; 19:e0307082. [PMID: 39480774 PMCID: PMC11527155 DOI: 10.1371/journal.pone.0307082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 06/29/2024] [Indexed: 11/02/2024] Open
Abstract
Fungicides are used to control phytopathogens but all these fungicides have deleterious effects. Allelopathic interactions can be harnessed as a natural way to control the pathogens but there are no reports that show the allelopathic interactions of donor plant, recipient crop, as well as the target plant pathogen and the material used for inoculum production. So, in the present study, the suitability of Carthamus oxyacantha M. Bieb. was assessed against Macrophomina phaseolina, the cause of charcoal rot in maize. Among the various treatments in pot experiment, a negative control, 3 concentrations of inoculum (1.2×105, 2.4×105, and 3.6×105 colony forming units (CFU) mL-1, 3 concentrations (0.5, 1.0, and 1.5% w/w) of C. oxyacantha along with an autoclaved M. phaseolina (Mp) and C. oxyacantha alone were included to investigate their allelopathic effects on maize, not investigated earlier. Maximum suppression of the disease was observed by 1.5% (w/w) concentration of C. oxyacantha. Soil amendment with C. oxyacantha significantly suppressed the disease incidence (DI) and disease severity index (DSI) in charcoal rot of maize up to 40 and 55%, respectively over the strongest level of inoculum (Mp3). C. oxyacantha not only reduced area under disease incidence progress curve (AUDIPC) and area under disease severity progress curve (AUDSPC), but also improved the morphological, biochemical and physiological parameters of maize. The maximum increase of 48, 65, and 75% in values of shoot length (SL), shoot dry mass (SDM), and root dry mass (RDM), respectively was observed by application of the highest concentration of C. oxyacantha in the treatment Mp1+Co3, over infested control (Mp1). Photosynthetic pigments, such as chlorophyll a, chlorophyll b and carotenoids were increased to 58, 64, and 46%, respectively over Mp1, by the application of C. oxyacantha. Carbon assimilation rate (A), stomatal conductance (gs), rate of transpiration (E), and internal carbon dioxide concentration (Ci) were significantly increased to 58, 48, 48, and 20%, respectively over infested control (Mp3), by application of C. oxyacantha concentration 1.5 (w/w). Moreover, defense enzymes like superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activities were boosted up to 27, 28, and 28% over Mp3, respectively. Positive allelopathy of C. oxyacantha towards maize and negative allelopathy towards M. phaseolina makes C. oxyacantha a suitable candidate for charcoal rot disease control in maize.
Collapse
Affiliation(s)
- Nazir Aslam
- Department of Botany, University of Gujrat, Gujrat, Punjab, Pakistan
| | - Muhammad Akbar
- Department of Botany, University of Gujrat, Gujrat, Punjab, Pakistan
| | - Anna Andolfi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo Via Cintia, Napoli, Italy
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Portici, Italy
| |
Collapse
|
2
|
Al-Zahrani HS, Alharby HF, Fahad S. Antioxidative Defense System, Hormones, and Metabolite Accumulation in Different Plant Parts of Two Contrasting Rice Cultivars as Influenced by Plant Growth Regulators Under Heat Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:911846. [PMID: 35712584 PMCID: PMC9196032 DOI: 10.3389/fpls.2022.911846] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 04/13/2022] [Indexed: 05/20/2023]
Abstract
We examined the metabolic, hormonal, enzymatic, and non-enzymatic responses of various plant components (leaf, root, and xylem sap) to plant growth regulators [methyl jasmonate (MeJA), ascorbic acid (Vc), brassinosteroids (Br), triazoles (Tr), alpha-tocopherol (Ve), and control] under heat stress [ambient temperature (AT), heat stress at night time (HNT), and heat stress at day (HDT)] in heat-sensitive (IR-64) and heat-tolerant (Huanghuazhan) rice cultivars under greenhouse conditions. Our results showed that heat stress altered the antioxidant activities and hormonal balance and rigorously reduced total soluble sugars, proteins, and proline, whereas increases were observed in H2O2 and Malondialdehyde (MDA) content accumulation in the plant xylem sap and leaves of both tested cultivars; however, the impact was more pronounced in IR-64. The superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), Glutathione (GSH), dehydroascorbate reductase (DHAR), and monodehydroascorbate reductase (MDHAR) activities were higher in Huanghuazhan than in IR-64 in response to temperature stress, when compared to AT. Additionally, heat stress increased abscisic acid (ABA) levels in both rice cultivars, especially in IR-64. The highest concentrations of hormones were recorded in the roots, followed by the leaves and xylem sap, in both cultivars. HDT and HNT stresses severely reduced the concentrations of all of the cytokinin types (except for iP9G and tZ9G) and IAA in the different plant parts of rice cultivars. Moreover, HNT was more detrimental for hormone and metabolite synthesis in both cultivars. The growth regulators (especially Vc + Br + Ve + MeJA) were comparatively more effective in minimizing the hostile impact of heat stress on most of the studied traits and should be applied to obtain the optimum yield of rice in subtropical and tropical areas under changing climatic conditions.
Collapse
Affiliation(s)
- Hassan S. Al-Zahrani
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hesham F. Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
- Department of Agronomy, The University of Haripur, Haripur, Pakistan
| |
Collapse
|
3
|
Afzal I, Imran S, Javed T, Tahir A, Kamran M, Shakeel Q, Mehmood K, Ali HM, Siddiqui MH. Alleviation of temperature stress in maize by integration of foliar applied growth promoting substances and sowing dates. PLoS One 2022; 17:e0260916. [PMID: 35051214 PMCID: PMC8775190 DOI: 10.1371/journal.pone.0260916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/22/2021] [Indexed: 12/31/2022] Open
Abstract
Temperature is a key factor influencing plant growth and productivity, but its sudden rise can cause severe consequences on crop performances. Early sowing and application of growth promoting agents as a foliar spray can be a sustainable approach to cope with high temperature stress at grain filling stage of cereal crops. Therefore, a test was designed to explore the potential of different growth helping agents including sorghum water extract (SWE, 10 ml L-1), moringa leaf extract (MLE, 3%), hydrogen peroxide (H2O2, 2 μM), salicylic acid (SA, 50 mg L-1) and ascorbic acid (ASA, 50 mg L-1) as foliar agents at different sowing dates (early and optimum) to cope with temperature stress in maize. The results stated that foliar application of growth promoting substances successfully persuaded high temperature tolerance at reproductive phase of maize in early and optimum sowings when compared to control. However, SWE + ASA, MLE + H2O2 and SWE + ASA + SA + H2O2 were the best combinations for improving growth, development, and physiological variables under both sowing dates even under suboptimal temperature. All foliar applications significantly increased maize grain and biological yields while maximum was observed in SWE + ASA followed by SWE + ASA + SA + H2O2 or MLE + H2O2 that were statistically at par with ASA + SA + H2O2 but plants without spray or distilled water application did not improve grain and biological yields. Overall, the foliar applications of growth promoting substances enable the plant to enhance its growth, development, morphology, yield and biochemical variables.
Collapse
Affiliation(s)
- Irfan Afzal
- Seed Physiology Lab, Department of Agronomy University of Agriculture, Faisalabad, Pakistan
| | - Shakeel Imran
- Department of Agronomy, University of Agriculture, Vehari, Pakistan
| | - Talha Javed
- Seed Physiology Lab, Department of Agronomy University of Agriculture, Faisalabad, Pakistan
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ayesha Tahir
- Seed Physiology Lab, Department of Agronomy University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Kamran
- Seed Physiology Lab, Department of Agronomy University of Agriculture, Faisalabad, Pakistan
| | - Qamar Shakeel
- Fodder Research Sub-Station, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Khalid Mehmood
- Rothamsted Research Institute, North Wyke, Oakhampton, Devonshire, England
| | - Hayssam M. Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Manzer H. Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Shah AN, Javed T, Singhal RK, Shabbir R, Wang D, Hussain S, Anuragi H, Jinger D, Pandey H, Abdelsalam NR, Ghareeb RY, Jaremko M. Nitrogen use efficiency in cotton: Challenges and opportunities against environmental constraints. FRONTIERS IN PLANT SCIENCE 2022; 13:970339. [PMID: 36072312 PMCID: PMC9443504 DOI: 10.3389/fpls.2022.970339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/20/2022] [Indexed: 05/09/2023]
Abstract
Nitrogen is a vital nutrient for agricultural, and a defieciency of it causes stagnate cotton growth and yield penalty. Farmers rely heavily on N over-application to boost cotton output, which can result in decreased lint yield, quality, and N use efficiency (NUE). Therefore, improving NUE in cotton is most crucial for reducing environmental nitrate pollution and increasing farm profitability. Well-defined management practices, such as the type of sources, N-rate, application time, application method, crop growth stages, and genotypes, have a notable impact on NUE. Different N formulations, such as slow and controlled released fertilizers, have been shown to improve N uptake and, NUE. Increasing N rates are said to boost cotton yield, although high rates may potentially impair the yield depending on the soil and environmental conditions. This study comprehensively reviews various factors including agronomic and environmental constraints that influence N uptake, transport, accumulation, and ultimately NUE in cotton. Furthermore, we explore several agronomic and molecular approaches to enhance efficiency for better N uptake and utilization in cotton. Finally, this objective of this review to highlight a comprehensive view on enhancement of NUE in cotton and could be useful for understanding the physiological, biochemical and molecular mechanism of N in cotton.
Collapse
Affiliation(s)
- Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Punjab, Pakistan
- *Correspondence: Adnan Noor Shah,
| | - Talha Javed
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Rubab Shabbir
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Depeng Wang
- College of Life Science, Linyi University, Linyi, Shandong, China
- Depeng Wang,
| | - Sadam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Hirdayesh Anuragi
- ICAR-Central Agroforestry Research Institute, Jhansi, Uttar Pradesh, India
| | - Dinesh Jinger
- ICAR-Indian Institute of Soil and Water Conservation, Research Centre, Anand, Gujarat, India
| | | | - Nader R. Abdelsalam
- Agricultural Botany Department, Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, Egypt
| | - Rehab Y. Ghareeb
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Science Research and Technological Applications, Alexandria, Egypt
| | - Mariusz Jaremko
- Smart Health Initiative and Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
5
|
Balbaa MG, Osman HT, Kandil EE, Javed T, Lamlom SF, Ali HM, Kalaji HM, Wróbel J, Telesiñski A, Brysiewicz A, Ghareeb RY, Abdelsalam NR, Abdelghany AM. Determination of morpho-physiological and yield traits of maize inbred lines ( Zea mays L.) under optimal and drought stress conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:959203. [PMID: 35968146 PMCID: PMC9366912 DOI: 10.3389/fpls.2022.959203] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/29/2022] [Indexed: 05/05/2023]
Abstract
Globally, climate change could hinder future food security that concurrently implies the importance of investigating drought stress and genotype screening under stressed environments. Hence, the current study was performed to screen 45 diverse maize inbred lines for 18 studied traits comprising phenological, physiological, morphological, and yield characters under optimum and water stress conditions for two successive growing seasons (2018 and 2019). The results showed that growing seasons and water regimes significantly influenced (p < 0.01) most of the studied traits, while inbred lines had a significant effect (p < 0.01) on all of the studied traits. The findings also showed a significant increase in all studied characters under normal conditions compared to drought conditions, except chlorophyll content, transpiration rate, and proline content which exhibited higher levels under water stress conditions. Furthermore, the results of the principal component analysis indicated a notable distinction between the performance of the 45 maize inbred lines under normal and drought conditions. In terms of grain yield, the drought tolerance index (DTI) showed that Nub60 (1.56), followed by Nub32 (1.46), Nub66 (1.45), and GZ603 (1.44) were the highest drought-tolerant inbred lines, whereas Nub46 (0.38) was the lowest drought-tolerant inbred line. These drought-tolerant inbred lines were able to maintain a relatively high grain yield under normal and stress conditions, whereas those drought-sensitive inbred lines showed a decline in grain yield when exposed to drought conditions. The hierarchical clustering analysis based on DTI classified the forty-five maize inbred lines and eighteen measured traits into three column- and row-clusters, as inbred lines in cluster-3 followed by those in cluster-2 exhibited greater drought tolerance in most of the studied traits. Utilizing the multi-trait stability index (MTSI) criterion in this study identified nine inbred lines, including GZ603, as stable genotypes in terms of the eighteen studied traits across four environments. The findings of the current investigation motivate plant breeders to explore the genetic potential of the current maize germplasm, especially in water-stressed environments.
Collapse
Affiliation(s)
- Maha G. Balbaa
- Maize Research Department, Field Crops Research Institute, Agriculture Research Center, Cairo, Egypt
| | - Hassan T. Osman
- Maize Research Department, Field Crops Research Institute, Agriculture Research Center, Cairo, Egypt
| | - Essam E. Kandil
- Plant Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Talha Javed
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sobhi F. Lamlom
- Plant Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Hayssam M. Ali
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Hazem M. Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences SGGW, Warsaw, Poland
- Institute of Technology and Life Sciences-National Research Institute, Falenty, Poland
| | - Jacek Wróbel
- Department of Bioengineering, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Arkadiusz Telesiñski
- Department of Bioengineering, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Adam Brysiewicz
- Institute of Technology and Life Sciences-National Research Institute, Falenty, Poland
| | - Rehab Y. Ghareeb
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Nader R. Abdelsalam
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
- *Correspondence: Nader R. Abdelsalam,
| | - Ahmed M. Abdelghany
- Crop Science Department, Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| |
Collapse
|
6
|
Magnetic Field Treatments Improves Sunflower Yield by Inducing Physiological and Biochemical Modulations in Seeds. Molecules 2021; 26:molecules26072022. [PMID: 33916293 PMCID: PMC8036579 DOI: 10.3390/molecules26072022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 01/09/2023] Open
Abstract
Magnetic seed enhancement has been practicing as a promising tool to improve germination and seedling growth of low vigor seeds stored under suboptimal conditions, but there is still ambiguity regarding the prospects for magnetism in oilseeds. Present study elucidates the potential of magnetic seed stimulation to improve sunflower germination, growth and yield. Germination and emergence tests were performed to optimize the strength of the magnetic field to sunflower seed enhancement. The seeds were directly exposed to magnetic field strengths of 50, 100 and 150 millitesla (mT) for 5, 10 and 15 min (min) and then standard germination tests were performed. Secondly, the emergence potential of untreated seeds was compared with seed exposed to hydropriming, priming with 3% moringa leaf extract (MLE), priming with magnetically treated water (MTW) for 10 min and priming with 3% MLE solution prepared in magnetically treated water (MTW + MLE). Germination, emergence, seedling growth and seed biochemical properties were used to select the best treatment for field evaluation. The results of the study revealed that magnetic seed treatment with 100 mT for 10 min and seed priming with 3% MLE solution in magnetically treated water (MTW + MLE) significantly improved emergence, crop growth rate and sunflower yield.
Collapse
|